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ABSTRACT Cooperative control for multiple vehicles is a promising technology with the capability to
improve traffic efficiency and fuel savings. Given its potential for both commercial and military applications,
multiple unmanned vehicle formation has attracted considerable attention recently. In this paper, the use of
formation control for connected and autonomous vehicles was explored and a novel distributed formation
control approach was proposed. To begin, the evolution mechanism of multi-lane formation was investigated
and a formation transition model based on a finite state machine was constructed. A bi-level formation
control scheme was then proposed; this framework’s upper and lower levels were used to perform trajectory
planning and MPC-based control, respectively. A novel trajectory planning approach was constructed
by combining the distributed consensus algorithm and the potential field method. Moreover, additional
acceleration constraints were imposed on the trajectory planning algorithm. Finally, three scenarios were
designed to validate the proposed formation control algorithm using Webots. The results illustrate that
a formation deployed with the proposed formation control algorithm can handle abnormal situations and
realize consensus within 12s.

INDEX TERMS Connected and autonomous vehicle, formation control, formation behavior modeling,
distributed consensus, risk potential field.

I. INTRODUCTION
California’s Partners for Advanced Transit and Highways
(PATH) project has demonstrated that cooperative control
of multi-vehicle system can enhance road safety, improve
traffic throughput, and reduce fuel consumption to benefit the
environment [1], [2].

Vehicle platooning is a typical multi-vehicle coopera-
tive driving system where a group of vehicles drive in a
single-lane at a desired speed while maintaining a short
inter-vehicle distance [3], [4]. Vehicle-to-everything (V2X)
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technology enables information sharing between infrastruc-
ture and vehicles. A distributed controller is implemented in
the vehicle using its neighbors’ information but achieving
global coordination. In general, linear controllers [5], [6],
optimal controllers [7], H∞ controllers [8], [9], [10], sliding
mode controllers (SMC) [11], [12], [13], or model predictive
controllers (MPC) [14], [15], [16] may be used for the dis-
tributed control of vehicle platoons.

Majority studies focus on single-lane platoons which only
considers the longitudinal platooning using spacing control
methods. a nonlinear consensus drives them is proposed by
incorporating the car-following interactions and heteroge-
neous time delays.
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However, if the formation geometry or information flow
topology is not properly designed, any error in the leader
vehicle’s spacing or velocity will amplify as they propagate
down the platoon; these problems are referred to as string
instability issues [17]. In addition, as the number of vehi-
cles in the platoon increases, packet loss and communica-
tion delay have a nontrivial influence on the robustness of
the multi-vehicle system. Furthermore, the lead vehicle in
the platoon influences the behaviour of each of the others;
thus, problems with the lead vehicle may render the platoon
unstable.

To improve the scalability and stability of multi-vehicle
systems, Multi-lane platoon formations were proposed to
improve the scalability and stability of multi-vehicle systems.
Such frameworks have attracted significant attention in recent
years. Multi-vehicle formation schemes have built upon the
research conducted for multi-robot formulation that began
in the 1980s [18]. The objective of formation control is to
command a group of of autonomous vehicles to achieve a
set of deployment requirements whilst maintaining a desired
formation [19].

Formation control approaches are commonly divided into
two distinct categories: centralized control and decentralized,
or distributed control. In a centralized control scheme, one
agent designated as the ground control unit, is responsible
for utilizing a centralized organization structure to optimize
the vehicle coordination. As for decentralized control, each
agent can accomplish its part of the global mission based on
local information and decentralized control law. Centralized
control is less robust and more prone to failure in comparison
to decentralized control [20].

Common formation control strategies include leader-
follwer, virtual structure, behavior-based, potential function-
based, and graph-based methods [21], [22], [23], [24], [25].
Fig.1 displays schematic diagrams of the five formation
control strategies. Within the leader-follower context, the
followers deploy local control laws to achieve the desired
gap with respect to the leader. Tao and Shan proposed four
control laws to achieve leader-follower formation based on
the straightforward input-output linearization method [26].
Xiao et al. implemented nonlinear MPC for leader-follower
formation control. By virtue of the neural network, the
computational complexity associated with MPC can be
reduced [27].

The virtual structure approach is another essential forma-
tion control method proposed by Lewis and Tan [22]. Within
this context, a collection of formation vehicles maintain rigid
geometric relations to their neighbors to form a rigid entity.
Ghomman et al. proposed an algorithm combining virtual
structure and path following approaches to coordinate mul-
tiple mobile robots [28].

Balch and Arkin first proposed behavior-based forma-
tion control [29]. The central concept of the behavior-based
approach is that the formation behavior is integrated with
other navigation behaviors to enable a robotic team to reach

the navigation goal, avoid obstacles and maintain in forma-
tion simultaneously. Lee and Chwa presented a decentral-
ized behavior-based formation control algorithm using the
relative position information between neighboring robots and
obstacles [23].

The key to the potential function-based approach was to
construct possible functions to define the interaction forces
between the formation agents. Leonard and Fiorelli proposed
a framework for coordinated control of multiple UGVs using
artificial potentials and virtual leaders. The interacted control
force between neighboring agents is defined by the artificial
potentials to maintain the separation distances between the
agents [30]. Liu et al. proposed a novel potential field method
for formation control, where a global attractive potential field
is added outside the influence range of the local formation
potential field to enhance the formation robustness. Further-
more, two controllers were designed to achieve the formation
stability and ensure the tracking of desired trajectories [31].

In the graph-based approach, formation is abstracted to a
graph, where the formation vehicle is described as vertex, and
the edge represents the information flow from one vehicle
to another. Gao et al. proposed a multi-lane convoy control
algorithm based on the distributed graph and the potential
field approach [32]. Marjovi et al. proposed an approach
for formation control of highway multi-lane convoy in high-
ways based on graph-based Laplacian and distributed con-
trol law [33]. Navarro et al. investigated the heterogeneous
convoys based on distributed, graph-based control law in a
longitudinal coordinate system [24]. Gowal et al. proposed
a local graph-based distributed control method for keeping
a predefined formation of highway vehicle endowed with
information of range and bearing to other vehicles [34].

Nevertheless, each of the four aforementioned approaches
are hindered by certain drawbacks. The main demerit of
the leader-follower approach is that it is less tolerant to
component failure; that is, malfunctions in the leader may
contribute to the formation failure. The virtual structure strat-
egy provides significant performance in terms of formation
maintenance as it is easy to maintain rigid geometric relation-
ships among formation agent. However, it is not beneficial
for formation reconfiguration. In addition, the inflexibility
in the formation shape regeneration eventually jeopardize
the ensemble’s stability. Compared with the virtual structure
approach, the behavior-based approach shares advantages of
the decentralized control. However, it is difficult to analyze
the robustness and stability mathematically. As for the graph-
based approach, it is easy to achieve convergence and internal
formation stability. Yet, to the best of our knowledge, few
studies simultaneously take into account the agent dynamic
constraints and collision avoidance issues.

In this paper, multi-lane formation, and explored
multi-lane formation control for connected and autonomous
vehicles was explored. First, the evolution mechanism of
multi-lane formationwas investigated, and a formation transi-
tion model based on finite state machine was built. A bi-level
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FIGURE 1. Formation control strategy.

formation control scheme was then proposed; this frame-
work’s upper and lower levels are used to perform trajectory
planning and MPC-based control, respectively. By combin-
ing the distributed consensus algorithm and potential field
method, a novel trajectory planning approach was con-
structed. Moreover, additional acceleration constraints were
imposed on the trajectory planning algorithm. The scheme
of the multi-lane formation control algorithm is shown
in Fig.2.

The remainder of the paper is organized as follows:
Section II introduces formation behavior modelling, and
illustrates the state transition of formation based on finite
state machine. Section III details the trajectory planning
algorithm based on distributed consensus algorithm and risk
potential field method. Section IV presents the tracking con-
troller based onmodel predictive control. Section V simulates
and validates the proposed formation control algorithm in
Webots. Finally, conclusions are drawn in Section VI.

FIGURE 2. Formation behavior modelling and control.

II. FORMATION BEHAVIOR MODELLING
Formation of connected and autonomous vehicle was
designed to accomplish tasks in the dynamic environment.
Situation awareness is an essential component of formation
coordination in which each agent derives a sufficient volume
of information to perform its own group commitments and
conventions according to the group behavior and synchro-
nize and coordinates its own individual behavior accordingly.
In this paper, however, perception is out of the scope of our
research. The assumption is made that vehicles in the con-
voy can obtain up-to-date information about the inter-vehicle
dynamic by inter-vehicle communication. Equipped with
sensors and OBU(on-board unit), the vehicle in the formation
can get the information about environmental vehicles and
road geometry by information fusion from the sensors and
V2I communications.

Formation control can be divided into two subtasks: behav-
ior planning and operational management. Behavior planning
aims to allocate the structured set of scenario actions imple-
menting goal-oriented behavior of the formation. Operational
management intends to coordinate and synchronize the for-
mation behavior and mitigate scenario performance deviation
and achieve consensus-oriented formation control. It is essen-
tial to select appropriate system models, therefore, to char-
acterize the underlying fundamental rules of multi-agent
formation behavior. Intuitively, the evolving mechanism
of formation can be heuristically defined by Finite State
Machine.

A. FINITE STATE MACHINE
Approaches based on Finite State Machine (FSM) are com-
monly applied to digital designs systems. The main fea-
tures are: forced modularization defined by the states, and
easy response to the environment changes. A determined
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finite state machine is described by a five-element tuple:
(Q,

∑
, δ, q0,F)

Q: a finite set of state∑
: a finite and nonempty input alphabet

δ: a series of transition functions
q0: the starting state
F : the set of accepting states
The design methodology utilized in this work involved

the inferring of a model for formation behavior. All state
transitions in the model are event triggered; that is, if Event
occurs - while Condition satisfies - perform Action.

B. DYNAMIC FORMATION BEHAVIOR MODELLING
Within the context of multi-vehicle system, connected vehi-
cles exchange messages to coordinate vehicles’ individual
maneuvers in a distributed way. Specifically, combina-
tion of interacting state machines with internal states and
distributed algorithm of self-organizing coordination of
vehicles’ maneuver contributes to the implementation of
group control. Hence, agent-based group behavior modelling
is an appropriate technique as it is used to characterize
the evolving mechanism of the multi-vehicle system with a
dynamic environment.

In general, multi-vehicle systems face both internal and
external challenges. Firstly, a multi-vehicle system can
reach an unstable state. For example, platoons are likely
to encounter the string instability issue if the informa-
tion flow topology or control strategy is not designed
properly. Further, it is difficult for multi-vehicle systems
to maintain steady-state behaviour in a dynamic environ-
ment. Therefore, multi-vehicle systems aim to adjust their
state by the internal and external disturbances. Without
loss of generality, the state of the multi-vehicle system
can be divided into: Base, Consensus building,
Formation reconfiguration, and Abnormal
situation awareness. Fig.3 illustrates the finite state
machine specifying the behavior of multi-vehicle systems.
At the very beginning, selected vehicles flock together to
accomplish the mission. Upon receiving a mission com-
mand, the multi-vehicle system transfers to the Consensus
building module from the Base state. In this state, dis-
tributed formation control algorithm is deployed to construct
a stable and rigid formation. However, the multi-vehicle
system may run into an abnormal state due to the internal
or external disturbances. Should this issue occur, the sys-
tem shifts to Abnormal situation awareness. The
abnormal state may be categorized as: Vehicle fail,
Formation split, or Collision risk. Vehicle fail
indicates a typical abnormality in which the behaviour of the
vehicle deviates from what is expected. Formation split is
another abnormal issue. In some scenarios, the multi-vehicle
system must handle both internal abnormalities and external
disturbances. For example, a single malfunctioning vehicle
that blocks the trajectory of another in the platoon may lead
to a collision. Each of the aforementioned abnormal issues
require the multi-vehicle system to transform. Therefore, the

FIGURE 3. State transition diagram of convoy.

multi-vehicle system will transfer to the formation reconfig-
uration module when it encounters abnormal issues. Specif-
ically, the formation is supposed to adjust its formation
shape, information flow topology, and travel route to deal
with the abnormal situation. Once the motion planning is
accomplished, the formation returns to the Consensus
building module until the mission has been completed.

III. DISTRIBUTED FORMATION CONTROL
In this section, a distributed formation control algo-
rithm is proposed. This algorithm is intended to accom-
modate an arbitrary number of formation vehicles and
achieves consensus-based formation control and formation
reconfiguration.

Multi-vehicle systems adjust their behavior in accordance
with the trigger events defined by finite state machine. When
the reconfiguration is determined, a multi-vehicle system
must transfer into a target consensus state using the formation
control approach. Moreover, to enhance the robustness and
adaptiveness of multi-vehicle systems, the formation con-
trol algorithm is design in a distributed fashion. However,
consensus-oriented formation control methodology is less
focused on the overall safety of the multi-vehicle system.
Intuitively, a risk potential field was introduced in distributed
formation control.

A. BACKGROUND
It is important to outline the basic principles of graph theory
before outlining the controller design. A finite, undirected
graph G is formally defined as the pair (V ,E) consisting of a
set V of vertices and set E , disjoint from V , of edges. For a

VOLUME 11, 2023 45621



Y. Wang et al.: Formation Control for Connected and Autonomous Vehicles

undirected graphG, the degree of a given vertex, d(vi), is the
cardinality of the neighborhood set, that is, it is equal to the
number of vertices that are adjacent to the vertex vi in G.
The degree matrix of G is the diagonal matrix, containing the
vertex-degrees of G on the diagonal, that is,

1(G) =


d(v1) 0 . . . 0
0 d(v2) . . . 0
...

...
. . .

...

0 0 . . . d(vn)

 (1)

The adjacent matrix A(G) is the symmetric n × n matrix
encoding of the adjacent relationships in the graph G, in that

[A(G)]ij =

{
1 if vivj ∈ E,

0 otherwise.
(2)

Another matrix representation of a graph G is the graph
Laplacian, L(G). The most straightforward definition of the
graph Laplacian [35] associated with an undirected graph G
is

L(G) = 1(G) − A(G) (3)

B. FORMATION CONTROL ARCHITECTURE
Inspired by the consensus-based formation control scheme
proposed by Wei et al. [36], Fig.4 illustrates and distributed
formation control architecture consists of three layers: con-
sensus module, cooperative trajectory planning module, and
tracking control module. In this formation control scheme,
there is a global reference state serving as the basis for
each individual vehicle on the team to deploy local control
approach.

In the context of centralized control architecture, a cen-
tral control unit governs the whole multi-vehicle system
and broadcasts coordination variable to every vehicle in
the system. However, the utilization of centralized control
requires high computation performance, and may results in
a single point failure. If each vehicle implements the same
local control algorithm, the same coordination performance
as centralized scheme can be achieved. The Reynolds boids
model [37], originally proposed in the context of computer
graphics and animation, illustrates the basic premise behind
several multiagent problems, in which a collection of mobile
agents are to solve a global task using local interaction rules;
that is, convergence can be guaranteed via local interagent
interactions only. However, due to situation awareness uncer-
tainty of each vehicle, there exist discrepancies between each
instantiation of the coordination variable. Accordingly, the
consensus module is deployed and therefore guarantees that
each implementation of the coordination variable converges
to the target value. In the cooperative trajectory planning
module, the virtual leader was introduced. By virtue of dis-
tributed consensus algorithm and local neighbor information
exchange, the basic trajectory of each vehicle can be derived.
Nevertheless, it has the risk of collision as it emphasis on
the strict consensus while ignoring the collision risk in the

FIGURE 4. Formation control architecture.

process of formation reconfiguration. Intuitively, potential
field was introduced to enforce the safe inter-agent spacing.

C. DISTRIBUTED CONSENSUS WITH VIRTUAL LEADER
The distributed consensus algorithm is applied on the group
level to guarantee consensus on the time-varying group ref-
erence trajectory. Fig.5 illustrates an example of formation
composed of a virtual leader with four vehicles, where, Co
represents the inertial frame and Cv represents a virtual coor-
dinate frame located at (xv, yv) with a orientation θv relative
to Co. In addition, ri, rdi , and r

d
iv represent the actual state,

desired state, and desired deviation of the ith vehicle relative
to virtual leader, respectively, where[
xdi (t)

ydi (t)

]
=

[
xv(t)

yv(t)

]
+

[
cos[θv(t)] −sin[θv(t)]

sin[θv(t)] cos[θv(t)]

][
xdiv(t)

ydiv(t)

]
(4)

It should be noted that the scenarios in Fig.5 rely on the
assumption that individual vehicle can derive the realistic
state of the virtual coordinate frame; that is, the position and
orientation of the virtual leader. However, in realistic condi-
tions, the formation vehicle may have an inconsistent under-
standing for the coordinate variable due to heterogeneity of
vehicle or unreliable information exchange. Suppose that Cvi
with state ξi = [xvi, yvi, θvi]T represents the virtual coordinate
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FIGURE 5. A formation composed of four vehicles with a virtual vehicle.

frame known by vehicle #i. Therefore, the consensus module
is deployed to drive ξi converge to ξ r , where ξ r is denoted as
the real coordinate frame of the virtual vehicle.

A graph was used to model the information flow topology
among the n+1 vehicle in the formation, where virtual vehi-
cle #n + 1 serves as the virtual leader of the formation with
state ξn+1 ≜ ξ r . To achieve a consensus understanding of
the virtual coordinate frame, each vehicle uses the coordinate
variable as follow:

ui =
1

ηi(t)

n∑
j=1

avij(t)[ξ̇j − λ(ξi − ξj)]

+
1

ηi(t)
avi(n+1)(t)[ξ̇

r − λ(ξi − ξ r )], i = 1, . . . , n

(5)

where avij(t) is the entry of A
v
n+1 ∈ R(n+1)×(n+1) at time t, λ is

a positthe ive scalar, and theηi(t) ≜
∑n+1

j=1 a
v
ij(t)

D. SPEED PLANNING BASED ON DISTRIBUTED
CONSENSUS
Suppose that the vehicle has a single-integrator dynamic
given as:

ṙi = ui, i = 1, . . . , n (6)

where ri ∈ Rm is the state and ui ∈ Rm is the control input.
The objective of speed planning is to obtain a speed profile for
each vehicle in the formation such that desired formation may
be achieved. A consensus algorithm was applied to derive the
control input in every control timestep

ṙi = ṙdi − αi(ri − rdi ) −

n∑
j=1

aij(t)[(ri − rdi ) − (rj − rdj )]

(7)

where α is the positive scalar, aij is the entry of the n × n
adjacency matrixAn associated with the interaction topology

In order to improve the scalability and stability of themulti-
vehicle system, the vehicle only exchanges information with
its local neighbors. The laplacian matrix, therefore, can be

FIGURE 6. Vehicle A (dark green) and its local neighbors (light green).

determined by the real-time information flow topology. Local
neighbors are defined based on the topological paradigm.
It was suggested in [38] that a multi-vehicle system with a
topology interaction can change shape, fluctuate and even
split, yet remain cohesion. Specifically, each vehicle enu-
merates the other vehicles in the vicinity using its own local
right-handed frame coordinate. In this way the spatial posi-
tion of the nearest neighbors are mapped. Fig.6 displays a
illustration that vehicle A and its local neighbors.

E. RISK POTENTIAL FIELD ENABLES COLLISION
AVOIDANCE CAPABILITY
Adistributed consensus algorithm has advantage of achieving
strict consensus when the information flow topology satisfies
the algorithm’s prerequisite. However, forming a convoy or
formation configuration based on the distributed consensus
algorithm has a high risk of collision. This occurs as therel-
ative distance may be short than the safe distance in the
process of vehicles driving to the consensus state. On the
other hand, if a formation vehicle reaches an abnormal state,
it will exacerbate the instability of the formation. Intuitively,
the risk potential field was imposed in the cooperative control
algorithm.

In our previous research, potential field method was used
for pathing planning of automated vehicle in hybrid highway
traffic system [15]. In this paper, risk potential field func-
tions were elaborated to guarantee free collision in the pro-
cess of formation coordination or re-coordination. Generally,
vehicle risks in collision due to either external disturbances
or small distances between a vehicle and its neighbors.
The consensus-based formation control approach pursues
the global coordination of the whole multi-vehicle system
while placing less focus on the inter-vehicle spacing. As a
result, if only the distributed consensus algorithm is deployed,
the distance between vehicles in a formation may be small
enough to result in an accidental collision, which limits
the usability of this algorithm for real-world applications.
Collision risk may also stem from external disturbances or
slow-moving vehicles ahead of the platoon. In addition, the
degree of internal and external collision risk explicitly dif-
fers. Hence, the risk potential field functions were designed
separately. For the sake of simplicity, we take the total risk
potential as the superposition of several component func-
tions, i.e., formation vehicle potential and obstacle vehicle
potential.
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1) FORMATION VEHICLE POTENTIAL
Formation vehicle field was used for the inter-vehicle colli-
sion avoidance. Thanks to the inter-vehicle communication
and distributed formation control, the probability of collision,
to some extent, is small. Moreover, to improve energy-saving,
the desired inter-vehicle distance is supposed to be small.
With these taken into consideration, the range of the forma-
tion vehicle is displayed in Fig.7.

The white region surrounding the vehicle body is reserved
space; other vehicles should not enter these regions. The gray
region that extends from the vehicle body is the vehicle poten-
tial domain of influence; it is used to help avoid collisions.
The formation vehicle’s longitudinal potential is defined as:

Avel =

{
Uvel P ∈ β

0 P ̸∈ β
(8)

whereUvel determines the maximum amplitude of the vehicle
potential, P is the calculated point, and β represents the
domain of the formation vehicle potential. The total potential
value can be derived based on the longitudinal potential as:

U = Avelexp

(
−d2

2σ 2
vel

)
(9)

where Avel is the longitudinal potential, d is the Euclidean
distance to the nearest point on the perimeter of the white
region within larger vehicle potential region, and σ is a
coefficient proportional to the lane width, used to determine
the rate ar which the potential converge.

2) OBSTACLE VEHICLE POTENTIAL
For simplicity, obstacle vehicles in this paper refer to those
broken vehicle or vehicle at a lower speed blocking the for-
mation. For one thing, the obstacle vehicle may lack of V2V
(vehicle to vehicle) communication capacity. For another,
it is difficult to make the intention prediction of the obstacle
vehicle. The external disturbance from the obstacle vehicle,
therefore leads to bigger probability of collision. The obstacle
vehicle potential range is shown in Fig.8.

The white reserved space at the rear of the vehicle is shaped
like a wedge to encourage lane-change maneuvers. In addi-
tion, the range of obstacle vehicle potential is larger out of
consideration of collision avoidance. Specifically, an obstacle
vehicle’s longitudinal potential function is represented as a
piece-wise function as follow.

Aobs =


Uobs P ∈ β

vr/(K − Lr ) P ∈ α ∩ vr > 0
0 otherwise

(10)

whereUobs determines themaximum amplitude of the vehicle
potential, P is the calculate point, and β represents the domain
of the formation vehicle potential. The total potential value
can be derived based on the longitudinal potential as:

U = Avelexp

(
−d2

2σ 2
vel

)
(11)

FIGURE 7. Range of formation vehicle potential.

FIGURE 8. Range of obstacle vehicle potential.

where Aobs is the longitudinal potential, d is the Euclidean
distance to the nearest point on the perimeter of the white
region within larger vehicle potential region, and σ is a
coefficient proportional to the lane width used to determine
the rate at which the potential converges.

Fig.9 displays a snapshot of the risk potential heatmap.
In this scenario, four vehicles are going to form a 2 × 2 for-
mation, and there exists a obstacle vehicle.

F. INTEGRATED PLANNING
The potential force can be derived from the total potential by
deploying the gradient descent law.

fAPF = −

h
Uall (12)

where Uall is the total potential, fAPF is the potential force.
Assume the velocity of controlled vehicle in next time

step has positive correlation with the potential force at
present. Under this assumption, the following equation may
be derived.

Vnext = K ∗ fAPF (13)

where fAPF is the potential force, Vnext is target speed in the
next time step, and K is a constant.
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FIGURE 9. A snapshot of risk potential heatmap.

In the last section, the speed profile of each vehicle in the
formation can be determined by deploying a distributed con-
sensus algorithm. In order to enhance safety, a risk potential
field is introduced to make a trade-off between the realization
of formation structure and local path planning with collision
avoidance taken into consideration. The speed of the vehicle
in the next time step can be obtained as:

V = a ∗ Vconsensus + b ∗ K ∗ fAPF (14)

where a and b are the weight coefficients, Vconsensus is the
planning speed obtained using the distributed consensus algo-
rithm, and 1t is unit time step.
The acceleration based on the proposed control law, will

be terribly high in case of high position or velocity errors.
In practical cases, there is a limit on the acceleration based
on the design of the vehicle. Also the actuator may saturate
due to high control effort. Moreover, high acceleration will
greatly reduce the comfort of the vehicle passengers. Safety
and performance constraints are formulated in terms of the
bounded acceleration{

−4m/s2 ≤ ax ≤ 4m/s2

−4m/s2 ≤ ay ≤ 4m/s2
(15)

IV. BOUNDED CONTROL INPUTS CONSIDERING
PHYSICAL VEHICLE
The proposed formation control algorithm generates the
velocity invariant movement. moreover, velocity is supposed
to transferred into control input. For simplicity but without
loss of generality, a kinematic bicycle model was used is
shown in Fig.10. 

ẋ = cos(ϕ) ∗ vr
ẏ = sin(ϕ) ∗ vr

ϕ̇ =
tan(δf )
L

∗ vr

v̇r = a

(16)

FIGURE 10. Kinematic bicycle model.

where [x, y]T is the position of the midpoint of the rear axle
of the controlled vehicle, ϕ is the angle between the vehicle
heading and the s-axis, L is the wheelbase of the vehicle, δf
is the front wheel angle, and a is acceleration.

Model predictive control (MPC) is a receding horizon
control technique widely applied for vehicle control [39].
The optimal trajectory is completely derived, and the actual
control input is front wheel angle to reach the center of the
target lane. The general form of the vehicle control system
can be described as follow:

χ̇ = f (χ, u) (17)

where χ
.
= [x, y, v, ϕ]T is the state variable vector, and

describes the position and orientation of the center of the axis
of the wheels, u .

= [a, δf ] is manipulated variable.
Assuming a reference vehicle also described by kinematic

bicycle model, and its trajectory χr and ur are related by the
following equation:

χ̇ = f (χr , ur ) (18)

Expanding the right side of (18) in Taylor series around
the reference trajectory point (χr , ur ) and discarding the high
order terms, we can transform into:

χ̇ = f (χr , ur ) +
∂f (χ, u)

∂χ

χ=χr
u=ur

(χ − χr )

+
∂f (χ, u)

∂u

χ=χr
u=ur

(u− ur ) (19)

Then, the subtraction of (18) from (19) results in:

˙̃χ =


ẋ − ẋr
ẏ− ẏr
v̇− v̇r
ϕ̇ − ϕ̇r



=


0 0 cosϕr −vrsinϕr
0 0 sinϕr vrcosϕr
0 0 0 0
0 0 tanϕr

L 0



x − xr
y− yr
v− vr
ϕ − ϕr
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+


0 0
1 0
0 0

0
vr

lcos2δfr


[
a− ar
δf − δfr

]
(20)

Using Euler discretization, the system may be represented
using a discrete-time model as:

χ̃ (k + 1) = Ak,t χ̃ (k) + Bk,t ũ(k) (21)

with

A(k) =


1 0 cosϕrT −vrsinϕrT

0 1 sinϕrT vrcosϕrT
0 0 1 0

0 0
tanϕf
L

T 0

 (22)

B(k) =


0 0
0 0
T 0

0
vrT

Lcos2δr

 (23)

where T is the sampling period and k is the sampling time.
Let:

ξ (k|t) =

[
χ̃ (k|t)

ũ(k − 1|t)

]
(24)

new state-space model van be created

ξ (k + 1|t) = Ãk,tξ (k|t) + B̃k,t1U (k|t)

η(k|t) = C̃k,tξ (k|t) (25)

with

Ãk,t =

[
Ak,t Bk,t
0m×n Im

]
, (26)

B̃k,t =

[
Bk,t
Im

]
, (27)

C̃k,t =

[
0 1 0 0
0 0 1 0

]
, (28)

where m is the dimension of manipulated variable, n is the
dimension of state variable.

A. OPTIMAL CONTROL PROBLEM
the objective function can be described as follows:

J (k) =

Np∑
j=1

∥η(k + i|t) − ηref (k + i|t)∥2Q

+

Nc−1∑
j=1

∥1U (k + i|t))∥2R

(29)

where Q,R are weighting matrices, Np is the prediction hori-
zon, andNc is the control horizon, the first term represents the
capability of the system to track the reference trajectory, the

FIGURE 11. Formation consensus building.

second term reflects the constraints of control input to utilize
the smooth and minimal control.

The main goal of the controller is to ensure that the system
accurately tracks the desired trajectory using smooth control
input. The control input is subject to the physical limitations
of the actuators. Therefore, the following control constraint
are imposed upon the control input:

1umin(t + k) ⩽ 1u(t + k) ⩽ 1umax(t + k)

umin(t + k) ⩽ u(t + k) ⩽ umax(t + k) (30)

Hence, the optimal control problem can be solved as ũ⋆

such that:

ũ⋆
= argmin{8(k)}

s.t. 1Umin ⩽ 1Ut ⩽ 1Umax
Umin ⩽ A1Ut + Ut ⩽ Umax (31)

With this, the optimal control input increment sequence
1U⋆

t can be derived. Only the first element of the sequence
are applied to the vehicle in each control horizon.

1U⋆
t =

[
1u⋆

t 1u⋆
t+1 . . . 1u⋆

t+Nc−1
]

(32)

u(t) = u(t − 1) + 1u⋆
t (33)

V. SIMULATION
Experimental verification and performance evaluation of the
proposed formation control algorithm are carried out using
Webots, a powerful submicroscopic, high-fidelity simulator
originally developed for mobile robotics. Webots has been
recently updated to support automotive platforms. The pro-
posed formation controller was implemented inWebots using
Python language.

A. IMPLEMENTATION DETAIL
The simulated vehicle, implemented using Webots, is based
on the model of a BMWX5 car. The parameter of all the for-
mation vehicle are each simulation vehicle is equipped with a
radio communication device, an InertialUnit, a GNSS mod-
ule. Fig.11 displays the simulation vehicle and its parameters.
Each formation vehicle can achieve localization and speed
measurement by means of the GNSS module. In addition,
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FIGURE 12. Forming a convoy.

the heading of the simulated vehicle can be derived using
InertialUnit. The simulated vehicle can conduct information
exchange with its local neighbors using an onboard Emitter
and Receiver. Vehicle speed is provided as the Webot control
input; this speed is converted from the desired vehicle accel-
eration, as the Webot platform cannot utilize acceleration
as the control input. The vehicle steering angle acts as the
second control input. Up to 8 vehicles are used in the various
experiments of this study.

According to the formation behavior model, the motion
of formation can be abstracted into: consensus building and
formation reconfiguration in response to abnormal situation.
In order to verify the proposed formation control algorithm,
three typical scenarios were therefore designed. The first
scenario was conducted to verify the effectiveness of forma-
tion control algorithm in term of consensus building. In this
scenario, eight vehicles deployed with distributed consensus
algorithm was supposed to make a stable formation. The left
two scenarios are about abnormal situation response, one is
for obstacle avoidance, and another is for formation split.

FIGURE 13. Trajectory of the performance indicator in formation
consensus building scenario.

FIGURE 14. Schematic diagram of formation reconfiguration to avoid
collision.

B. PERFORMANCE INDICATOR
The formation control algorithm is based on the distributed
consensus algorithm embedded with risk potential field,
where there exists a virtual leader to govern the behaviour of
the multi-vehicle system. The state of each individual vehicle
at each timestep, therefore can be determined based on the
formation shape and virtual leader.

Two metrics, namely, longitudinal error and latera error,
are used to measure the performance of our formation con-
trol algorithm. These error values are taken to be differ-
ence in absolute value between the desired position and the
actual position measured individually by each vehicle at each
timestep. The trajectory of longitudinal error and lateral error
can reflect the performance of the proposed formation control
algorithm.

C. FORMATION CONSENSUS BUILDING
Formation consensus building is a basic scenario. For the very
beginning, as is shown in Fig.12, the eight connected and
autonomous vehicles were randomly placed in the different
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FIGURE 15. Snapshot of the formation reconfiguration to avoid collision.

lanes. The target shape of the multi-vehicle system is rectan-
gular formation of eight vehicles being distributed across the
two lanes. The initial speed of each vehicle is 14m/s; vehicle
speeds will increase to 15m/s with longitudinal inter-vehicle
spacing of 25m when the formation reaches stability. The
trajectory of the longitudinal error and lateral error displayed
in Fig.13 illustrates that the formation reaches consensus at
about 12s.

D. FORMATION RECONFIGURATION
In this scenario, the formation encounters a broken vehicle
ahead preventing the formation from moving in the current
route. Nevertheless, a lane-change maneuver is available in
this scenario to get rid of the obstacle vehicle. The for-
mation is supposed to initiate a lane-change maneuver to
avoid obstacle vehicles. Moreover, the risk potential from
the broken vehicle encourages this maneuver too. Fig.14
presents a schematic diagram of formation reconfiguration
to avoid collision. Furthermore, this scenario was validated

FIGURE 16. Trajectory of the performance indicator in formation
configuration scenario.

FIGURE 17. Vehicle failure and vehicle split.

in Webots, and the snapshot of the scenario simulation is
shown in Fig.15. The formation consisting of eight vehicles,
each moving at a speed of 15m/s with a constant spacing
of 20m. The broken vehicle was located 200m ahead of the
formation moving in current mode. The formation initiated
lane change maneuver to avoid collision. As a result, the for-
mation changed the route and avoided collision successfully.
Eventually, the formation realized the formation consensus
building. The trajectory of longitudinal error and lateral error
displayed in the Fig.16 illustrates that the formation reached
to consensus at about 12s.

E. FORMATION SPLIT
Formation splits may be categorized as either mandatory or
discretionary. Mandatory splits occur when a vehicle mal-
function is detected. It is generally unlikely that a vehicle will
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FIGURE 18. Vehicle failure and vehicle split.

FIGURE 19. Plots over time of metrics.

fail, but vehicle failures may lead to the multi-vehicle system
failure if not properly dealt with handled. In the case of a

discretionary split, the formation vehicle takes the initiative
to leave from the formation. Formation split belongs to the
set of abnormal event. As a result, the multi-vehicle system is
supposed to shift to the Formation reconfiguration
module.

Fig.17 illustrates the schematic diagram of a typical for-
mation split scenario. In the beginning, the formation moves
at the desired speed. However, a vehicle in the formation
experiences a communication interruption, which leads to
the mandatory split. Although the number of the formation
vehicles decreases, the formation is capable of remaining
stable. Then, a vehicle drives to the off-ramp and make an
initiate split from themulti-vehicle system. Consequently, the
formation transfers to Formation reconfiguration
module, and the formation shape and communication flow
topology should be re-planned. Last but not least, the forma-
tion turns to the Consensus building module.

To verify the proposed distributed consensus algorithm,
the formation split scenario was simulated. The snapshot
displayed in Fig.18 illustrates the process of formation split.
At the beginning of the scenario, the initial speed of all the
eight vehicle is set to 15 m/s. The relative distances between
each vehicle is set to be 20 m in the longitudinal direction
and 3.5 m in the lateral direction. When a vehicle splits from
the formation due to communication interruption, no further
changes are applied in the formation control apart from the
communication flow topology. If another vehicle makes an
initial leave, the multi-vehicle system is supposed to reorga-
nize the formation from the perspective of formation shape
and communication topology. Snapshot 3 makes it clear that
the formation changes the formation shape, and converge to
the consensus. Since two vehicles split from the formation
due to mandatory split and discretionary split, the states of
the two vehicles will not been taken into consideration. Fig.19
presents the longitudinal and lateral error of every vehicle at
each timestep.

VI. CONCLUSION
In this paper, a distributed formation control algorithm for the
multi-lane formation of connected and autonomous vehicles
was proposed and validated. To begin with, the evolution
mechanism of multi-lane formation was investigated and a
formation transition model based on finite state machine was
built. As a result, the multi-vehicle system can cope with
the internal and external disturbance by behavior transition
based on the finite state machine. A bi-level formation control
scheme was then proposed; this framework’s upper and lower
levels are used to perform trajectory planning andMPC-based
control, respectively. By combining the distributed consen-
sus algorithm and potential field method, a novel trajectory
planning approach was constructed. Moreover, additional
acceleration constraints were imposed on the trajectory plan-
ning algorithm. Experimental verification and performance
evaluation of the proposed formation control algorithm is
conducted using Webots. There typical scenarios, including
consensus building and formation reconfiguration in response
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to abnormal situations, were designed for algorithm valida-
tion. Longitudinal error and lateral error were taken as the
performance indicator to measure the performance of our for-
mation control algorithm. The results illustrate that formation
deployed with the proposed formation control algorithm can
tackle abnormal situations and realize consensus within 12s.

One of the novelties of the proposed solution is the dis-
tributed consensus mechanism which creates and maintains
the neighboring graphs and biases. This mechanism poten-
tially facilitates changing formation state depending on the
situation the vehicles involved in. Another novelty is that risk
potential method is introduced in the distributed consensus
algorithm, which alleviated the collision risk in the process of
forming a formation or formation re-coordination. Moreover,
acceleration constraints are imposed in the combined trajec-
tory planning algorithm to avoid impractically high speed
based on the combined trajectory planning algorithm when
the position or speed error is large. In the future, the reinforce-
ment learning approaches that are popular in current research
are applied to handle the issues about the coulped lateral
and longitudinal maneuvers, which could responses more
complex and unknown scenarios through dataset’s training
comparing with the proposed method. In addition, due to the
limitations of experimental conditions, the more complicated
comparison experiments could be carried out in the later
research.
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