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ABSTRACT Automated bug report assignment is critical for large-scale software projects where reported
bugs are frequent and expert developers are required to fix them on time. Finding an appropriate developer
with the necessary skill sets and prior experience in fixing similar bugs is difficult and can be an expensive
process, depending on the severity of the reported bug. To address this issue, researchers have proposed
several machine learning and deep learning-based automated bug report assignment techniques that make use
of historical data on reported bugs as well as fixer information. However, there is still room for improvement
in the performance of these techniques. In this paper, we propose a novel deep learning-based approach that
utilizes two sets of features from the reported bugs’ textual data, namely contextual information and the
occurrence of repeating keywords. We develop convolutional neural network and artificial neural network
modules to mine these features. We then fuse these two sets of extracted features to assign a bug to an
appropriate developer. We conduct extensive experiments on eight benchmark datasets of open-source, real-
world software projects to assess the effectiveness of our approach. The experimental results demonstrate
that our information fusion-based approach outperforms previousmodels and improves automated bug report
assignment. Furthermore, we debug the errors of our proposed model and publish all source code so that
future researchers can contribute to this problem.

INDEX TERMS Artificial neural network, bug report assignment, convolutional neural network, deep
learning, dimensionality reduction.

I. INTRODUCTION
Bugs in software are commonly caused by development time
constraints, a lack of skills or domain knowledge, and insuf-
ficient testing. When these bugs are reported and eventually
fixed, they are frequently regarded as client feedback that
can help a software gradually improve to perfection. When
a bug occurs in any industrial or open source project, it is
routinely textually documented in a ‘bug repository’ or ‘bug
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tracking system’. During bug triage, duplicate bug reports
are detected, reproduction steps are validated, severity or
priority is determined, and the report’s validity is assessed.
The bug report assignment process then finds and assigns
an appropriate developer to fix the bug. The bug report
assignment process, however, is not simple for large-scale
software projects because it requires bug assignments based
on the developers’ domain knowledge and expertise. Further-
more, large-scale software projects produce more bugs than
smaller projects. For example, Anvik et al. [1] reported that
nearly 300 bugs are discovered in various Mozilla projects
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FIGURE 1. Automated bug assignment based on machine learning (ML) and deep learning (DL) techniques.

every day. Within Mozilla projects, the Firefox project alone
receives an average of eight bug reports per day that require
triage. It is an error-prone task that necessitates the use of
a specialised quality assurance team. Similar to Mozilla, the
Eclipse project receives a large number of daily bug reports,
forcing them to implement decentralized triaging mecha-
nisms in which teams are responsible for bug triaging for
their components [2]. Manual bug assignment is costly, time-
consuming, and unscalable because it consumes valuable
development time and resources [3], [4], [5], [6], [7]. As a
result, automated bug assignment is crucial, and improving
the performance of existing techniques can be vital.

To report a bug in a ‘bug tracking system’ such as JIRA [8]
or Bugzilla [9], among other optional things (e.g., stack trace,
screenshots, etc.), the ‘Title’ and ‘Description’ of that bug are
required. When a developer fixes a bug, his/her information
is added later. This repetitive process generates historical
data that grows over time. Machine Learning (ML) [10], [11]
and Deep Learning (DL) [12], [13] techniques can learn and
assign future bugs to an appropriate developer based on this
historical information. Bug report assignment, according to
those techniques, is a multi-class classification problem in
which the ‘Title’ and ‘Description’ of a bug is treated as
textual data and the respective developer who fixed that bug
is considered the label/class. The idea of ML and DL-based
automated bug assignment is illustrated in Fig. 1.

In this paper, we propose a novel DL-based model for
automatically assigning bugs among developers. Our model’s
architecture is made up of two major modules that extract
features: Convolutional Neural Network (CNN) andArtificial
Neural Network (ANN). These modules operate in parallel,
and their output is later fused to achieve the best perfor-
mance. The main goal of the CNN module is to use con-
volutional filters to extract contextual relationships between
adjacent words from the textual information of bug reports.
The ANN module, on the other hand, utilizes n-grams to
extract repeating keywords from bug reports. Convolutional
filters have been used in previous studies for automated bug
assignment [12], [14], [15]. To the best of our knowledge,

we are the first to use ANN module to extract repeating key-
words. To validate our research ideas, we conduct extensive
experiments that demonstrate that our model outperforms
existing DL-based techniques.

To be specific, the main contributions of this paper are as
follows.

1) We introduce novel data preprocessing steps to clean
the bug assignment dataset.

2) We develop a novel DL-based model to assign bugs
among developers that makes use of two types of fea-
tures: repeating keywords and contextual relationship
between consecutive words.

3) We conduct extensive experiments on eight bench-
mark, open-source large projects and compare results
to validate the robustness of our model against existing
techniques.

4) We perform novel debugging of our model’s errors
and present the insights for future research that could
improve overall performance.

5) The code for all of our experiments is freely available
on the companion website [16].

The remainder of the paper is structured as follows:
In Section II, we highlight notable existing works. Then,
in Section III, we discuss our proposed approach. We design
the necessary experiments to validate our research idea in
Section IV. Then, in Section V, we discuss our findings.
Finally, this study is concluded in Section VI.

II. RELATED WORK
Automatic bug assignment is an evolving field of study that
employs customML algorithms and, more recently, DL tech-
niques. The vast majority of these works are based on open
bug repositories and open-source projects (e.g.,Bugzilla,
JIRA, GNATS, Eclipse, Firefox, etc.). Anvik et al. [1] pro-
vide a detailed description of bug reports on their anatomy,
life-cycle, and interactions with various development roles
(e.g., reported, fixer, triager, etc.). In the following subsec-
tions, we discuss the background study in a categorized fash-
ion. In addition, we discuss how we combined contextual
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information retrieval with convolutional neural networks in
other application domains.

A. INSIGHTS INTO BUG REPORTS, SOURCE
CODE AND DEVELOPERS
Though not directly related to automatic bug assignment,
there have been some early works that investigate the interre-
lationship between bug reports, source code, and developers.
These investigations can help determine future problem spots
for maintenance [17], ownership architecture that identifies
expert developers for different parts of the system [18], pre-
dict files that change together [19] and clustering of related
bug reports due to common errors [20]. Matter et al. [21] used
source code and vocabulary-based expertise models for auto-
matic bug assignment. Shokripour et al. [22] extended that
and used a location-based approach in indexing only noun
terms from four different sources (e.g., source code identi-
fiers for names of variables, classes, and methods; source
code comments, commit messages and previously fixed bug
reports) that predicted bug location into source code files and
then utilized term weighing method to provide a bug report
assignment recommendation. Almhana and Kessentini [23]
usedmulti-objective search to rank bug reports for developers
according to their priorities and dependency between them.
In our work, we develop an automatic deep bug assignment
model based on features extracted from reported bugs and the
history of bug assignments. Our model is able to assign a bug
to a developer based on the description of bugs fixed by them
before.

B. AUTOMATIC BUG ASSIGNMENT USING MACHINE
LEARNING TECHNIQUES
Bug assignment is regarded as a supervised classification
problem where the training data and input are the textual
information from the bug reports and other related sources
and the output classes are the developers’ names. Researchers
have applied different ML algorithms in this context, e.g.,
Naïve Bayes, Bayesian Networks, C4.5, Support Vector
Machines (SVM), and k-Nearest Neighbors (kNN) and other
feature selection, extraction techniques [24], [25]. Murphy
and Cubranic [2] are regarded as the first to apply ML algo-
rithms for bug assignment and reported 30% classification
accuracy on more than 15 thousand bug reports from the
Eclipse project. In follow-up works, Anvik et al. [1], [5]
improved the accuracy by filtering out noisy data based on
bug status and also compared different ML algorithms and
showed that the SVM algorithm provides the best results [1].
Neysiani et al. [26] proposed a feature extraction model to
identify duplicate bug reports. According to them, 1-gram and
2-gram provide better validation performance. In this study,
we use the same n-grams to extract features from bug reports
to distinguish developers since it provided promising results
in earlier studies.

Ahsan et al. [27] used dimensionality reduction techniques
(e.g., feature extraction and selection), and Nasim et al. [28]
used alphabet frequency matrix with different ML algorithms

and both confirmed that SVM or variant of SVM algorithms
perform the best in automatic bug assignment. Wu et al. [29]
and Xia et al. [30] used kNN algorithms combined with
different similarity metrics, e.g., previous bug terms, term
weighting, and developer ranking for classifying bug reports.
Jonsson et al. [31] showed that for proprietary software
projects, the ensemble-based Stacked Generalization (SG)
technique that combines several classifiers scales well and
outperforms other techniques that use single individual clas-
sifiers. They also recommended that old bug reports should
be ignored and at least 2000 bug reports to be used for training
data. To improve bug assignment performance, Ge et al. [32]
proposed a high-dimensional hybrid data reduction technique
by removing noninformative bug reports and words. In this
work, we train three traditional MLmodels such as SVM, RF,
andNB.DuringMLmodel training, we removewords such as
error logs and hyperlinks as we find that thesewords affect the
model performance negatively. In addition, we apply Princi-
ple Component Analysis (PCA) to select significant features
from our training data, and experimental results show that
our ML models can provide promising results than existing
studies due to proper data cleaning and feature selection.

C. AUTOMATIC BUG ASSIGNMENT USING DEEP
LEARNING TECHNIQUES
Zhang [33] proposed a solution using a Deep Neural Net-
work (DNN) for assigning bugs to components instead of
developers. However, it is required to assign bugs to devel-
opers because a bug can be assigned to multiple components.
Lee et al. [12] applied CNN and Word2Vec [34] word
embedding for feature extraction and showed that DL-based
techniques are better than other ML techniques in bug assign-
ment. Mani et al. [13] used a deep bidirectional recurrent
neural network with attention (DBRNN-A) that learns fea-
tures from long word sequences and trained their model
with unfixed bug reports. Guo et al. [14] applied developer-
activity-based CNN techniques (CNN-DA) where they also
used Word2Vec for word embedding and applied word seg-
mentation, stop word removal and stemming techniques in
their pre-processing step. Zaidi et al. [15] applied CNN tech-
niques for the bug assignment problem but used three existing
word embedding, namely, Word2Vec [34], GloVe [35] and
ELMo [36] to train their dataset and compared their perfor-
mance by calculating the top-k accuracy. They concluded
that context-sensitive word embedding, ELMo outperforms
the other two. The major difference between our model and
these models is that we use two types of features (repeating
keywords and the contextual relationship between adjacent
words) to train our model. Moreover, we find that many of
these generalized word representations or embedding do not
work well for automated bug assignment since these rep-
resentations are not fine-tuned locally with domain-specific
bug information. As a result, we train our model without
pretrained generalized word embedding and find that our DL
model is able to outperform these models.
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D. RECENT ADVANCEMENTS
Alazzam et al. [37] introduced a graph-based feature augmen-
tation approach to classify bug reports into different priorities.
Mohsin et al. [6] proposed a two-step self-paced unified bug
classifier and subsequent bug assignment model. The authors
considered ‘‘component’’, ‘‘specific’’, and ‘‘general’’ cate-
gories for the reported bugs and claimed 98% classification
accuracy for their model, which exploits the connections
between nodes in the Software Bug Report Network to iden-
tify the target features. Jahanshahi and Cevik [7] presented
an innovative bug triage approach that addresses schedule
and dependency considerations. By leveraging textual data,
bug fixing costs, and bug dependencies, this method aims
to reduce bug fixing time and avoid infeasible assignment
of blocked bugs. The approach also takes into account the
developers’ schedule to determine the precise assignment
date, resulting in a more efficient and effective bug resolution
process. Sepahvand et al. [38] proposed a novel approach for
predicting the need to assign a bug to a designer. They devel-
oped a convolutional neural network (CNN)-based model
that learned the unique characteristics of bug reports that
contribute to the creation of bad smells in the code. Themodel
extracts features from the textual information, such as sum-
mary and description, of each bug and achieved an accuracy
of 75% or higher on datasets with sufficient samples for deep
learning-based model training. Kukkar et al. [39] proposed an
ant colony optimization-based programmer recommendation
model to manage software bugs. The authors utilized the Ant
colony optimization (ACO) method to determine the appro-
priate subsets of features in the feature selection stage. In the
programmer recommendation stages, the authors exploited
three programmermetrics, namely, functionality ranking, bug
occurrence, and mean Bug fixing time. In their recent paper,
Dai et al. [40] introduced a bug triaging framework based on
graph collaborative filtering. The authors represent the corre-
lations between bugs and developers using a bipartite graph,
and initialize the bug nodes by pre-training them with natural
language processing (NLP) based techniques. To learn the
representation of developer nodes, they employ a spatial-
temporal graph convolution strategy. Finally, they propose an
information retrieval-based classifier that matches bugs and
developers.

The above approaches have significant potential in assist-
ing developers with effective bug management and optimiz-
ing the software development process. Our work presented
in this paper investigated the effectiveness of NLP-based
bug-feature engineering and provided an in depth investi-
gation of domain specific word embedding w.r.t. automatic
bug assignment to developers. We also provided a com-
parative study on both ML and DL-based approaches such
as [1], [11], and [27], SVM [41], RF [42], NB [43], ELMo-
CNN [15], ELM [42], CNN-DA [14], and DBRNN-A [13]
that are in line with this. We found that our information
fusion-based approach outperforms previous ML and DL
models.

III. OUR APPROACH
This section formally states the bug assignment problem,
datasets used, data preprocessing, and the proposed automatic
bug assignment model.

A. FORMAL PROBLEM STATEMENT
In this study, we present bug assignment as a single-
label classification problem. Let, bug reports B =

{B11,B12 . . .Bij} were previously assigned to the developers
D = {D1,D2 . . .Di}. Here, bug Bij was assigned to the
developer Di, that is, Bij represents the jth bug report of ith
developer Di. In terms of classification, it can be said that Di
is the label of Bij. On that note, a multi-class classifier should
be able to assign a developer Di′ ∈ D for a new bug report
Bij′ automatically if it is trained using the historical data B
and D. Here, the classifier conjectures that Bij′ has textual
similarities with the prior bug reports of Di′. To validate this
idea, a subset Btrain of B can be used to train the classifier,
and the rest of the bug reports Btest can be used to measure
the performance of the classifier. Here,B = Btrain∪Btest . The
goal of the classifier is to identify the appropriate developers
for the bugs in Btest .

B. DATASETS
To evaluate our proposed model, we conduct experiments
on eight benchmark datasets collected from open source
projects. Moreover, these datasets are experimented with in
the earlier studies [13], [15]. The Sun Firefox, JDT, Net-
beans, GUO Firefox, and GCC datasets are publicly available
here [44]. The rest of the datasets are available here [45].
Table 1 presents the summarized statistics of these datasets,
e.g., the total number of developers, bug reports, and Min-
Max bug reports per developers in a particular dataset.
These statistics are calculated after the preprocessing step
(Section III-C). Few bug reports are found empty after pre-
processing, i.e., no textual description or containing only
screenshots/hyperlinks of the bugs. Since we have not used
these bug reports to train our model, they are discarded from
Table 1. To compare our results with the existing studies
[13], [15], we consider only those developers who solved
at least ten bugs. The last column of Table 1 represents the
Measure of Balance (MB) in a particular dataset. In the real
world, datasets of bug assignment are imbalanced as bugs
are assigned based on the availability or experience of devel-
opers. In such scenarios, the trade-off between imbalanced
datasets and the model’s performance might be analyzed
using this MB. We utilize Shannon Entropy (SE) [46] to
calculate MB as given as follows.

MB =
SE
log k

=
−

∑k
i=1

ci
n log ci

n

log k
(1)

Here, n is the total number of bug reports, k is the
total number of unique developers, and ci is the total
number of bugs assigned to the ith developer. MB ranges
between 0 and 1; 0 for an imbalanced dataset and 1 for a
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TABLE 1. Bug assignment datasets.

FIGURE 2. Distribution of words in the bug reports of Mozilla Firefox dataset.

balanced dataset. From Table 1, Google Chromium and
GCC datasets are almost balanced as the values of MB are
0.9356 and 0.9024, respectively. In contrast, Mozilla Fire-
fox is near to almost imbalance (MB is 0.1438) since a
developer alone solved 117489 bug reports. To avoid bias
in the experiments, we have created another dataset called
Mozilla Firefox++ by removing the developer that has
solved 117489 bugs and the associated bug reports from the
original Mozilla Firefox dataset.

C. DATA PREPROCESSING
Since we use Natural Language Processing (NLP) techniques
to solve the bug assignment problem, it is required to pre-
process the data to achieve better performance. Besides, the
datasets contain several types of noises (e.g., hyperlinks, new-
lines, and special characters) as we collect them from open-
source projects. The overall steps of our data preprocessing
are described below.

1) BASIC PREPROCESSING
A bug report consists primarily of a title and a description.
It is worth noting that when the bug title is considered
alongside the bug description, the accuracy of automated
bug assignment improves [13]. As a result, we consider both
in this study. Before training the model, we clean the title

and description by converting them to lower case, removing
special characters, URLs, hex codes, new lines and extra
white spaces, removing stack traces, and truncating them.
Except for the last, these preprocessing steps are common
in existing works. The size of the bug reports in terms of
total words is not uniformly distributed, as shown in Fig. 2.
In comparison to themajority of reports, we find very few bug
reports that contain too many words. Among the 136312 bug
reports in the Mozilla Firefox dataset, only 339 have more
than 1000 words. To that end, we truncate bug reports that are
longer than 1000 words. Our hypothesis is that the main bug
report is described in the first 1000 words, with the remaining
words containing useless information such as error logs or the
path to reproduce the bug.

2) TOKENIZATION
We tokenize the bug reports after performing the basic pre-
processing in order to fit them into our model. As shown in
Fig. 3, we use word-level tokenization for the deep embed-
ding layer of our bug assignment model, which converts bug
reports into space-separated sequences of words or tokens.

3) n-GRAM GENERATION
In this paper, we develop an automated bug assignment
model based on the contextual information extracted from the
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linguistics patterns of a bug report (‘Title’+‘Description’).
In the fields of natural language processing and language
understanding research, n-grams are a popular method for
capturing linguistic patterns in a document [47]. We assume
that once a bug is reported and resolved by a developer, the
linguistic patterns in the bug reports will be captured by the
n-grams. Furthermore, we assume that a developer will fix
similar bugs. For example, developer X fixes security bugs
while developer Y fixes user interface (UI) bugs. Thus, it is
discovered that security-related keywords appear frequently
in X ’s bug reports, whereas UI-related keywords appear fre-
quently in Y ’s bug reports. For this reason, we generate
overlapping n-grams from bug reports to distinguish devel-
opers based on keywords. We use 1-gram and 2-gram in this
study since we observe them frequently. Furthermore, higher
n-grams, such as 3 or 4-grams, may not be repeated among a
developer’s bug reports.

4) TF-IDF VECTORIZATION
After generating n-grams from a bug report, we perform Term
Frequency-Inverse Document Frequency (TF-IDF) vector-
ization. It is seen that some n-grams are very frequent in a
particular developer’s bug reports while on the contrary, few
n-grams are very rare. To this end, TF-IDF vectorization is
performed in order to provide importance on the significant
n-grams.

5) DOCUMENT-TERM MATRIX
To train a model, all training data or bug reports must be
brought into the same dimension. To accomplish this, we gen-
erate a document-termmatrix,Mbr ∈

r×t . Here, the number of
training documents is represented by row r , and the number
of unique terms/n-grams across all training documents is
represented by column t . If the r-th bug report contains the
t-th n-gram, then Mbr [r, t] = Stf−idf , where Stf−idf is the
TF-IDF score of t-th n-gram.

6) DIMENSIONALITY REDUCTION
Since t equals the number of unique n-grams across all
training documents, Mbr ∈

r×t becomes a high dimensional
sparse matrix. InMozilla Firefox, for example, the dimension
of Mbr is 136, 312 × 1.1M . The problem here is that these
1.1M unique overlapping n-grams are not distributed evenly
across the 136, 312 bug reports. As a result, a significant
number of Stf−idf inMbr are zero, resulting inMbr eventually
becoming a sparse matrix. To avoid these minor Stf−idf or
n-grams, we intend to reduce the dimension of Mbr using
a well-known dimensionality reduction technique known as
Principle Component Analysis (PCA) [48]. When PCA is
applied to Mbr ∈

r×t , it yields the lower-dimensional matrix
M ′
br ∈

r×t ′ . Here, t ′ is less than t , and it explains the majority
of the variance in the original matrixMbr ∈

r×t . Another idea
is to train our model with the significant features rather than
all n-grams as features. Significant features in reduced space
t ′ are referred to as components in the following Sections.

D. BUG ASSIGNMENT MODEL
As depicted in Fig. 3, our model takes the textual information
of a bug report as input and performs rigorous data cleaning
which is describes in Section III-C. Then, it captures repeat-
ing keywords and contextual relationship among words using
Convolutional Neural Network (CNN) and Artificial Neural
Network (ANN), respectively. After that, these two types of
features are combined in Information Fusion (IF) layer. The
IF layer is then followed by a dense and softmax layer to
assign a developer to the given bug report. The components
CNN and ANN modules, IF Layer and bug assignment are
described in detail below.

Our proposed model for bug assignment (Fig. 3) is based
on deep learning techniques. Unlike existing deep learning-
based bug assignment techniques that focus on a single fea-
ture (contextual information), our technique assigns bugs
based on two types of features: repeating keywords and
contextual relationships between words. Although a devel-
oper is expected to solve various types of bugs, some key-
words appear repeatedly in the textual descriptions of his
bug reports. Based on this insight, we intend to use repeating
keywords as features in our model.

1) CNN MODULE
This module aims to capture the contextual relationship
between the words in a specific bug report, which plays
an important role in uniquely identifying a developer. This
module is consisted of the following layers: Embedding
Layer, Convolutional Filter Layer, Feature Map Layer, Pool-
ing Layer, and Flatten Layer.

• Embedding Layer. To find the contextual relationship
among words, it is required to embed the words at first.
After performing tokenization (Section III-C2) on the
input Bij, this layer is used to transform its text into an
embedding matrix. Let, ve ∈

d represents the eth word
of Bij where ve is d dimensional vector. Hence, Bij can
be represented as an embedding matrix Meb ∈

n×d by
vertically arranging all the transposes of vectors that
represent the words of Bij. Here, n denotes the number
of words in a bug report, and d denotes the embedding
dimension. It is unlikely that all bug reports will contain
the same number of words. In those scenarios, padding
should be applied if a bug report does not contain n
number of words. The formal notation of Meb ∈

n×d is
as follows.

Meb = vT1 ⊥ vT2 ⊥ · · · ⊥ vTn (2)

Unlike existing approaches [12], [15], weights of the
above vectors are non-static, i.e., no pretrained word
embedding such as Word2Vec [49] or GloVe [35] is
used. These weights are learned from the domain-
specific bug assignment dataset during training using
backpropagation [50].

• Convolutional Filter Layer. To capture the relation-
ship between consecutive words, convolutional filters
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FIGURE 3. Architecture of the proposed information fusion based deep learning model for automatic bug assignment.

are used. These filters W ∈
h×d are essentially applied

on the embedding matrix such as Meb. Here, h is the
number of consecutive words to be used for capturing
the relationship. It is often known as kernel or window
size. For instance, if h = 2 is used, the filterW ∈

2×d will
capture the contextual relationship between two adjacent
words. When a filter W ∈

h×d is applied in a particular
window, it generates a new feature sj as mentioned in
equation 3. Here, bc ∈ is a bias term, g is a non-linear

function and j is the index of the window.

sj = g(W · [ve : ve+h−1] + bc) (3)

• Feature Map Layer. If the same filters are applied to
all possible windows of a particular bug report, a feature
map F ∈

n−h+1 that holds the contextual relationship
between all words can be obtained. This feature map can
be written in the format shown below. Here, fj is the yield
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of jth window sj.

F = [f1, f2, . . . , fn−h+1] (4)

• Pooling Layer. Depending on the value of n, the size of
F will vary a lot. Hence, this layer is used to pool impor-
tant features from F . For instance, the max-pooling
operation can be used. Other pooling operations aremin-
pooling and average pooling. If a max-pooling operation
is used, it will select maximum value f̂j from each fj,
which can be written as follows.

F̂ = [max(f1),max(f2), . . . ,max(fn−h+1)] (5)

• Flatten Layer. To increase feature coverage, different
filters such as W ′

∈
h′

×d and W ′′
∈
h′′

×d can be used.
In such cases, there will be multiple feature maps after
the pooling operation, such as F̂ ′ and F̂ ′′. The main
function of this layer is to aggregate these F̂ ′ and F̂ ′′.
Moreover, this layer is the ending of contextual feature
capturing. The outcome Vcnn ∈

p of this layer can be
shown as follows, where p is the number of filters.

Vcnn = aggregate(F̂ ′, F̂ ′′, . . . F̂p′) (6)

2) ANN MODULE
This module is responsible for capturing repeating keywords
from the bug report. It consists of two layers such as input
and hidden layers. An overview of them is given below.

• Input Layer. This layer depends on the n-grams of
Bij to extract meaningful information from repeating
keywords. An input vector vj ∈

t is constructed using
TF-IDF scores of the n-grams. Here, t is the total number
of unique n-grams. In real-world bug reports, there exists
a large number of unique n-grams. Theymight not repeat
equally among all bug reports. This is why, we propose
to reduce the dimension of vj ∈

t and select significant
repeating features only. Let, v′j ∈

t ′ denotes the reduced
version of vj ∈

t . Here, v′j is the jth row of M ′
br ∈

r×t ′ .
• Hidden Layer. The main objective of this layer is to
assign different weights to each element of vj ∈

t ′ .
We propose to use different weights as all the elements
of vj may not play an equal role in uniquely identify-
ing a developer. When such weight vector W ∈ t ′ is
assigned to vj, it generates a new vector Vann which can
be expressed as follows. Here, ba ∈ is the bias, and F is
a non-linear function.

Vann = F(W · vj + ba) (7)

3) INFORMATION FUSION LAYER AND BUG ASSIGNMENT
After obtaining contextual relationship (Vcnn) and repeating
keywords (Vann) from CNN and ANN modules, this layer
fuses these features to perform better bug assignment. Since
we have used two different types of features here, we call
this layer the Information Fusion (IF) layer. The outcome of
this layer Vif ∈

p+t ′ can be denoted as follows. Here, ⊕ is the

concatenation operator.

Vif = Vcnn ⊕ Vann (8)

After fusing these features, Vif ∈
p+t ′ is sent to a non-

linear dense layer which assigns different weights to each
element of Vif . Since Vif contains different types of fea-
tures, all features may not contribute equally to assigning
the bug reports. Thus, we assign different weights to each
element of Vif . Finally, we use an output layer to transform
the hidden layer’s outcomes into probabilities. This layer
assigns different probabilities to each developer. However,
the original developer gets the highest score. Based on this
probability score, a bug report is assigned to a developer. For
instance, a bug report Bij is passed to our model, which is
the jth bug report of ith developer Di. The model assigns the
highest probability score to developer Di compared to other
developers.

IV. EXPERIMENTS
In this section, we discuss our experiments in detail, such as
benchmark models and their training and evaluation. More-
over, we answer the following key research questions (RQ#)
to evaluate the performance of the proposed automatic bug
assignment model.
RQ1: Can TF-IDF vectorization of a bug report and an arti-

ficial neural network (ANN) model effectively auto-
mate the bug assignment?

RQ2: Can a convolutional neural network (CNN) model
with non-static embedding effectively automate the
bug assignment?

RQ3: Can we develop an effective bug assignment model
by fusing both artificial and convolutional neural net-
works’ features?

A. BENCHMARK MODELS
As stated earlier that our proposed model consists of two
modules: Artificial Neural Network (ANN) and Convolu-
tional Neural Network (CNN). However, we perform an abla-
tion [51] study to justify whether it is possible to achieve the
same performance by removing any of thesemodules. For this
reason, we create the following combination of benchmark
models from our proposed bug assignment model (Fig. 3).

• ANN + CNN2 + CNN3: This model consists of a
single ANN layer and two CNN layers having different
filters. For instance, CNN2 and CNN3 capture the con-
textual relationship between 2 and 3words. Then, we use
max-pooling to extract the significant and meaningful
features from CNN layers. The rest of behaviors are
the same as described in Section III-D. The target of
this model is to observe the performance of Information
Fusion (IF).

• ANN + CNN2: This model aims to observe the perfor-
mance of IF. However, it has fewer filters than the above
benchmark model. It is developed by removing CNN3
from the above ANN + CNN2 + CNN3 model.
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• ANN: In this model, there is no information fusion, i.e.,
it only learns from repeating keywords. This benchmark
model is developed by removing CNN2 and CNN3 from
ANN + CNN2 + CNN3. This model aims to assign
bugs without IF. This model takes repeating keywords
(TF-IDF vectors) as input and assigns weights to the
input in its dense layer. Finally, a softmax layer assigns
the bug reports.

• CNN2 + CNN3: This model learns from the con-
textual relationship of consecutive words. Again, for
instance, CNN2 and CNN3 capture contextual relation-
ships between 2 and 3-words, respectively. Then, the
most important features are selected using the max-
pooling operation. The outcome of the pooling operation
is processed via a dense and softmax layer to assign
bug reports. This model is developed by removing ANN
from ANN + CNN2 + CNN3.

• CNN2 and CNN3, individually: As CNN2 + CNN3
uses the contextual relationship between both 2 and
3-words, we develop further two individual models such
as CNN2 and CNN3. These models aim to find whether
it is 2 or 3 consecutive words that should be the choice
for CNN layers.

Our benchmark models can be grouped into two cate-
gories such as independent models (ANN, CNN2, CNN3, and
CNN2+CNN3) and fusion-based models (ANN+CNN2+

CNN3 and ANN + CNN2). Apart from these benchmark
models, we train traditional ML models such as SVM [41],
RF [42] and NB [43] to compare our DL models’ results
against them. To train these models, we use tf-idf vectors
(reduced using PCA) as features. In other words, our ANN
and ML models are trained using the same set of features.
We consider these models because we find that they were
widely used in existing studies for solving the bug assignment
problem [1], [11], [27].

Lastly, we compare our results against some existing
benchmark models such as ELMo-CNN [15], ELM [42],
CNN-DA [14], and DBRNN-A [13]. ELMo-CNN is a DL-
based technique that uses a convolutional neural network
with a pre-trained word embedding named ELMo to assign
bugs. It achieved the best Top-1 accuracy in Sun Firefox,
JDT, and GUO Firefox datasets. In the GCC dataset, the
extreme learning machine (ELM) achieved the best Top-1
accuracy. In other datasets, DBRNN-A, an attention-based
deep bidirectional recurrent neural network achieved the best
Top-10 accuracy.

B. MODEL TRAINING AND EVALUATION
To train and evaluate our benchmark models, we apply
10-Fold cross-validation followed in the existing studies [13],
[15]. In each fold, the performance of a particular model is
measured using Top-1 to Top-10 accuracies so that we can
compare our results with earlier works of bug assignment
[13], [15]. Top-1 to Top-10 accuracy is a well-known metric
in recommender systems. Automated bug assignment and

FIGURE 4. JDT Dataset: Effect of the number of components (variance %)
on ANN based model’s performance such as Top-1, Top-2, Top-3, Top-4 &
Top-5 accuracy.

recommender systems are pretty comparable. Using Top-1
to Top-10 accuracies for bug assignment makes sense in the
following ways. Assume that our model uses Top-1 accuracy,
in which case it recommends a specific developer for a given
bug report. The developer in question, though, might be
preoccupied with other projects. In this case, top-k recom-
mended developers may be a good option. To train all of our
benchmark models, we use a variety of settings, which are
summarized below.

1) SETTINGS OF INDEPENDENT MODELS
To train the ANN model, training documents/bug reports
are initially transformed into M ′

br ∈
r×t ′ . Here, r is the

total number of training documents. The value of number
of components t ′ needs to be chosen carefully because it
has major impact on the model’s performance. During the
training of this model, we try different values of t ′ to find
optimum performance. Fig. 4 depicts different values of t ′

and their corresponding Top-1 to Top-5 accuracies in JDT
dataset. It can be observed from Fig. 4 that same value of
t does not provide optimum scores for all accuracies (Top-1
to Top-5). For instance, the optimum score of Top-1 accuracy
can be obtained using 467 components whereas it is required
to use 816 components for Top-2 accuracy. Here, 467 &
816 components explains 70%&99%variance of the original
data. Thus, it is also difficult to choose the value of t ′ based on
the variance explained. For these reasons, we tune the value
of t ′ to train our ANN model until we obtain optimum scores
for all accuracies (Top-1 to Top-10).

In CNN2 & CNN3 training, 300 embedding dimension is
used, i.e., each word is represented using a 300-dimensional
vector. Moreover, we use 256 filters of kernel sizes
2 × 300 and 3 × 300, respectively. We train our
CNN2 + CNN3 model by combining the settings of CNN2
and CNN3.We also try more than 256 filters, however, it does
not improve the performance of these models. In an existing
study [15], Zaidi et al. also used the same number of filters to
train their CNN-based bug assignment model.
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FIGURE 5. History of ANN + CNN2 + CNN3 model training over Mozilla Firefox dataset using focal & categorical_crossentropy loss (a) Comparison
of total losses during training (b) Comparison of Top-10 accuracies during training (c) Comparison of total losses during validation (d) Comparison
of Top-10 accuracies during validation.

2) SETTINGS OF FUSION-BASED MODELS
To train ANN + CNN2, we borrow the setting of ANN and
CNN2 since we achieved the optimum performance for those
individual settings. Similarly, the parameter settings of ANN
and CNN2 + CNN3 are used to train ANN + CNN2 +

CNN3.

3) COMMON SETTINGS
Apart from these settings, we use the same batch size, num-
ber of epochs, loss function and optimizer to train all the
benchmark models. We find optimum performance of these
models using 32 batch size and setting the required epochs
to 4. It is needed to mention that we also try higher batch
size (64) and epochs (10). However, it did not help to achieve
better performance, i.e., validation accuracy (Fig. 5d) starts
decreasing if more than 4 epochs are used. To optimise
the loss of any multi-class classifier, the use of categori-
cal_crossentropy [52] is seen to be very common among
deep learning-based classifier. However, we use state-of-the-
art focal loss [53] during model trainings to gain perfor-
mance over imbalance datasets. Fig. 5 shows comparison
between categorical_crossentropy and focal loss. From this
figure, it is evident that the optimization of focal loss is
better than categorical_crossentropy. For instance, focal loss
minimizes the total losses significantly during training and

validation compared to categorical_crossentropy (Fig. 5a and
Fig. 5c). On the other hand, focal loss maximizes the training
and validation accuracies (Fig. 5b and Fig. 5d). Although
Fig. 5 shows the training history of our ANN + CNN2 +

CNN3 model over Mozilla Firefox only, we also observe
same patterns for all benchmark models in the rest of the
datasets. In Convolutional Filter and Hidden Layers, we use a
commonly used activation function such as Rectified Linear
Units (ReLU) [54]. Lastly, we use the softmax function in
output layer as bug assignment is multi-class classification
problem.

4) ENVIRONMENT
We conduct experiments in a Windows 10 operating system
equipped with 12 core 3.80 GHz processor, 64 GB RAM,
and 8 GB VRAM. We implement the Deep learning (DL)
models using Keras (https://keras.io) framework. The tradi-
tional machine learning (ML) models are implemented using
the scikit-learn (https://scikit-learn.org) library.

V. RESULT AND DISCUSSION
Table 2 displays the experimental results we obtain using our
deep learning-based benchmark models. Table 3 shows the
results obtained by applying traditional ML models. In addi-
tion to these results, we present a comparative study between
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our benchmark models, existing deep learning-based models,
and traditional ML models in Table 4 and Table 5, respec-
tively. The last columns of Table 4 and Table 5 represent
the average improvements our benchmark models achieve
compared to existing deep learning and ML-based models.
Lastly, we answer the following RQs by analyzing the above
results.

A. ANSWERS TO THE RQs
1) RQ1
Can TF-IDF vectorization of a bug report and an artificial
neural network (ANN) model effectively automate the bug
assignment?Although previsous researchers used TF-IDF for
feature extraction [31], [41], [42], [43], none of the existing
works has explored ANN for bug assignment. To our best
knowledge, this is the first study that uses significant repeat-
ing keywords (TF-IDF vectors after PCA) to assign bugs
using an ANN.

Our experimental results demonstrate that ANN performs
better than traditional ML models. Top-K accuracies of ANN
and traditional ML models are displayed in Table 2 and
Table 3, respectively. Most importantly, ANN outperforms
existing deep learning-based benchmark models such as
ELMo-CNN [15], CNN-DA [14], DBRNN-A [13] in JDT,
GUOFirefox, Google Choromium,Mozilla Core andMozilla
Firefox datasets. The last column of Table 4 shows the aver-
age improvement of ANN-based model compared to these
existing benchmark models. Moreover, ANN based model
shows comparable performancewith the fusion-basedmodels
such as ANN + CNN2 and ANN + CNN2 + CNN3. Table 2
displays the results of ANN, ANN + CNN2 and ANN +

CNN2 + CNN3 in all datasets. From these observations, it is
evident that the idea of TF-IDF vectorization and ANN to
assign bugs is non-negligible. Therefore, we conclude that
ANN-based model can be an effective way to automate bug
assignment.

2) RQ2
Can a convolutional neural network (CNN) model with non-
static embedding effectively automate the bug assignment?
Based on the experimental results in Table 2, CNN-based
models (CNN2, CNN3, CNN2+CNN3) that use contextual
relationship among adjacent words does not perform well
compared to our other benchmark models such as ANN,
ANN + CNN2, and ANN + CNN2 + CNN3. However, our
CNN-based models with non-static word embedding outper-
form existing CNN-based benchmark models that use pre-
trained word embedding. For example, ELMo-CNN achieved
the best Top-1 accuracy in Sun Firefox (31.01%), Net-
beans (40.17%), and GUO Firefox (16.73%) according to
Zaidi et al. [15]. On the contrary, our CNN-based models
achieve 34.74% (CNN2+CNN3), 54.17% (CNN2+CNN3)
and 30.23% (CNN2) Top-1 accuracy, respectively. These
results are also better than the other CNN-based models of
Zaidi et al. [15], such as Word2Vec-CNN and GloVe-CNN.

Our major finding from this RQ is that non-static embed-
ding layers perform better than other pre-trained embedding
layers.

3) RQ3
Can we develop an effective bug assignment model by fus-
ing both artificial and convolutional neural networks’ fea-
tures? To answer this RQ, we compare our fusion-based
models (ANN + CNN2 and ANN + CNN2 + CNN3) with
our other benchmark models (ANN, CNN2, CNN3, and
CNN2 + CNN3) and existing deep learning-based bench-
mark models (ELMo-CNN, CNN-DA, and DBRNN-A).
As shown in Table 4 and Table 5, our fusion-based models
outperform our other benchmark models and traditional ML
models in Sun Firefox, Netbeans, and GCC datasets. In other
datasets, the performance of fusion-based models is com-
parable with our other benchmark models which are shown
in Table 2. However, fusion-based models significantly out-
perform existing deep learning-based models almost in all
datasets. According to Zaidi et al. [15], ELMo-CNN and
ELM are the best performing models in Sun Firefox, JDT,
Netbeans, GUO Firefox and GCC datasets which are dis-
played in the 3rd column of Table 4. From Table 2, it can
be observed that the performance of ELMo-CNN and ELM
is beatable by ANN + CNN2 and/or ANN + CNN2 +

CNN3. According to Mani et al. [13], DBRNN-A is the best
performing model in terms of Top-10 accuracy in Google
Chromium (41.80%), Mozilla Core (36.10%) and Mozilla
Firefox (44.80%) datasets. In contrast, our fusion-basedmod-
els achieve better Top-10 accuracies in these datasets, i.e.,
51.48% (ANN + CNN2), 58.89% (ANN + CNN2) and
98.53% (ANN + CNN2 + CNN3), respectively. Lastly, the
main finding from this RQ is that the performance of fusion-
based deep learning models is more promising than other
models that do not fuse information to assign bug reports.

B. DEEP ERROR DEBUGGING AND FUTURE DIRECTION
As our fusion-based models (ANN + CNN2 and ANN +

CNN2 + CNN3) performed better compared to the existing
deep learning-based models (ELMo-CNN and DBRNN-A)
over all datasets, we debug the errors of one of these models
(ANN+CNN2) to improve their performance further. To this
end, we observe Top-1 accuracy and note the incorrect bug
assignments during 1 to 10 folds. Then, we analyze these
data and find a coinciding behavior among these incorrect bug
assignments. For instance, ANN + CNN2 predicted 12 times
developerD3’s bugs asD11’s and 18 timesD11’s bugs asD3’s.
So, the total number of coinciding incorrect bug assignments
between D3 and D11 equals 30 times. Fig. 6d displays the
total number of coinciding incorrect bug assignments among
all developers in the JDT dataset. In this dataset, the top
most coinciding developers in terms of our model’s incor-
rect assignments are {D8,D16} = 46, {D8,D11} = 31,
{D3,D11} = 30 and {D8,D14} = 27. To understand the
causes of coinciding incorrect assignment, we measure the
similarities among developers in terms of their historical bug

VOLUME 11, 2023 49503



A. K. Dipongkor et al.: On Fusing Artificial and Convolutional Neural Network Features

TABLE 2. Average Top-1 (%) to Top-10 (%) accuracies of our models in all datasets.

reports. LetBp be the profile of pth developerDp that contains
all historical bug reports of Dp. Here, we formulate Bp as
follows, where bpj denotes the jth bug report of pth developer.

Bp = bp1 ⊕ bp2 ⊕ · · · ⊕ bpj (9)

To find the similarities among developers, we transform the
developers’ profiles into vector spaces. Initially, we generate
unique 1 and 2 grams from Bg where we express Bg formally
as follows.

Bg = B1 ⊕ B2 ⊕ · · · ⊕ Bp (10)

Concerning the unique n-grams of Bg, we generate a
TF-IDF vector for each developer’s profile. Then, we obtain a
developer-term matrixMDT ∈

p×t by stacking all developers’
TF-IDF vectors. Here, p and t denote the total developers
and unique terms/n-grams, respectively. To keep in accor-
dance with model training and validation, we apply PCA on
MDT ∈

p×t and obtainM ′
DT ∈

p×t ′ . The pth row ofM ′
DT ∈

p×t ′

represents the pth developer’s profile, denoted by Dvp, in a
vector space. Now, we can measure similarities among devel-
opers’ profiles using Cosine Similarities. Formula 11 denotes
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TABLE 3. Average Top-1 (%) to Top-10 (%) accuracies of traditional ML models in all datasets.

TABLE 4. Performance comparison between our DL/ML models and existing DL models in all datasets.

TABLE 5. Performance comparison between our DL/ML models and traditional ML models in all datasets.

the similarities between developer Dp and Dp′ .

cos_sim(Dp,Dp′ ) =

Dvp · Dvp′

∥Dvp∥∥D
v
p′∥

(11)

Following the above steps, we measure similarities among
different developer profiles of the JDT dataset which is
demonstrated in Fig. 6b. From the same cell of Fig. 6a
and Fig. 6a, we can find that highly similar developer pro-
files tend to cause a higher number of coinciding incorrect
bug assignments by our model. For instance, the similarities
between top most coinciding developers ({D8,D16} = 46,
{D8,D11} = 31, {D3,D11} = 30 and {D8,D14} = 27)
are 79%, 75%, 76%, and 76%. To verify whether this

pattern exists for all developers, we measure the correla-
tion between their profile’s similarity (Fig. 6b) and the total
number of coinciding incorrect bug assignments (Fig. 6a).
From Fig. 7 that depicts the correlation between Fig. 6a and
Fig. 6b, we can observe that the similarity and the coinciding
incorrect assignments exhibit a moderate positive correlation
(0.56). This correlation is also statistically significant since
the obtained P-value (2.1 × 10−13) is very small even if
we consider the lowest significance level, i.e., α = 0.001.
We also observe similar patterns while debugging the errors
in other datasets. In the future, we aim to deal with the
similarity issues among developers for making our model
more accurate.
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FIGURE 6. Overview of deep error debugging over the JDT dataset. (a) Coinciding incorrect bug report assignments among developers.
Here, each cell represents the total number of coinciding times between two developers; (b) Similarity between developers’ in terms of
their historical bug reports. Here, each cell represents the similarity between two developers.

FIGURE 7. Correlation between bug report similarities and the coinciding
incorrect assignments between two developers - the correlation
coefficient score 0.56 indicates moderate positive correlation.

C. THREATS TO VALIDITY
1) EXTERNAL VALIDITY
We make our claims based on the findings from running
experiments on the dataset of eight real-world open-sourced
projects, whichmay not represent the characteristics of indus-
trial, proprietary, and closed-sourced projects. In such cases,
our approach may render different results. It is noteworthy
that bug reports for proprietary industrial projects are not
publicly available. Therefore, it is challenging to conduct
experiments for any verification or validation purposes. How-
ever, since we take our benchmark dataset from a variety of
open-source software, the severity of this external threat is
relatively low.

Since our approach depends on the availability of bug
assignment history, it cannot be readily applied to a new
project or when a new developer joins a team. One possible
remedy for the latter problem can be to match the skill sets of

a new developer with an existing developer with a bug-fixing
history [55].

2) INTERNAL VALIDITY
Our data preprocessing is somewhat different than other
existing deep learning-based techniques. As a result, compar-
ing results from our and existing technique(s) can be ques-
tioned. However, our data preprocessing is an integral part
of the proposed approach and indicates better performance.
Another internal threat is that if keywords do not repeat
considerably among the bug reports of a particular developer,
our ANN module may not perform well. To reduce this
threat, our fusion-based models, such as ANN + CNN2 or
ANN + CNN2 + CNN3 extract two types of features:
repeating keywords and contextual relationships. If repeating
keywords are missing, the model will rely on the contextual
relationship or vice versa.

VI. CONCLUSION
Assigning reported bugs to appropriate developers is a critical
and often expensive aspect of software development. Auto-
mated bug assignments withminimum or no user intervention
could play a vital role in the bug resolution process. In this
study, we propose a novel information fusion-based deep
learning technique for automatically assigning the reported
bugs. In our approach, we extract two types of features:
(1) contextual relationship among consecutive words and
(2) repeating keywords from the bug reports. We conduct
an extensive ablation study of our proposed benchmark
models on eight widely used, open-source datasets and
present the results that show that our fusion-based approach
performs better than other existing deep-learning-based
techniques. The paper also contributes by debugging and
reporting insights on bug assignment errors and publishes all
the code used for running the experiments.
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