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ABSTRACT Power system state estimation is an essential component of the modern power system energy
management system (EMS), and accurate state estimation is an indispensable basis for subsequent work.
However, the attacker can inject biases into measurements to launch false data injection attacks (FDIAs)
in smart grids, which ultimately cause state estimates to deviate from security values. This paper proposed
the joint use of static state estimation and dynamic state estimation to detect the FDIA, i.e. the joint use
of weighted least squares (WLS) and extended Kalman filter (EKF) with exponential weighting function
(WEKF), which improves the robustness of state estimation. Since the WLS estimation considers only the
measurements at the current moment, the recursive feature of the WEKF enables the estimation process
to involve both historical state and current measurements. Therefore, consistency tests and residual tests
were performed using the estimations of WLS and WEKF to effectively detect FDIA. In addition, a cluster
partitioning approach with approximate equal redundancy of subsystems is proposed to locate the FDIA.
The detection of FDIA triggers the partitioning of the network system, and then the chi-square test is used
separately in each sub-network to determine the location of FDIA. Finally, the experimental results in the
IEEE-14 bus system and the IEEE-30 bus system demonstrate that the approach can effectively detect and
locate FDIAs.

INDEX TERMS Cyber security, AC state estimation, false data injection, WEKF, attack detection, smart
grids.

I. INTRODUCTION
State estimation is also called filtering. It uses the redun-
dancy of the real-time measurement system to improve the
estimation accuracy and automatically filter out the error
information caused by random interference [1]. Power system
state estimation first selects different system physical quan-
tities as the system state variables to be determined, such
as voltage amplitude, voltage phase angle, line current and
line power phases, etc. Then, real-time measurement, pseudo
measurement and virtual measurement are estimated using
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the selected estimation algorithm, and finally the operating
state of the system is estimated with high accuracy and
integrity [2]. Therefore, state estimation is of great signifi-
cance for monitoring the secure operation of power system
[3].With the development of smart grids and access to various
distributed energy sources making the structure and opera-
tion of power systems more complicated, so the automation
level of power system scheduling centers needs to be further
improved [4]. Modern power dispatching system requires
fast, accurate and comprehensive acquisition of real-time
operation status of power system, while it needs to accurately
analyze and predict the operating trend of the power system
[5]. This makes state estimation play an important role in the
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operation of power system and provides basis for the next
operation of dispatcher. The state estimation of power system
can be divided into static state estimation and dynamic state
estimation. Dynamic state estimation takes the measured data
at one moment as the initial value, and then estimates the
operating state of the system at the next moment according
to the motion equation. The state of the static state estimation
at a certain time is determined from the measured data at that
time. Dynamic state estimation can better predict and track
the operation state of power grid [6], [7].

With the construction of energy internet and smart grid,
a large number of devices are connected through communi-
cation and network to form a complex, mostly heterogeneous
system, i.e., cyber-physical system (CPS). Due to the random-
ness of sensor nodes in the sensing layer of CPS and the open-
ness of data interaction communication channels, the system
is vulnerable to network attacks [8], [9], [10], [11], such as
false data injection attacks (FDIAs) [12]. Attackers can attack
the communication devices of the smart grid or the remote
terminal units (RTU) remotely accessed through the network
[13]. False data injection attacks change the state estimation
in the smart grid to that expected by the attacker, while
corrupting the validity of the data to some extent, leading to
wrong decisions in the control center, which will eventually
lead to a greater degree of electrical security incidents [14].
Attackers can initiate FDIAs by destroying the measurements
obtained by the SCADA system or phasor measurement units
(PMUs), such as attacking the power flow between different
buses and the power injected by the bus, et al. Classical
bad data detection (BDD) system can detect bad data caused
by random noise, but cannot detect well-designed FDIAs.
It has been shown that classical methods based on maximum
normalized residuals are unable to detect well-designed false
data injection attacks. Therefore, an attacker can inject the
expected attack into the measurement and eventually corrupt
the results of state estimation [15], [16].

Both the classical chi-square test and the maximum nor-
malized residual test are based on the results of the state
estimation of the WLS, and the test results are then com-
pared with the corresponding thresholds to determine the
existence of bad data. Today, network attacks have become
more sophisticated and stealthy, so detection methods using
WLS alone cannot detect FDIAs, especially when the attacker
knows the topology information of the network [17]. In addi-
tion, the estimates obtained using WLS are based on current
measurement data only and do not contain any historical
information, so they cannot predict the operational state
of the system [18], [19]. However, the EKF estimates are
based on current measurement data and historical informa-
tion, and the EKF can also predict the operating state of the
system.

Considering the cost and effectiveness of detection meth-
ods, this paper proposes a method that jointly uses static state
estimation and dynamic state estimation to detect FDIAs.
In particular, this paper introduces an exponential weighting

function in the EKF, which makes the state estimation more
robust.WEKF can adaptively reduce the weight of the current
measurements in the face of FDIAs while increasing the
weight of the predicted estimated measurements, which can
ultimately maintain excellent estimated performance. When
FDIAs occurs, the estimate obtained by WLS at the next
moment jumps, but the estimate obtained by WEKF at the
next moment remains stable. The estimates obtained from
the two estimation methods were then used to effectively
detect FDIAs using a consistency test. To localize FDIAs,
we propose a system partitioning method that maintains the
approximate equality of redundancy. Since the division of
the system makes the subsystems less redundant, this makes
the chi-square test more effective. Finally, the chi-square
test is used in each subsystem to locate FDIAs. The main
contributions of this paper can be summarized as follows:

• In response to the problem that the extended Kalman
filter suffers from degraded estimation performance in
the face of the FDIA, an extended Kalman filter with
the introduction of an exponential weighting function is
proposed. This enables the WEKF to maintain excellent
state estimation performance in the face of the FDIA
with different attack strengths.

• A WEKF-based detection approach is proposed for the
FDIA, which is used for the first time in conjunction
with WLS state estimation.

• To maintain the detection performance, the method
for determining the dynamic detection threshold is
proposed.

• To further locate the location of FDIA, a system par-
titioning approach that maintains the redundancy of
subsystems approximately equal is proposed. Finally
the FDIA is detected in each subsystem separately to
determine the location of the FDIA attack.

• The experimental results demonstrate that the approach
maintains excellent detection and localisation perfor-
mance in the face of the FDIA with different attack
strengths.

The rest of this paper is organized as follows. Section II
describes the related work. Section III presents the principles
of FDIA and the model for state estimation. Section IV
describes the methods used in this paper to detect and local-
ize FDIA. Section V presents the results of simulation and
numerical examples. Section VI concludes the paper and
future research directions.

II. RELATED WORKS
The FDIA based on the DC state estimation model has been
extensively used in many researches. However, constructing
FDIAs using the DC model produces larger residuals in the
AC state estimation, which are more readily detected [20].
FDIAs based onAC state estimationmodels were constructed
in [21] to attack the distribution network. An attacker can
approximate the system state through power flow or power
injection measurements without knowing the system state,
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and eventually deviate the state estimate from the security
value without being detected. In order to decrease the number
of measurements that need to be modified when constructing
an attack, a false data injection attack model is proposed
in [22] to modify the network parameters, which ultimately
leads to a better coordination between the state change of
the system and the modification of the network parame-
ters. In [23], an attack model based on nonlinear physical
constraints was proposed to achieve the hiding effect and
successfully bypass the detection.

In models with AC state estimation, it is difficult for an
attacker to achieve perfect FDIAs, and imperfect attacks lead
to changes in the probability distribution of the measurement
residuals. Therefore, a detection method based on the statis-
tical consistency of the measurement residuals is proposed
in [24]. Although this method can effectively detect FDIAs,
it cannot find the specific location of FDIAs. In the face
of FDIAs in the dynamic model of smart grid, a fast intru-
sion detection algorithm is proposed in [25]. The algorithm
distinguishes between FDIAs and systematic mutations by
analyzing the estimated statistical properties. At the same
time, the method can detect or eliminate FDIAs with very
low latency. In [26], the method based on Kullback-Leibler
distance (KLD) is used to detect FDIAs. This method deter-
mines the existence of FDIAs by comparing the difference
in probability distributions between historical and current
measurements. The disadvantage of this detection method
is that it requires a large amount of historical measurement
data, and the detection efficiency may be compromised in the
face of trapezoidal attacks. In [27], a detection method based
on the measured data of PMUs is proposed. This method
takes the state estimates obtained by PMUs and SCADA and
performs a consistency check to detect FDIAs. However, the
assumption that the measurements obtained by PMUs are
always secure does not always hold.

III. PRELIMINARIES
A. AC STATE ESTIMATION
Power system state estimation is one of the core functions of
the Energy Management System (EMS) of the power system
dispatch center. Its function is to estimate the current operat-
ing status of the power system based on various measurement
information of the power system. Assume that the power sys-
tem has m measurements and n state variables. In AC power
systems, the nonlinear relationship between measurements
and state variables is as follows:

z = h(x) + v (1)

where z ∈ Rm×1 is the vector of measurements; x ∈ Rn×1

represents the vector of state variables to be estimated; v ∈

Rm×1 is the measurement error vector, which is a Gaussian
white distribution with zeromean and error covariancematrix
R, i.e., R = diag(σ 2

1 , . . . , σ 2
m); h(·) represents the nonlinear

relationship between the measurement vector z and the state
estimation vector x.

The nonlinear relationship h(·) between the state vector and
the measurement vector is as follows [1]:

Pi = Vi
∑
j∈�i

Vj(Gij cos θij + Bij sin θij) (2)

Qi = Vi
∑
j∈�i

Vj(Gij sin θij − Bij cos θij) (3)

Pij = Vi2(gsi + gij) − ViVj(gij cos θij + bij sin θij) (4)

Qij = −Vi2(bsi + bij) − ViVj(gij sin θij − bij cos θij) (5)

where Pi andQi are the active and reactive power injection of
bus i, respectively; Pij and Qij are the real and reactive power
flow from bus i to bus j, respectively; Vi is the voltage at bus i;
θi is the phase angle at bus i; θij is the phase angle difference
between buses i and j;Gij+jBij is the line admittance between
buses i and j; gij + jbij is admittance of the shunt branch at
bus i; �i is the set of buses associated with bus i.
The WLS method is the most basic method to obtain the

state estimation [28]. The method to obtain state estimation
using WLS is as follows:

x̂ = argmin [z− h(x)]TR−1[z− h(x)] (6)

where x̂ is the vector of state estimates for the best-fit
measure z.

The solution of Equation (6) can be obtained by Newton
iteration method [1]:

1z(l) = z− h(x̂(l))

1x̂(l) = [HTR−1H]−1HTR−11z(l)

x̂(l+1)
= x̂(l) + 1x̂(l) (7)

where l is the l-th iteration index; x̂(l) is the result of the
l-th iteration of the state estimation vector;H is the Jacobian
matrix.

B. BAD DATA DETECTION AND FALSE DATA INJECTION
ATTACK
The classical BDD detection algorithm compares the objec-
tive function value of theWLS with the threshold value of the
chi-square test. The objective function J (x̂) of theWLS-based
state estimation results is

J (x̂) =

m∑
i=1

[zi − hi(x)]2
/

σ 2
i (8)

where m is the number of measurements; σ 2
i represents the

measurement error of the ithmeter; zi represents themeasured
value of the ith meter.
The detection of bad data using the objective function (8)

can be achieved by hypothesis testing.{
H0 : J (x̂) ≤ χ2

(m−n),p,No bad data,Accept H0

H1 : J (x̂) > χ2
(m−n),p,Bad data,Reject H0

(9)

where H0 is called original hypothesis, i.e., there is no bad
data;H1 is called alternative hypothesis, i.e., there is bad data.
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χ2
(m−n),p is the chi-square test threshold with confidence level
p and degree of freedom (m− n).

Let a ∈ Rm×1 denote the attack vector that the attacker
attempts to inject into the meter. Then normal measurement
z changes to zbad = z + a after being attacked. Let x̂bad =

x̂+c denote the state estimation variable after being attacked,
i.e., c = [c1, . . . cn]T , where c is the deviation of state esti-
mation caused by FDIAs. The residual vector of the attacked
measurement zbad is

rbad = zbad − ẑbad = z+ a− h(x̂+ c). (10)

Therefore, the L2-norm of the measurement residual under
normal conditions is

∥r∥2 =
∥∥z− h(x̂)

∥∥
2 (11)

If ∥r∥2 is less than the threshold τ , the measurement is
considered to have no bad data; otherwise, the measurement
is considered to have bad data.

If the attacker constructs a well-designed attack vector as
a = h(x̂ + c) − h(x̂) [15], the residuals of the attacked
measurement become

rbad = z+ a− h(x̂+ c)

= z+ h(x̂+ c) − h(x̂) − h(x̂+ c)

= z− h(x̂)

= r (12)

where r is the residual of the normal measurement. Equation
(12) shows that the measurement residuals of attacked and
unattacked are equal. Therefore, classical bad data detection
methods are unable to detect the above-constructed false data
injection attacks.

C. MODEL FOR DYNAMIC STATE ESTIMATION
The power information physical system is a highly multi-
dimensional non-linear system, and the AC power flow equa-
tion of the power system presents a non-linear relationship.
The state equation and measurement equation of dynamic
state estimation are as follows [29]:

xk+1 = f(xk ) + wk (13)

zk = h(xk ) + vk (14)

where xk and xk+1 represent the state vectors at time k and
k + 1, respectively; f is the state transition equation of state
vector xk to xk+1; wk is the systematic error at time k; zk and
vk represent the measurement vector and measurement error
at time k , respectively; h represents the nonlinear relationship
between the state vector x and the measurement vector z.
Suppose wk and vk are uncorrelated and obey white Gaussian
noise with zero mean, and their error covariance matrices are
Q and R, respectively.
The Kalman filter is a linear optimal estimator. How-

ever, the power information physical system is a highly
multi-dimensional and non-linear system. Therefore, we con-
sider the use of extended Kalman filter (EKF) for dynamic

state estimation. The linearization model of the extended
Kalman filter is as follows [29]:

xk+1 = Fkxk + Gk + wk (15)

zk = Hkxk + vk (16)

where Fk = ∂f/∂x|x=x̂k is the Jacobian of the equation of
state at time k; Gk is denoted as the input matrix at time k;
Hk = ∂h/∂x|x=x̂k is the Jacobian of the measurement equa-
tion at time k .

The power information physical system is a network with
complexity, multidimensionality and load variability. The
state transition matrix at each moment is difficult to deter-
mine, and using the method of linearizing the state equation
will introduce errors. Therefore, the method of Holt’s two-
parameter exponetial smoothing method is used in this paper
to predict the state value of the next moment. This method
has the advantage of storing few variables and fast calcula-
tion, so it is suitable for short-term load forecasting. It is an
online identification method rather than a linearization. The
equation of state can be written as

x̂k+1|k = ak + bk
ak = αx̂k + (1 − α)x̂k|k−1

bk = β(ak − ak−1) + (1 − β)bk−1 (17)

where x̂k and x̂k|k−1 denote the state estimate vector and
predicted state vector at time k , respectively; α and β are
both expressed as smoothing parameters, where α = 0.85,
β = 0.05.
Thus, the linearized equation of state can be expressed as

x̂k+1|k = α(1 + β)x̂k + (1 + β)(1 − α)x̂k|k−1

−βak−1 + (1 − β)bk−1 (18)

IV. DETECTION AND LOCALIZATION OF FDIAs
A. EKF WITH ADAPTIVE CHANGE OF MEASUREMENT
WEIGHTS
In order to better detect false data injection attacks with differ-
ent attack strengths, this paper adds an exponential weighting
function to the EKF. The EKF with the introduction of an
exponential weighting function maintains excellent estima-
tion performance in the face of FDIA with different attack
strengths. The specific state estimation process is

(1) Forecasting steps

x̂k|k−1 = Fk−1x̂k−1 (19)

Pk|k−1 = Fk−1Pk−1FTk−1 + Qk−1 (20)

(2) Updating steps

x̂k = x̂k|k−1 + Kk
[
zk − h

(
x̂k|k−1

)]
(21)

Kk = Pk|k−1Hk
T (HkPk|k−1Hk

T
+ Rk )−1 (22)

Pk = (I− KkHk)Pk|k−1 (23)

where Pk|k−1 and Pk are denoted as the covariance matrix
of the prior estimation error and the covariance matrix of the
posterior estimation error at time k , respectively; Kk denotes
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the Kalman gain at time k . The initial state values and the
covariance matrix of the estimation errors are set to x̂0 =

0 and P0 = I, respectively. Furthermore, we define the resid-
uals of the prediction estimates at time k as r̃ = zk−h(x̂k|k−1).

Suppose false data injection attacks are launched into the
power system at time k . The attacker can only inject bias into
the measurement, so the measurement changes from zk to zak .
Equation (21) can be written as

x̂ak = Fx̂k−1 + Kk [zak − h(x̂k|k−1)]

= Fx̂k−1 + Kk [zk + ak − h(x̂k|k−1)]

= x̂k + Kkak (24)

where x̂ak denotes the vector of state estimates after being
attacked at time k . We assume that the bias of the state
estimate caused by the false data injection attack at time k is
1x̂ak = x̂ak − x̂k . Therefore, the state estimate obtained after
being attacked at time k + 1 can be written as

x̂ak+1 = Fx̂ak + Kk+1[zak+1 − h(x̂ak+1|k )]

= Fx̂ak + Kk+1[zk+1 + ak+1 − h(x̂ak+1|k )]

= F1x̂ak + Kk+1[1ha(x̂k+1|k ) + ak+1] + x̂k+1 (25)

We define the injection bias of the estimatedmeasurements
predicted at time k as 1ha(x̂k+1|k ) = h(x̂k+1|k ) − h(x̂ak+1|k ).
Therefore, the bias of the state estimate caused by the false
data injection attack at time k + 1 is

x̂ak+1 − x̂k+1 = F1x̂ak + Kk+11ha(x̂k+1|k ) + Kk+1ak+1

(26)

From the above calculation, it can be concluded that the
state estimation bias at the current time is not only affected by
the state estimation bias at the previous time, but also by the
injection attack at the current time. When using the EKF for
state estimation, the state transfer equation and process noise
will have some influence on the state estimation, so there is a
transition process of convergence in the EKF [30]. However,
when using WLS for state estimation, the state values will
converge and update accelerated. This enables us to effi-
ciently detect FDIAs using discrepancies and inconsistencies
in the estimated responses.

When FDIAs are injected, the prediction residual r̃ =

zk −h(x̂k|k−1) increases. To enable the EKF to excellent good
estimation performance despite the existence of FDIAs, this
paper adaptively decreases the filter gain of the EKF using the
prediction residuals, which allows the attackedmeasurements
to have a lower weight in the state estimation process. Mean-
while, the weights of the predicted estimated measurements
are increased. The relationship between the weighting matrix
Wk of the measurements and the covariance matrix R of the
measurement noise is Wk = R−1. The weighting matrix of
the measurements can be updated as

(Wnew
k )−1

= W−1
k ∗ e|zk−h(x̂k|k−1)| (27)

The above method can effectively suppress the degrada-
tion of state estimation performance due to the increase in

attack strength. When the predicted estimated measurement
h(x̂k|k−1) deviates significantly from the current measure-
ment zk , the increase in the mode of the predicted residual
vector makes the measurement noise increase and ultimately
decreases the Kalman gain. Conversely, minor deviations
between the predicted and current measurements lead to
minor changes in the measurement noise, which further leads
to minor changes in the Kalman gain and ultimately to minor
changes in the estimated values. When FDIAs are existing,
the WEKF can better suppress the effects of attacks, ulti-
mately increasing the difference between the WEKF and
WLS estimation.

B. DETECTION METHOD BASED ON STATE DEVIATION
The power flow calculation is performed for the power system
at the moment of k , and then the calculation results are added
the perturbation error conforming to the Gaussian distribution
as the measurement data of the current system. Then, two
state estimation methods proposed above are used to estimate
the state of the system. Firstly, consistency tests are used
to compare the deviations between the two estimates. The
formula is as follows:∥∥∥x̂sk − x̂dk

∥∥∥
2

≤ τa (28)

where x̂sk and x̂
d
k represent the predicted state estimates from

WEKF and WLS, respectively. τa is the consistency check
threshold, and its value is determined by the measurement
error and the accuracy of the state estimation result.
Since the predicted values are calculated using Holt’s two-

parameter method, the system with sudden changes in gen-
erator and load is no longer applicable [31]. Therefore, the
consistency test may not be satisfied even if the system is
not under attack. To eliminate false detections caused by sud-
den generator changes or sudden load changes, the residuals
between the predicted estimates and the actual measurements
are further checked. The method of residual test is∥∥zk − h(x̂sk )

∥∥
2 ≤ τb (29)

where h(x̂sk ) is the estimated measurement obtained using the
WEKF; τb is the detection threshold for bad data, and its
value is determined by the error tolerance of the chi-square
distribution.

When bad data are exist in the power grid, the consistency
test results of the state estimates obtained by the two esti-
mation methods are much larger than the threshold values.
Next, the existence of mutational interference or the existence
of FDIAs needs to be determined. Finally, the prediction
estimates obtained using WEKF are subjected to residual
tests to determine whether FDIAs actually exist. When the
result of the residual test was also greater than the threshold
of the chi-square test, the existence of FDIA was determined.
Conversely, when the result of the residual test is less than the
threshold of the chi-square test, the result of the consistency
test is disturbed bymutations and should ultimately be judged
as non-existent attack.
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C. LOCALIZATION OF FDIAs
To locate the FDIA, the existence of FDIA is first detected
using Equation (28) and Equation (29). If FDIA does not
exist, then no system partitioning is triggered, otherwise the
complete system G is divided into multiple subsystems G1,
G2, . . . and Gn based on the principle of approximate equal
redundancy of subsystems. When the system is divided into
subsystems, the redundancy of each subsystem is decreased
and the threshold of the chi-square test is decreased making
the chi-square test more effective. Finally, the chi-square test
is performed on the subsystems until the location of FDIA is
found.

Therefore, the proposed method for detecting and locating
the FDIA is shown in Algorithm 1.

V. SIMULATION RESULTS
In this paper, MATLAB R2018b was used for the simulation.
The power flow is calculated using the relevant data from
the MATPOWER 7.1 power simulation package. Finally,
measurement noise is added to the results of the power flow
to serve as measurement data. At the same time, the mea-
surement noise obeys the Gaussian distribution with the mean
value of 0 and the variance of 0.015.

In this section, the detection performance of the proposed
algorithm is demonstrated by simulation results. Firstly, this
paper uses the construction method of the attack vector in
[32] to inject false data into the IEEE-14 bus system. The
results of state estimation using WLS, EKF and WEKF are
compared for the smart grid after an attack. Secondly, the
detection method proposed in this paper is used to detect
the existence of FDIA in the IEEE-14 bus system and the
IEEE-30 bus system, respectively. Finally, the FDIA injected
into the IEEE-30 bus system is located through experimental
simulations.

A. PERFORMANCE COMPARISON BETWEEN WEKF AND
EKF
To compare the robustness of state estimation when the
WEKF and EKF are affected by the FDIA, this paper uses the
root mean square error (RMSE) to determine the estimation
performance of the two estimators. The RMSE calculates the
estimation error for both estimators by using the difference
between the predicted estimate and the actual value. The
estimated predicted voltage of the bus is compared with the
actual value when the grid is under attack. RMSE is defined
as follows:

RMSE =

√√√√√ 1
N

N∑
j=1

(x̂j − xj)
2 (30)

where N represents the number of buses; x̂j is the predicted
voltage estimate for the jth bus; xj represents the actual volt-
age of the jth bus.
The voltage estimation errors for each bus after the grid

has been attacked are shown in Table 1. As seen in Table 1,

Algorithm 1 Detection Methods Based on Dynamic and
Static State Estimation
Input: Smoothing parameters α and β; noise error covari-

ance Q and R; initial state x̂0 and state error covari-
ance P0; consistency test threshold τa and residual test
threshold τb;

Output: Declare the occurrence of FDIA.
1: for k = 1 to N , where N represents the number of time

slots do
2: Acquire the measurement vector zk and determine the

Jacobi matrix H;
3: The exponential smoothing method of Equation (17)

is used to predict the state vector x̂k|k−1 at the next
moment.

4: Classical state estimation using weighted least squares
method to calculate the predicted state estimate vector
x̂dk ; x̂

d
k = (HTR−1H)−1HTR−1zk ;

5: Pk|k−1 is acquired by the state prediction step of
Equation (20);

6: The measurement noise covariance matrix was
updated by using Equation (27), whereWk = R−1;

7: The update steps of Equations (21)-(23) are used to
acquire the state estimate x̂sk , x̂

s
k = x̂k|k−1 + Kk [zk −

h(x̂k|k−1)];
8: if

∥∥∥x̂sk − x̂dk
∥∥∥
2

≥ τa then

9: The FDIA and bad data may be existing;
10: else if

∥∥zk − h(x̂sk )
∥∥
2 ≥ τb then

11: The FDIA is existing and the alarm is triggered.
At the same time, the system is divided;

12: The chi-square test was performed on the divided
subsystems using Equation (9);

13: If the objective function of the subsystem obtained
by Equation (8) is still greater than the threshold
value;

14: Divide the subsystem into smaller subsystems until
it is positioned at the FDIA attack location;

15: else
16: The FDIA is not existing and the process of state

estimation continues;
17: end if
18: end for

the estimation error of WEKF is minimal when the grid is
attacked by false data injection. At the same time, the error
of state estimation using WLS is the largest. In short, the
WEKF has a better estimation performance than the EKF
when the smart grid is under attack. The RMSE calculated
from the estimated error for each bus is shown in Table 2.
As shown in Table 2, the RMSE of the WEKF estimates
is significantly less than the RMSE of the EKF estimates.
Therefore, when FDIA is existing, the WEKF has better
estimation performance than the EKF and WLS.
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TABLE 1. Estimated error of each bus.

FIGURE 1. The fitted cumulative distribution function with the L2-norm of
errors.

TABLE 2. RMSE of voltage amplitude.

B. DETERMINING DYNAMIC DETECTION THRESHOLD
AND DETECTING FDIA
In this paper, the sum of squared errors (SSE) method is
used to determine τa. The error is the difference between
the estimates of WLS and WEKF in the absence of
FDIA. Specifically, the steps for determining τa are as
follows:

• Firstly, estimates were obtained using WLS and WEKF
respectively in the absence of FDIA. Then the errors
of the two estimates were calculated and finally the
L2-norm of the error was obtained.

• Secondly, the sample values of the L2-norm of the error
were fitted using the Weibull distribution.

FIGURE 2. The voltage amplitude of each bus before and after the attack.

FIGURE 3. The voltage phase of each bus before and after the attack.

• Finally, the false alarm rate is used to determine the
corresponding threshold value.

Fig. 1 gives an illustration of the approach to determining
the detection threshold τa in the IEEE-14 bus system. The
false alarm rate, i.e. the false positive rate (FPR), was first
determined. Then (1−FPR), i.e. 0.95, was used as the value
of the vertical coordinate for fitting the Weibull distribution.
Finally the value of the horizontal coordinate corresponding
to the Weibull distribution was taken as the detection thresh-
old, i.e. τa = 2.172.
In this paper, the attack vector is constructed by modifying

the measurement data of the local subnet. At the same time,
the attack vector is made to achieve concealment [17].

Assume that the power system is continuously affected by
the false data injection attack from the third hour, while the
power system is unaffected in the first two hours. At the same
time, the EMS is sampled every 30 seconds. As can be seen
in Fig. 2 and Fig. 3, the amplitude and phase angle of the
bus voltage changed both before and after the attack. The
residuals of the estimates before and after the attack using
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FIGURE 4. Residuals of WLS estimates before and after the attack.

FIGURE 5. The change in voltage phase of bus 5 before and after the
attack.

FIGURE 6. The voltage phase change of bus 5 before and after being
attacked.

weighted least squares are shown in Fig. 4. The estimated
residual of the weighted least squares method when not under

FIGURE 7. The voltage amplitude of each bus before and after the attack.

FIGURE 8. The voltage phase of each bus before and after the attack.

attack was calculated to be 4.1572. However, the estimated
residual after being attacked was 5.5671. Therefore, the vari-
ation in the estimated residuals before and after the attack
is minimal. Suppose we set the confidence level to 0.95.
The IEEE-14 bus system has 41 measurements and 27 state
variables. Therefore, the redundancy is k = m−n = 14. The
detection threshold obtained by looking up the chi-square
table was 23.685. The residuals calculated after the attack are
less than the threshold, but the voltage amplitude and phase
angle change after the attack, so this FDIA cannot be detected
by the WLS-based method.

Suppose the power system operates normally for the first
two hours and then is subject to a continuous false data
injection attack from the third hour onwards. Based on these
two methods of state estimation, Fig. 5 and Fig. 6 show the
changes in the state estimates of the voltage amplitude and
phase angle of bus 5 before and after the attack, respectively.
Traditional weighted least squares estimation (WLSE) is a
static state estimation method based on the current measure-
ments, so theWLSEwill react quickly when the FDIA occurs
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at the third hour. However, the WEKF is a recursive method.
The current state estimate is determined by a combination of
historical data and current measurements. Therefore, there is
a process of state adjustment in the WEKF when the FDIA
occurs. Therefore, the deviations from the state estimates
obtained by the two methods can be used to detect the FDIA.

When FDIAs were not existing, the result of the consis-
tency test using Equation (28) was 0.7426. However, the
result of the consistency test in the existence of the FDIA
was 19.361. Meanwhile, the threshold of the consistency test
was set at 2.172, so the result of the consistency test after the
attack was significantly greater than the threshold. In order
to eliminate false detections caused by sudden changes in the
generator or load, the estimation results of the WEKF were
further tested for residuals using Equation (29). The result of
the residual test for the WEKF estimate is 31.614, which is
greater than the threshold value of 23.685 and does not satisfy
Equation (29). Therefore, it can be determined that FDIA is
existed rather than the effect of mutation disturbance. When
FDIA is existing in the power system, the results of both
the consistency test and the residual test are greater than the
corresponding thresholds, and finally the existence of FDIA
can be determined.

In order to further verify the validity and applicability of
the method, simulations were carried out in the IEEE-30 bus
system in this paper. The simulation results in Fig. 7 and
Fig. 8 show the estimates obtained for each bus using different
estimation algorithms before and after the attack. Simulation
results show that the WEKF maintains excellent estimation
performance after an attack on the smart grid, but that the
state estimates of the classical WLS deviate from the security
values. Suppose we set the confidence level to 0.95 and
the IEEE-30 bus system has 93 measurements and 59 state
variables. Therefore, the redundancy is k = m−n = 34.
The detection threshold obtained by querying the chi-square
table was 48.602. After the attack, the estimated residual
of WLS changes from 4.624 to 5.867, so it is below the
threshold. As a result, classical BDD detection algorithms
are unable to detect such attacks. To test for the FDIA, the
consistency test is first carried out using Equation (28). The
result of the consistency test was 1.844 when FDIA is not
exist, but the result of the consistency test after the injection
attack was 20.961. As the threshold for the consistency test
is 3.216, the result of the consistency test after the attack is
larger than the threshold. To eliminate the interference caused
by external conditions, the residual test is continued using
Equation (29). The result of the residual test for the WEKF
estimate is 54.622, which is greater than the threshold value
of 48.602 and does not satisfy Equation (29). Therefore it
can be determined that FDIA is existed rather than the effect
of mutation disturbance. Thus, by using Equations (28) and
Equation (29), the FDIA can be effectively detected.

C. LOCATING THE FDIA
To further find the location of the FDIA, this paper conducts
simulation experiments in an IEEE-14 bus system. When the

FIGURE 9. The partitioning of the IEEE-14 bus system.

TABLE 3. Subsystem chi-square detection.

FDIA is not exist, the objective function J (x̂) is less than the
detection threshold of the IEEE-14 bus system. At this point,
the deviations in the state estimates of the WLS and WEKF
are so minimal that no partitioning of the system is triggered.

In this paper, we use the construction approach of the attack
vector in [21] to minimise the power increment of the bus and
to decrease the modal length of the attack vector as much as
possible. Firstly, use Equations (28) and Equations (29) to
determine the existence of an FDIA. After that, the system
triggers partitioning to divide thewhole system into three sub-
systems. This partitioning approach allows for better mainte-
nance of almost equal redundancy in each subsystem. The
system is divided into three sections, I, II and III, as shown
in Fig. 9. System partitioning decreases the redundancy of
each subsystem, which results in lower thresholds for the
chi-square test and ultimately makes the chi-square test more
valid. The chi-square test was then performed in each subsys-
tem, where the objective function value J (x̂) and the detection
threshold χ2 for each subsystem are shown in Table 3. Since
subsystems 2 and 3 are not under attack, the objective func-
tion value J (x̂) is less than the chi-square test threshold χ2.
The objective function values for subsystems 2 and 3 were
J (x̂) = 6.473 and J (x̂) = 7.811, respectively, which were
both less than the chi-square test threshold of χ2

= 9.488.
The objective function value of J (x̂) = 20.145 for subsystem
1 is greater than the chi-square detection threshold of χ2

=

12.592, indicating the existence of FDIA in this subsystem.
Locating attacks in large scale power systems can be very

difficult due to the very large redundancy. The simulation
results show that the method proposed in this paper can
effectively detect and locate area attacks.
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FIGURE 10. The comparison of detection performance with different
attack strengths.

When Equation (28) is greater than the corresponding
threshold and Equation (29) is less than the corresponding
threshold, an alarm is triggered and the existence of FDIA is
reported. To validate the detection performance of theWEKF
and the conventional EKF under different attack intensities,
we defined the length of the interval between starting and
stopping the alarm to measure the detection performance.
As shown in Fig. 10, as the attack intensity increases, the
WEKF detection method proposed in this paper has bet-
ter detection performance than the classical EKF detection
method. Themain reason for this is that theWEKF adaptively
suppresses the FDIA as the attack intensity increases, thus
making the difference between the estimates obtained by the
two estimation methods larger. The increased discrepancy
between the state estimates of the WLS and WEKF makes
the FDIA more readily detectable.

VI. CONCLUSION AND FUTURE WORK
Considering that the conventional WLS and EKF cannot
effectively detect and locate the FDIA, this paper proposes
a method based on state deviation and system partitioning
to effectively detect and locate the FDIA. By introducing an
exponential weighting function to the conventional EKF, the
degradation of detection performance due to the increased
strength of the FDIA attack can be better suppressed. The
consistency test of the WEKF and WLS estimates was per-
formed to initially determine if there was false data injection
attack in the system. In order to decrease the error detection
rate, a residual test was then added to the consistency test,
which ultimately made the test more robust. In order to
further localise the detected FDIAs, the system partitioning
method is proposed that maintains an almost equal degree of
redundancy. This paper takes advantage of the fact that the
redundancy of subsystems decreases, resulting in more effi-
cient chi-square test for each subsystem. Finally, the experi-
mental results demonstrate the excellent performance of the
method proposed in this paper in detecting and locating the

FDIA. In future work, we will detect other types of attacks
in the power system, such as synchronous and immediate
attacks. Simultaneously, detect and locate multi-point attacks
in multiple areas of the power system.
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