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ABSTRACT Hand gestures are a well-known and straightforward method of human-computer interaction.
The majority of the study focused on hand gesture recognition. However, little work has been done to
develop a complete set of gesture recognition applications.With the improvement of model feature extraction
ability and the increase in the number of model parameters, it is becoming more challenging to achieve a
small memory footprint on mobile devices based on an ARM architecture or CPU devices based on x86
architecture. However, these existing methods are heavy, requiring more memory and inference time. The
execution of memory-efficient CNNs without compromising accuracy has been a challenge, especially when
the inference has to be performed on an edge computing device in real time. Therefore, we propose a
lightweight network for hand gesture recognition (LHGR-Net) and deploy it on a Raspberry Pi. LHGR-Net
consists of three main parts: the base network structure, the multiscale structure (MSS), and the lightweight
attention structure (LAS). We present pre-trained weights that are learned from other data to initialize the
network structure. In addition, the LHGR-Net model was made to be deployed on a Raspberry Pi, and
a deployed model can be used to control home appliances. Extensive experiments show that our method
achieves almost as good as state-of-the-art performance in hand gesture recognition and running time.

INDEX TERMS Lightweight, deployment, multiscale structure, lightweight attention structure, pre-trained
weights, Raspberry Pi.

I. INTRODUCTION
In computer science and language technology, hand ges-
ture recognition aims to interpret human gestures through
mathematical algorithms. In social interactions, gestures play
an important role in conveying information and expressing
our thoughts and feelings more effectively. It is possible to
interact with machines by using hand gestures. Hand gesture
recognition (HGR) is an active area of research in visual pat-
tern analysis in applications such as human-computer inter-
action [1], sign language communication [2], virtual reality
[3], and smart homes [4]. Currently, the most common hand
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gesture recognition application is sign language recognition
[5], intelligent robotic [6], and intelligence controlling of
household-appliances [7]. While a large number of studies
have been devoted to such a field, existing approaches gen-
erally employ complex models to extract gesture features,
which can lead to problems of high computational consump-
tion and also high model parameters. In addition, existing
hand gesture recognition does not fully consider the whole
process, from model design to deployment and application.

Due to the recent advance in hand-crafted features and
deep-learned features, a large number of attempts have been
made to the hand gesture recognition area. In particular,
these studies [5], [8], [9], [10], [11] can be categorized into
two categories: traditional method-based approaches [8], [9],
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and deep learning-based approaches [5], [10], [11]. The sys-
tems proposed by [8] and [9] are typical examples of tra-
ditional method-based approaches, which used hand-crafted
features extractor and SVM classifier for the gesture recog-
nition task. Although traditional method-based approaches
are fast, they not only have complex operations but also low
efficiency and poor generalization ability. Deep neural net-
works have achieved significant success in the field of image
classification in recent years. Thus, deep learning-based
approaches have been widely investigated. For example,
to address the problem of overfitting, Fang et al. [10] pro-
posed a deep convolutional generative adversarial network
(DCGAN). By using fewer samples for training, the authors
also achieved better performance. Sharma and Singh [5] pro-
posed a G-CNN model packed with compact representation,
the remarkable recognition results are obtained. Cheng et al.
[11] proposed a joint network of CNN and RBM for ges-
ture recognition. It has been demonstrated that the jointly
proposed network can identify simple background gesture
samples more accurately; however, the ability to recognize
gesture samples against complex backgrounds still needs to
be improved. Moreover, the model is complex and contains a
large number of parameters.

While the aforementioned approaches already achieved
good recognition performance on the gesture dataset, they are
still not able to provide reliable predictions on the different
scales of gestures and a very small percentage of gestures in
images. In addition, with the improvement of model feature
extraction ability and the increase in the number of model
parameters, it is becoming more challenging to achieve a
small memory footprint on mobile devices based on ARM
architecture or CPU devices based on x86 architecture. Gen-
erally, classical network structures(ResNet [12], DenseNet
[13], HRNet [14]) are used for hand gesture recognition tasks;
however, these structures are heavy, requiring more memory
and inference time. These models are difficult to deploy on
edge computing devices. The execution of memory-efficient
CNNs without compromising accuracy has been a challenge,
especially when the inference has to be performed on an edge
computing device in real time. Meanwhile, gesture recogni-
tion technology is used mostly to perform gesture prediction
tasks on computer and server platforms, making it difficult to
develop a rapid product. The reason is that gesture recognition
models are large and difficult to deploy. The Raspberry Pi
is a popular device for edge computing; it is very small,
lightweight, and has a very low power supply. The current
gesture recognition models have difficulty deploying gesture
recognition models on Raspberry Pi and achieving effective
recognition. In addition, some other reasons are the lack of
suitable hardware platforms and the fact that researchers in
this field pay less attention to the model deployment landing
and focus more on model optimization.

As a consequence, this paper proposes a lightweight net-
work for hand gesture recognition (LHGR-Net) and deploys
it on a Raspberry Pi. LHGR-Net consists of three main parts:
the base network structure, the multiscale structure (MSS),

and the lightweight attention structure (LAS). The motivation
behind our LHGR-Net method is based on considering that
both the MSS and the LAS can strengthen the representation
ability of a neural network. The multiscale architecture can
not only capture the global structure of input images but
also retain their local details [15], while attention modules
can well handle long-range dependencies, which enables the
neural network to focus more on useful information within a
context [16], [17]. Regarding the image hand gesture recog-
nition task, it is better to combine them rather than sepa-
rately employing them so that their merits are taken and their
demerits are overcome. To the best of our knowledge, this
is the first attempt to implement the whole process, design
algorithms,model deployment, and applications for hand ges-
ture recognition. To evaluate the performance of the proposed
LHGR-Net approach on the HGR1 and OUHANDS datasets.
This proposed model is found to be advantageous over the
present state-of-art approaches since it has high accuracy and
inference speed.

The main contributions of this article are as follows:
• We propose a lightweight CNNmodel called LHGR-Net

that can classify the type of multi-size gestures with
extremely low computational complexity while maintaining
high accuracy. Additionally, LHGR-Net provides a better
balance between inference speed and accuracy.

• We implement the whole process, design algorithms,
model deployment, and applications.Most current algorithms
are not considered as models are applied. The LHGR-Net
model is deployed to a Raspberry Pi, and a deployed model
is used to control home appliances.

• LHGR-Net is state-of-the-art in terms of inference
speed and accuracy trade-off on the HGR1 and OUHANDS
datasets, and the experimental results show that LHGR-Net
performs better than other networks in other evaluation
metrics.

II. RELATED WORKS
To overcome the challenges of real-time deployment and
memory efficiency of the deep learning models. In the recent
literature [18], [19], [20], [21], [22], there has been rising
interest in building small and efficient neural networks.

MobileNetV2 [18] adopts a resource-efficient block with
inverted residuals and linear bottlenecks. ShuffleNet [19]
employs two operations, group convolution and channel shuf-
fle, to design a convolutional neural network model to reduce
the number of parameters. The author of GhostNet [20]
proposed a novel ghost module for constructing neural net-
work structures. With the ghost module, the original con-
volutional layer is divided into two parts: first, by creating
the original feature maps with fewer convolutional kernels
and then, by producing more ghost feature maps via cheap
transformation operations. In these studies, some lightweight
modules were designed. LightAMC [21] introduces a scaling
factor for each neuron in a convolutional neural network
and enforces scaling factor sparsity via compressive sensing.
It can assist in screening out redundant neurons, and these
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neurons are pruned. PCBNet [22] compresses and expands
the dimensions of input images via convolution layers and
then extracts feature maps. After that, the feature maps are
input into the tail of the backbone, which consists of global
average pooling (GAP), a 1 × 1 convolution, and a flattened
layer. The literature [18], [19], [20], [21], [22] provided a
lightweight network structure using the efficient structure
of network design ideas. Reference [18] retained the depth-
separable convolution, and a linear bottleneck and inverted
residual were added. Literature [19] proposed a method pri-
marily composed of two operations: pointwise group con-
volution and channel shuffle. Literature [20] used a series
of linear variations to find the desired information from the
original features. Literature [21] first introduced a scaling
factor for each neuron in a convolutional neural network
and enforced scaling factor sparsity via compressive sensing,
which can assist in screening out redundant neurons, and
then these neurons are pruned. Reference [22] provided two
versions of the modified FusedMBConv block: standard and
downsampling, which contain a 3 × 3 convolution block
and a 1 × 1 convolution block. References [18] and [22]
employed depth-separable convolution, which compresses
the size and expands the dimension of input images through
convolution layers and then outputs extracted feature maps.
The literature [19], [20], [21] focused on the model, feature
maps, redundancy of neurons, and solution methods.

Breland et al. [23] developed a model based on the bot-
tleneck module, which was inspired by deep residual net-
works and MobilenetV2. They utilized the ‘Sign Language
Digits Dataset’ to train the proposed model, and the model
was deployed on a Raspberry Pi 4 Model B edge comput-
ing system to serve as an edge device for user verifica-
tion. Dayal et al. [24] presented a model design consisting
of several bottleneck layers, which were inspired by deep
residual networks, and the model was deployed on a Rasp-
berry Pi 4 Model B edge computing system to classify hand
gestures captured from thermal images. Breland et al. [25]
proposed a robust hand gesture recognition system based
on high-resolution thermal imaging that is light-independent.
The proposed models based on the dilated convolution layer
were also tested on Raspberry Pi 4 edge computing devices.
Sikkandar [26] proposed a memory-efficient deep learning
convolutional neural network model to identify and classify
the hand movements of sign language digits and extract
the function by combining the two BEMD and SIFT algo-
rithm techniques. The model was deployed in the Raspberry
Pi 4 Model B edge computing system to act as an edge device
for user verification. The above literature mostly focused on
analysing sign language digits, whereas the literature [24],
[25] was devoted to analysing sign language digits from
thermal images. The network structures used were based on
residual networks and basic operations such as the dilated
convolution layer.

The optimization of these algorithms is somewhat detached
from the industry’s most commonly used ARM architecture
CPU device environment, and the acceleration capabilities

often fall short of expectations. In addition, lightweight mod-
els are rarely applied for industrial deployment on gesture
recognition tasks. In this paper, the LHGR-Net model is
designed for the gesture recognition deployment application
task, using DepthSepConv as the base block. To avoid reduc-
ing inference speed, we discard the commonly used Shortcut
Connections and use the H-Swish activation function with
the exponential operation. In order to cope with gesture size
diversity in images, the MSS structure is adopted, and an
improved ASPP module is introduced in the MSS structure,
inspired by the target detection task. To obtainmoremeaning-
ful feature information from gesture images, the LAS struc-
ture is used. The overall structure of the model is composed
of these structures and strategies. The model is also deployed
and applied to achieve the full process.

III. PROPOSED METHOD
We propose a lightweight gesture recognition network
(LHGR-Net) that uses pre-trained weights from other data
training to build initial weights of the network structure,
which is retrained using a new dataset. It is possible to deploy
the lightweight model on a Raspberry Pi to achieve full
process success.

A. LIGHTWEIGHT NETWORK ARCHITECTURE FOR HAND
GESTURE RECOGNITION
Due to the deeply optimized depthwise separable convolution
(DepthSepConv) block by Intel’s CPU acceleration library,
the inference speed can exceed other lightweight blocks,
such as inverted blocks and ShuffleNet blocks. Therefore,
we adopt DepthSepConv of MobileNetV2 [18]. We also use
the hard-swish activation function of EfficientNet [27] since
the original activation function was improved to avoid a large
number of exponentiation operations. In addition, the adap-
tive pooling operation is also used to reduce network parame-
ters [28]. Every basic block of the network structure consists
of both DepthSepConv and the hard-swish activation function
to combine to form F1, F2, the multiscale structure (MSS),
and the lightweight attention structure (LAS). A set of F1 and
F2 is composed of two convolutional blocks of 3 × 3 and four
convolutional series, respectively, where each convolutional
series is made up of several basic blocks. F3 is composed
of 1 × 1 convolutional blocks followed by fully connected
layers. The feature extraction process is performed by F1 and
F2, while gesture classification is performed by the softmax
classifier. Additionally, the MSS and the LAS are incorpo-
rated. As shown in Figure 1, the above series of operations
define LHGR-Net.

1) MULTISCALE ENSEMBLE STRUCTURE FOR LHGR-NET
The different scales of gestures in an imagemake it difficult to
obtain gesture feature maps at different scales simply through
convolution, and it is difficult to report satisfactory results for
tasks related to gestures. To address this challenge, this paper
exploits the atrous spatial pyramid pooling (ASPP) module in
DeepLabv3 [29] to extract multiscale features.
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With the help of theASPPmodule of DeepLabV3,multiple
scales of contextual image information can be effectively
extracted with different sampling rates of atrous convolution.
It also achieves good results for semantic segmentation tasks.
Based on this, we propose a multiscale structure (MSS) for
gesture recognition.

The multiscale structure is shown in Figure 1. It consists
of a modified ASPP module and 1 × 1 convolution blocks.
The modified ASPP module uses a five-branch atrous con-
volution, which uses expansion coefficients of 1, 3, 6, 12,
and 18, corresponding to the number of output channels of
256, 128, 64, 32, and 16. By using 1 × 1 convolution, batch
normalization, and hard-swish activation function operations,
the 1 × 1 convolution block can fuse different scales of
feature maps obtained from each branch of a modified ASPP
module while reducing the number of channels. TheMSS can
be used to increase the receptive field without increasing the
parameters, which can effectively extract feature information
at different gesture scales. The MSS can be formulated as:

Y = δ256
(
BN

(
f1,1(F)

))
+ δ128

(
BN

(
f3,3(F)

))
+ δ64

(
BN

(
f3,6(F)

))
+ δ32

(
BN

(
f3,12(F)

))
+ δ16

(
BN

(
f3,18(F)

))
, (1)

Ŷ = δ16 (BN (f1(Y ))) , (2)

where f n,m(.) denotes a mapping function learned by the n ×

n convolutional layer, m denotes the dilation rate, F denotes
the input feature map. BN(.) denotes batch normalization to
alleviate internal covariate shift, δc(.) is a hard-swish activa-
tion function of EfficientNet [27], c denotes the number of
channels. Y denote the intermediate features resulted from
the MSS.

2) LIGHTWEIGHT ATTENTION ENSEMBLE STRUCTURE FOR
LHGR-NET
It is difficult to optimize the model performance using con-
ventional operations since gestures are a very small percent-
age of a large number of images. The above deficiencies
can be effectively addressed by convolutional block attention
module (CBAM)-based modules. CBAM is a lightweight and
general module that can be seamlessly integrated into any
CNN architecture with negligible overhead [30]. Since the
CBAM module was proposed, it has been used by a large
number of networks. It does a good job of weighting the
network channels and space for better features. Based on
this, we propose a lightweight attention structure (LAS) for
gesture recognition based on this.

The lightweight attention structure is shown in Figure 1.
It consists of DepthSepConv groups and CBAM blocks.
According to PP-LCNet, the attention mechanism is located
at the end of the network and can play a better role [31].
The PP-LCNet ensures that a large convolution kernel is
used in the case of low latency and high accuracy [31]. The
lightweight attention structure is derived from the PP-LCNet
method in addition to the CBAM module at the tail of the
network structure. To obtain more feature information, the

convolutional kernel size is increased and integrated into the
CBAM module, and feature fusion is carried out using 1 ×

1 convolutional blocks. The result is a reduction in parameters
and a decrease in computational resources. To complete the
full operation of the lightweight attention structure, the above
procedure is repeated once. The LAS is computed as:

F ′
= δ256 (BN (f5(F))) , (3)

F ′′
= Mc(F ′) ⊗ F ′,

F ′′′
= Ms

(
F ′′

)
⊗ F ′′, (4)

F̃ = δ512
(
BN

(
f1

(
F ′′′

)))
, (5)

where f n(.) denotes a mapping function learned by the n ×

n convolutional layer and F and F ′ denotes an intermediate
feature map. BN (.) denote batch normalization to alleviate
the internal covariate shift, δc(.) is a hard-swish activation
function of EfficientNet [27], and c represents the number of
channels. ⊗ represents element-wise multiplication, CBAM
sequentially infers a 1D channel attention map M c and a 2D
spatial attention map M s. F ′′ and F ′′′ represent the results of
channel attention and spatial attention, respectively.

B. DEPLOYMENT BASED ON THE LHGR-NET MODEL AND
APPLICATION
In Paddle Lite, a variety of strategies are provided to opti-
mize the original training model, including quantization,
subgraph fusion, hybrid scheduling, and kernel preference.
With the opt tool, we automate the optimization steps and
produce a lightweight, optimized executable model. There
is also a lightweight serialization/deserialization implemen-
tation among the output model types.
The figure shows a block diagram of the LHGR-Net model

deployment structure and application. The LHGR-Net model
is deployed to the Raspberry Pi controller based on Paddle
Lite, and the Raspberry Pi is capable of gesture recogni-
tion. Raspberry Pi controllers receive gesture information
collected by the CSI camera, and a deployed model generates
the corresponding control commands that can be used to
control home appliances. On the right, the circuit diagram for
home appliance control is shown. First, the general-purpose
input/output (GPIO) level is adjusted by deploying the pre-
diction result, and the amplifier circuit is used to amplify
the current. Then, the relay will be opened and closed, the
infrared emitters transmit control commands, and finally, the
home appliance is controlled.

IV. EXPERIMENTS
We evaluated our method on two benchmark datasets:
HGR1 [32] - This dataset contains 899 RGB images,

skin masks and feature points of 12 individuals performing
25 different hand gestures. This dataset is split into training,
validation and testing sets with 631, 179 and 89 images,
respectively. The HGR1 collected the gestures from Polish
Sign Language and American Sign Language under uncon-
trolled backgrounds without any occlusion.We only use RGB
images for evaluating hand gesture recognition accuracy.
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FIGURE 1. Illustration of the architecture of the proposed LHGR-Net. It is composed of three main parts: the BaseNet structure, the multiscale structure,
and the lightweight attention structure.

OUHANDS [33] - This dataset contains 3,000 RGB
images, bounding boxes, depths and segmentations of
23 individuals performing 10 different hand gestures. This
dataset is split into training, validation and testing sets with
2,100, 600 and 300 images, respectively. There are images in
each set that are highly challenging, such as varying lighting,
complex backgrounds, and face-hand occlusions with a range
of hand shapes and sizes. We use this dataset to evaluate hand
gesture recognition accuracy.

A. EXPERIMENTAL SETUP
1) IMPLEMENTATION DETAILS
To implement the proposed method, we use a deep learning
library with PaddlePaddle. Using the cross-entropy loss as the
cost function, we used the momentum optimization algorithm
to minimize the loss. We set the learning rate to 0.025 and the
mini-batch size to 32 for training the hand gesture recognition
network.We also employ pre-trained strategies for the gesture
recognition task.

When the training data for hand gesture recognition in
this study are insufficient, there is a lack of useful informa-
tion to be learned, which results in poor recognition results.
Using pre-trained weights learned from other data, the net-
work structure is initialized, and the training data are fed
into the LHGR-Net for retraining and outputting prediction
results. Our proposed LHGR-Net is trained on the hand-
pose_gesture_v1 dataset [34], and the weight parameters
are used as initial weights to learn on the HGR1 [32] and
OUHANDS datasets [33].

We train the proposed method by using an Nvidia RTX
2080Ti GPU. The maximum number of epochs for training is

set at 200, and after evaluating the samples for each category,
the mean accuracy is calculated.

2) EVALUATION METRIC
Statistical measures are used to evaluate hand gesture recog-
nition performance. In addition to themean accuracy (mAcc),
Recall, and F1-score, which are calculated to evaluate the sys-
tem’s efficiency, inference time andmodel parameters are two
more essential assessment metrics that must be considered for
lightweight models.

Accuracy is one of the aspects that must be considered
when constructing classification models. Informally, accu-
racy refers to the proportion of correct predictions made by
a model. The mAcc is obtained by calculating the weighted
average of the average accuracy (Acc) of all category detec-
tions. It is also a crucial parameter for evaluating hand gesture
recognition.

Acci =
TPi + TNi

TPi + FPi + FNi + TNi

mAcc =
1
N

N∑
i=1

Acci
(6)

In reality, when we attempt to enhance the precision of
our model, the recall suffers, and vice versa. The F1-score
captures the following tendencies in a single number:

Precision =
TP

TP+ FP
(7)

Recall =
TP

TP+ FN
(8)
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FIGURE 2. The figure shows a block diagram of the LHGR-Net model deployment structure and application.

F1 − score = 2 ×
Precision × Recall
Precision + Recall

(9)

where TP is true positive, TN denotes true negative,
FP denotes false positive and FN denotes false negative.

B. DATA AUGMENTATION
To increase image diversity, data enhancement strategies are
implemented. We use data enhancement strategies, includ-
ing mixup, RandomCrop, RandomHorizontalFlip, and nor-
malize. By mixing images from different classes, a mixup
algorithm can expand the training dataset in computer
vision. In image classification, mixup is an important image
enhancement technique [35]. In this study, the input network
images are cropped due to the inconsistent image sizes in
the dataset. Using RandomCrop, we adjust the image sizes
to 224. Because of the angle deviation in the same gesture,
the diversity of the image is increased by horizontal reversal
of the angle so that it can adapt to gestures at various angles.
Then, the normalization enhancement strategy is carried out.
Normalization is performed for the convenience of data pro-
cessing and to accelerate the convergence speed.

C. EXPERIMENTS ON HAND GESTURE RECOGNITION
For the hand gesture recognition task, we evaluated LHGR-
Net. Tables 1 and 2 show the classification scores on the
HGR1 and OUHANDS test sets, respectively. Tables 1 and
2 compare the performances of seven popular network archi-
tectures (ResNet-50 [12], MobileNet [36], EfficientNet [27],
DeepLabV3 [29], PP-LCNet [31], HRNet [14]) and two
new gesture recognition network structures (Pinto et al.
[37], ExtriDeNet [38], EDenseNet [39]) on the HGR1 and
OUHANDS datasets, respectively. In Rows 1-6 of Tables 1
and 2, we present the scores of six popular deep networks.
We only replaced the softmax layer, which was originally
trained to recognize 1,000 classes, with a softmax layer that
recognizes 25 and 10 classes for training these networks on
the HGR1 and OUHANDS datasets, respectively. In Rows

7-9 of Tables 1 and 2, we present the scores of three new
gesture recognition network structures. The most recent algo-
rithms among them are ExtriDeNet and EDenseNet, with
EDenseNet, in particular, having been published in journals
with high impact factors. In addition, ExtriDeNet provides
state-of-the-art hand gesture recognition approaches.

We report the results of our method and other state-of-
the-art methods in Table 1. DeepLabV3 (Row 4) outper-
forms these models (Rows 1-3, 5, and 6), achieving 90.62%
on mAcc, and there are many parameters in this model.
MobileNet is often used in mobile or embedded devices as
a lightweight network structure. EDenseNet (Row 9) outper-
forms the models (Row 7,8), achieving 92.02% on mAcc,
which requires considerable inference time. Our LHGR-Net
outperforms these models, obtaining a 3.74% increment over
the next best on mAcc, and the parameters of the model are
suitable for deployment at the edge. In addition, the inference
time for our LHGR-Net is 27 ms, nearly two times as fast
as the best reasoning algorithm. The performance of LHGR-
Net (pre-trained) as a whole then jumps to an mAcc of
2.61% when we apply retraining the pretrained weights on
the handpose_gesture_v1 dataset as the initial weights. This
result emphasizes the effectiveness of our network architec-
ture.

Table 2 reports the hand gesture recognition performances
of our approach and the existing state-of-the-art approaches.
As a result, PP-LCNet (Row 5) outperforms these models
(Rows 1-4,6), which achieved 97.53%. In comparison to the
models (Row 7), ExtriDeNet (Row 8), and EDenseNet (Row
9) has a better mAcc of 96.73% but requires a consider-
able amount of time to infer predictions. As a lightweight
network structure, MobileNet is often used in mobile or
embedded devices. Our LHGR-Net outperforms the next best
with 1.04% improvements in mAcc, 15 ms reductions in
inference time, and parameters suitable for edge deployment.
As a result, our network architecture is proven to be effec-
tive. It has the same mAcc as LHGR-Net (pre-trained) when
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TABLE 1. For a fair comparison, we used the same training strategy and
hyperparameters for all models in the table to achieve the recognition
mean accuracy(mAcc), Recall, F1-score, AUC, inference time, and
parameters of the model with respect to the HGR1 test set.

TABLE 2. Comparison of recognition mean accuracy(mAcc), Recall,
F1-score, AUC, inference time, and parameters of the model on the
OUHANDS test set. Note that for fair comparison we use the proposed
data augmentation strategy for training all models considered in the
table.

we apply to retrain the pre-trained weights on the hand-
pose_gesture_v1 dataset as the initial weights. The mAcc is
not improved when the pre-training weights are initialized
because it reaches a certain value.

To assess the performance of the qualitative analysis
model, this study employed two testing sets - the HGR1
testing set and the OUHANDS testing set, displaying the con-
fusion matrix and prediction performance figures for gesture
recognition, respectively. Figures 3 and 4 in this paper present
the prediction results for the HGR1 testing set. Figure 3
presents the confusionmatrix. It reveals that due to the limited
number of images in the HGR1 testing data, the number of
diagonal elements in the confusion matrix is also relatively
low. By observing the confusion matrix, it can be found
that the letters ‘‘S’’ and ‘‘T’’ are the most easily mistaken
in all prediction results, while other prediction results are
relatively accurate. In order to further improve the model’s
performance, more data can be added for letters that are
more likely to be mistaken. Additionally, Figure 4 shows
prediction performance figures for four different categories of
predictions. It can be seen that the model still has acceptable
prediction performance under low light and shadow condi-
tions, indicating that the model has significant adaptability to
different lighting conditions. Overall, this model has certain
advantages in gesture recognition, but there is still room for
improvement.

In this article, Figure 5 shows the results of prediction
based on the OUHANDS gesture test dataset. A confu-
sion matrix is used to evaluate the performance of the ges-
ture recognition model, which displays the cross-tabulation
between actual gestures and predicted gestures. In this con-
fusion matrix, each row represents the true gesture, and each
column represents the predicted gesture. For example, the

FIGURE 3. Confusion matrix of the predictions made by the model
trained with the HGR1 gesture dataset.

sixth row represents the actual gesture as gesture F, where
62 gestures F were correctly predicted, and 2 gestures F were
incorrectly predicted as gesture B. This is also one of the
letters that is easiest to misclassify in the OUHANDS gesture
dataset: ‘‘F’’ and ‘‘B’’. It should be noted that the numbers on
the diagonal of this confusion matrix indicate the number of
correct predictions, not the number of incorrect predictions
on the diagonal. In addition, Figure 6 shows the recog-
nition results of OUHANDS gesture test data. The model
performs well in recognizing gestures in different complex
backgrounds, indicating good adaptability of the model in
different backgrounds.

D. ABLATION STUDY
To demonstrate the importance of each block within the
LHGR-Net, we conducted an ablation experiment. In the
experiment, we gradually remove components of the pro-
posed framework and re-train and test the models using the
HGR1 dataset. In order to verify that the LAS improves
the model accuracy, we add the LAS into the backbone of
the structure. We incorporate the MSS into the structure’s
backbone in order to demonstrate that it can increase the
model’s feature extraction capability, which will increase
the recognition accuracy. In Table 3, we report the evalu-
ation results for four ablation models with the mean accu-
racy(mAcc) and the number of model parameters(Params)
metric.

The analysis of the ablation experiment results shows that
the recognition accuracy of the model is increased by 0.88%
after the addition of LAS which does a good job of weighting
the network channels and space for better features in a very
small percentage gesture of image. The MSS is introduced to
enhance the extraction ofmultiscale features, and the recogni-
tion accuracy of the model is increased by 1.46%.We observe
each additional block improves the precision of model identi-
fication. Additionally, the MSS has a higher impact than LAS
on the mAcc metric because the data contains a large number
of gestures of various sizes. We can achieve an improvement
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FIGURE 4. Prediction results based on the HGR1 gesture test dataset.

FIGURE 5. Confusion matrix generated from the OUHANDS gesture test
dataset for model performance evaluation.

of 2.70% by integrating the MSS and LAS blocks into our
LHGR-Net. A significant improvement is brought about by
the combination of the MSS and LAS blocks, according to
the findings reported in LHGR-Net.

E. LHGR-NET DEPLOYED ON A RASPBERRY PI FOR HAND
GESTURE RECOGNITION
To implement the deployment model, a Paddle Lite tool is
used. We used a Raspberry Pi 4B as the hardware deployment
platform. Gesture images were acquired with a Pi camera,
which can capture still images up to 3280 × 2464 pixels and
video at a resolution of up to 1080p at 30 frames per second.
The final step in implementing a product is the deployment
model. As a result, the Raspberry Pi controller gains a soul.
Based on the Raspberry Pi deployment model, hand gesture
recognition can be easily implemented as intelligent control.

In Figure 7, we can see the predicted results of gesture
recognition on the Raspberry Pi. A prediction of Raspberry Pi
video capture results is shown in the top row, and the results of
Raspberry Pi image prediction using the OUHANDS dataset
are shown in the middle row, while the bottom row corre-
sponds to the prediction of the panorama of the Raspberry
Pi. The bottom row of images was taken by a cell phone and
appears blurry, the middle image is a crop of the predicted

FIGURE 6. Visualization of prediction results from the OUHANDS gesture
test dataset.

TABLE 3. Numerical results for the ablation study of hand gesture
recognition evaluated the different types of ablation on the HGR1 testing
data.

results of the OUHANDS test data, and the top row of images
is the predicted video images captured by the Raspberry Pi in
real time and cropped by the Raspberry Pi function. Accord-
ing to Figure 7, the average time is between 30 and 40 ms
based on the Raspberry Pi CPU prediction, which satisfies the
real-time requirements of the product landing. Furthermore,
the prediction of accuracy using the Raspberry Pi CPUmodel
achieves high performance. It enables intelligent control of
home devices through Raspberry Pi deployment. Figure 8
demonstrates that the model was deployed on a Raspberry Pi
and successfully applied to a smart home, enabling the control
of the desk lamp to be executed successfully.

F. DISCUSSION
In this paper, we show that this is the first attempt to imple-
ment the whole process, including design algorithms, model
deployment, and applications for hand gesture recognition.
Additionally, the algorithm provides a better balance between
inference speed and accuracy in this paper.

Further comparisons with previous studies yield various
interesting findings. First, the use of vision-based gesture
recognition is commonly used for computer application
control, and hardware-based hand gesture recognition is
commonly used for embedded terminal applications with
myoelectricity and PAJ7620U2 sensors. To the best of our
knowledge, this is the first attempt to implement the whole
process, design algorithms, model deployment, and appli-
cations for hand gesture recognition. Second, based on an
in-depth analysis of the evaluation results from the HGR1
and OUHANDS datasets, it is evident that the comparison
approach results in more misclassifications, especially for
similar gestures with low numbers and different sizes. The
number patterns of misclassified samples are quite similar,
for example, HGR1: S-T, F-O, F-T, and W-R. The paper uses
MSS, pre-trained, and effective data augmentation strategies
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FIGURE 7. Selected results of predicted hand gesture recognition of samples from the OUHANDS test set and the video images captured by the Raspberry
Pi in real-time.

FIGURE 8. Deployment and application of a lightweight model based on
Raspberry Pi. (a) Gesture-controlled desk lamp off operation.
(b) Gesture-controlled desk lamp on operation.

to address the deficiencies. Third, there is a possible mis-
understanding: The inference of small parameters is fast.
According to Tables 1 and 2, the model parameters for
ExtriDeNet are the smallest, but the inference speed is slow.
For realistic applications of algorithms, accuracy, inference
time, and parameter size are particularly important evaluation
metrics, and it is worth considering how to balance them.
There was no consideration of these issues in the comparative
literature.

Compared to desktop computers, the Raspberry Pi has
limited processing power and memory resources, which pose
significant challenges when deploying convolutional neural
networks. In this paper, we explore several approaches that
can be taken to address these challenges. 1. We designed

a lightweight network called LHGR-Net for hand gesture
recognition. The model was initialized with pre-trained
weights learned from other data, which helped reduce the
training time and improve accuracy. We also optimized the
code and used techniques such as batching to reduce the
computational load on the Raspberry Pi. 2. We found that
hardware optimization can significantly improve the Rasp-
berry Pi’s performance. This can be achieved by using a
high-performance SD card, increasing memory, or using a
more powerful Raspberry Pi model. 3. Depending on the
application, real-time optimization can be used to dynami-
cally adjust the model’s complexity and processing require-
ments based on the available resources. Our extensive exper-
iments demonstrate the effectiveness of these approaches in
addressing the challenge of deploying a CNN on a Raspberry
Pi.

LHGR-Net is a network architecture composed of three
main components: the base network structure, the MSS, and
the LAS. However, overfitting of the LHGR-Net model can
indirectly affect the MSS and LAS components. To address
this issue, this paper proposes several strategies, includ-
ing early stopping during the training process, pre-training,
dropout, and cross-validation. Additionally, we employed
data augmentation techniques to increase the diversity of the
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training data, which can help prevent overfitting. Overall,
these strategies aim to improve the generalization ability of
the LHGR-Net model and prevent overfitting.

In this paper, by adding the LAS, the model can be made
more accurate, but it will slow down the inference speed
when too much LAS is used. The algorithm provides a better
balance between inference speed and accuracy. Admittedly,
there are twomain limitations: 1. The large number of gesture
categories easily causes confusion when controlling multiple
appliances. 2. A lack of versatility in the deployment of
multiple embedded terminals.

V. CONCLUSION AND FUTURE WORK
In this paper, we presented a lightweight network for hand
gesture recognition (LHGR-Net) demonstrating a new state-
of-the-art in Raspberry Pi classification. To improve the
recognition performance, we proposed a multiscale structure
(MSS) and a lightweight attention structure (LAS) in this
lightweight network. Our experimental results show that our
model has great performance against challenging situations.
Moreover, we employed an effective pre-trained weights
technique, which plays an important role in obtaining higher
recognition accuracy. The best model achieves state-of-the-
art performance on the HGR1 dataset and the OUHANDS
dataset. In addition, the LHGR-Net model is deployed to
the Raspberry Pi, and a deployed model can be used to
control home appliances. In future work, we will further
refine the proposed algorithm. Firstly, we will conduct a
deep analysis of the error-prone categories in the text and
implement measures such as targeted data enhancement and
model optimization. Secondly, we will adopt a multimodal
approach to improve model performance, such as Ray-vision
fusion. Finally, we aim to achieve more efficient control of
smart home appliances.
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