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ABSTRACT Crowding at the entrances of large events may lead to critical and life-threatening situations,
particularly when people start pushing each other to reach the event faster. Automatic and timely iden-
tification of pushing behavior would help organizers and security forces to intervene early and mitigate
dangerous situations. In this paper, we propose a cloud-based deep learning framework for automatic early
detection of pushing in crowded event entrances. The proposed framework initially modifies and trains the
EfficientNetV2B0 Convolutional Neural Network model. Subsequently, it integrates the adapted model with
an accurate and fast pre-trained deep optical flow model with the color wheel method to analyze video
streams and identify pushing patches in real-time. Moreover, the framework uses live capturing technology
and a cloud-based environment to collect video streams of crowds in real-time and provide early-stage results.
A novel dataset is generated based on five real-world experiments and their associated ground truth data to
train the adapted EfficientNetV2B0 model. The experimental setups simulated a crowded event entrance,
while the ground truths for each video experiment were generated manually by social psychologists. Several
experiments on the videos and the generated dataset are carried out to evaluate the accuracy and annotation
delay time of the proposed framework. The experimental results show that the proposed framework identified
pushing behaviors with an accuracy rate of 87% within a reasonable delay time.

INDEX TERMS Artificial intelligence, computer vision, convolutional neural network, deep learning, image
classification, intelligent system, machine learning, pushing behavior detection.

I. INTRODUCTION

The entrances of large-scale events such as sport venues, con-
certs, and religious gatherings are organized as bottlenecks
for access control, ticket validation, or security check [1].

The associate editor coordinating the review of this manuscript and

approving it for publication was Okyay Kaynak

In these scenarios, some pedestrians might start pushing
each other to gain faster access to the event. According to
Usten et al. [2], pushing for forward motion is defined as “a
behavior that can involve using arms, shoulders, or elbows;
or simply the upper body, in which one person actively
applies force to another person (or people) to overtake, while
shifting their direction to the side or back, or force them to
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move forward more quickly.” Additionally, using gaps in the
crowd is considered as a strategy of pushing because it is a
form of overtaking [2]. Indeed, such behavior increases the
crowd’s density over time [1], [3], resulting in the lack of
comfort zones and, more importantly, can lead to dangerous
situations [4], [5]. In such cases, early pushing detection is
essential, as it can provide valuable information to the orga-
nizers and the security team for better crowd management,
thereby ensuring a smoother flow at entrances with higher
safety [6]. Since manual identification of pushing behavior
in the early stages can be complex or impossible, developing
an automatic detection framework in real-time or near real-
time is crucial. However, automatic pushing detection is still a
challenging task due to the highly-dense crowds, the diversity
of pushing behavior strategies, and the varying features for
pushing behavior representation, which still requires further
investigation and identification [7].

Surveillance cameras have recently been widely integrated
with computer vision techniques to automatically identify
abnormal behaviors from crowds [8], [9]. Within the realm
of computer vision, pushing behavior can be classified as
abnormal behavior. Machine learning algorithms, particu-
larly Convolutional Neural Network (CNN) architectures,
have remarkably succeeded in several computer vision tasks;
among these is abnormal behavior detection in crowds [10].
One of the critical reasons for this success is that CNN
can learn the relevant features [11], [12] and classification
automatically from data without human intervention [13],
[14]. Although CNN architectures are powerful for model-
ing human behaviors, building an accurate model requires a
large training dataset [15], [16], which is often unavailable.
Researchers have developed hybrid-based approaches that
integrate CNN with handcrafted feature descriptors to address
this limitation [17], [18]. These approaches employ descrip-
tors to obtain useful data, which is subsequently used by
CNN to learn and identify abnormal behavior automatically.
Due to the limited availability of labeled data for pushing
behavior, hybrid-based approaches may be more appropriate
for automatically identifying pushing behavior. For example,
Alia et al. [7] proposed a hybrid deep learning and visual-
ization framework for pushing behavior detection in video
recordings of crowded event entrances. Unfortunately, this
framework does not cope with early detection requirements
because it is slow and can not work with the live camera
stream. To the best of our knowledge, despite the numerous
computer vision and machine learning approaches reported
in the literature, none of them can detect pushing behavior in
real-time or near real-time from crowds.

In order to address the above limitations, this article
introduces a novel cloud-based deep learning framework for
pushing patch detection in live video streams acquired from
crowded event entrances. In this framework, we propose:
1) Integrating a robust deep optical flow model (GPU-
based pre-trained Recurrent All-pairs Field Transforms
(RAFT) [19]) with the color wheel method [20], [21] to accu-
rately and rapidly extract the visual motion information from
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the crowd. 2) Adapting and training EfficientNetV2B0-based
CNN [22] using visual motion information to detect pushing
patches accurately. 3) Using live camera technology and a
cloud environment to provide more powerful computational
resources and help to collect and annotate the video stream of
the crowd in real-time.

The main contributions of this article are summarized as
follows:

1) To the best of our knowledge, we propose the first
real-time or near real-time automatic framework ded-
icated to early identifying pushing behavior in human
crowds.

2) We introduce a new video analysis and pushing detec-
tion approach based on integrating an adapted version
of EfficentNetV2B0, GPU-based pre-trained RAFT
model, and color wheel method.

3) We create a novel dataset for pushing behavior,
using five real-world experiments with their associated
ground truths. This dataset is not only used as a train-
ing and evaluation resource for our adapted Efficient-
NetV2B0, but can also be a valuable asset for future
research in this area.

4) We perform a thorough performance comparison of
fifteen CNN architectures for pushing detection using
the generated dataset.

The rest of the paper is organized as follows. Section II
reviews the related studies of video-based abnormal human
behavior detection. The proposed framework is presented
in Section III. Section I'V discusses the evaluation process and
experimental results. Finally, the conclusion and future work
are summarized in Section V.

Il. RELATED WORK

Generally, identifying pushing behavior in videos falls under
the field of computer vision, specifically in the task of abnor-
mal behavior detection. CNNs have played a crucial role
in significant advancements in this area [23]. Consequently,
in this section, our objective is to examine several abnor-
mal behavior detection approaches that have been developed
using CNNss.

A customized CNN-based method to identify abnormal
activities in videos was presented by Tay et al. [24]. The
authors trained a customized CNN for feature extraction
and labeling using normal and abnormal samples. In another
study, Alafif et al. [18] proposed two methods of identifying
abnormal behaviors in small and large-scale crowd videos.
The first method employs a combination of a CNN model
and a random forest classifier to detect anomaly behaviors at
the object level in a small-scale crowd. In contrast, the second
method utilizes two classifiers to recognize abnormal behav-
iors in a large-scale crowd. The initial model, finds the frames
containing abnormal behaviors, while the second classifier,
You Only Look Once (version 2), processes those frames to
identify abnormal behaviors exhibited by individuals. The
effectiveness of these techniques relies heavily on utilizing
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CNN s to learn features from labeled datasets containing both
normal and abnormal behaviors. A large training dataset of
normal and abnormal behaviors is necessary to create an
accurate and adaptable CNN model. However, obtaining such
a dataset is often unattainable for various abnormal behaviors,
including pushing behavior.

In order to overcome the shortage of large datasets com-
prising normal and abnormal behaviors, some researchers
have utilized one-class classifiers with datasets consisting
only of normal behaviors. It is easier to obtain or create a
dataset that contains only normal behavior than a dataset
that includes both normal and abnormal behaviors [25], [26].
The fundamental concept behind the one-class classifier is to
exclusively learn from normal behaviors, thereby establish-
ing a class boundary between normal and undefined (abnor-
mal) classes. For example, Sabokrou et al. [25] employed
a pre-trained CNN for extracting motion and appearance
information from crowded scenes. Subsequently, they uti-
lized a one-class Gaussian distribution to construct the classi-
fier using datasets comprised of normal behavior. Similarly,
in [26] and [27], the authors developed one-class classifiers
by utilizing a dataset of normal samples. In [26], Xu et al.
employed a convolutional variational autoencoder to extract
features, followed by the use of multiple Gaussian models
to detect abnormal behavior. Meanwhile, in [27], a pre-
trained CNN model was utilized for feature extraction, with
one-class support vector machines being used to identify
abnormal behavior. Another study by Ilyas et al. [28] uti-
lized a pre-trained CNN and a gradient sum of the frame
difference to extract significant features. Following this, three
support vector machines were trained on normal behavior to
detect abnormal behaviors. Generally, the one-class classifier
is commonly used when the target behavior class or abnor-
mal behavior is infrequent or poorly defined [29]. However,
pushing behavior is well-defined and not rare, particularly
in high-density and competitive situations. Furthermore, this
type of classifier regards new normal behavior as abnormal.

To overcome the limitations of CNN-based and one-
class classifier approaches, several studies have combined
multi-class CNN with one or more handcrafted feature
descriptors [10], [28]. As an example, Duman and Erdem [17]
utilized the traditional Farnebick optical flow approach in
conjunction with CNN to detect anomalous behavior. They
extracted direction and speed information using Farnebéck
and CNN, and then utilized a convolutional long short-term
memory network to construct the classifier. Similarly, Hu [30]
employed a combination of the histogram of gradient and
CNN for feature extraction, while a least-squares support
vector was used for classification. Almazroey and Jar-
raya [31] focused on utilizing the Lucas-Kanade optical
flow method, pre-trained CNN, and feature selection method
(neighborhood component analysis) to extract relevant fea-
tures. They then used a support vector machine to generate
a trained classifier. In a different study [32], Zhou et al.
introduced a CNN-based method to identify and locate abnor-
mal activities. This approach integrated optical flow with
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CNN for feature extraction and utilized a CNN for classifica-
tion. Direkoglu [10] utilized the Lucas-Kanade optical flow
method and CNN to extract relevant features and identify
“escape and panic behaviors”.

Most of the hybrid-based approaches for abnormal behav-
ior detection that were reviewed have limited efficiency in
detecting pushing since 1) The descriptors used in these
approaches can only extract limited essential data from
high-density crowds to represent pushing behavior. 2) Some
CNN architectures commonly utilized in these approaches
may not be effective in dealing with the increased varia-
tions within pushing behavior (intra-class variance) and the
substantial resemblance between pushing and non-pushing
behaviors (high inter-class similarity), which can potentially
result in misclassification. To benefit from the power of
hybrid-based approaches on a small dataset, Alia et al. [7]
introduced a hybrid framework for pushing patch detection
in video recordings of crowds. The authors utilized a robust
handcrafted feature descriptor and efficient CNN architecture
in this framework. In more details, the framework used a
deep optical flow technique to extract the motion information
from the crowds. This information is then analyzed using an
EfficientNetB0-based CNN and false reduction algorithms to
identify and label pushing patches in the video. However, this
framework does not cope with early detection requirements
due to three reasons. First, it can only handle offline-recorded
videos. Second, The deep optical flow technique employed
in motion extraction is slow because it was performed on the
CPU. Third, it needs to identify pushing patches for the whole
video before producing the output. Moreover, as reported by
the authors, the accuracy of the framework decreases with
complex scenarios of pushing.

To sum up, the reviewed methods have limitations regard-
ing early pushing detection in crowded human environments.
On the one hand, approaches that rely solely on CNNs for
feature extraction require a large dataset containing normal
and abnormal behaviors, which is typically unavailable for
pushing scenarios. On the other hand, one-class classifiers
are often used for infrequent or poorly defined target behav-
ior or abnormal behavior. However, pushing behavior is
well-defined and common, particularly in high-density and
competitive scenarios. Additionally, this type of classifier
may misclassify new normal behavior as abnormal. Although
hybrid-based approaches may be more suitable for pushing
behavior, existing methods do not meet the requirements
for early pushing detection in human crowds. To overcome
these limitations, this article proposes a novel framework that
adapts the EfficientNetV2B0 model and integrates it with
GPU-based RAFT, wheel color method and live camera tech-
nology on a cloud platform. The following section provides a
detailed discussion of the framework.

Ill. THE PROPOSED FRAMEWORK

In this section, we describe the proposed framework for
early detection of pushing within the live camera stream
of crowded event entrances, where the camera is fixed
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FIGURE 1. The proposed framework architecture. ROI refers to the entrance area (Region Of Interest). User-defined row (n) and column
(m) are used to split Motion Information Map (MIM) into n x m patches.

and top-view. Fig. 1 shows the architecture of our framework
which comprises three major components: preprocessing;
motion descriptor; and pushing detection and annotation. The
first component aims to collect and process the live camera
stream, as well as display the stream on the web client in
real-time. Simultaneously, the second component, the motion
descriptor, employs the GPU-based RAFT model and color
wheel method [20], [21] to extract the visual motion infor-
mation from the crowd. Finally, the pushing detection and
annotation component utilizes the adapted and trained Effi-
cientNetV2B0 model to analyze the visual motion informa-
tion and detect pushing patches. Notably, it directly annotates
the regions that contain pushing behavior on the live stream
on the web client. The following sections provide a more
detailed discussion of the three components.

A. PREPROCESSING

In order to reduce the computational time of the framework
without sacrificing performance, the preprocessing compo-
nent directly displays the client camera stream on the web
client. At the same time, it collects only the data required
for detection purposes from the live stream. Let {f’} rep-
resents the live camera stream, where ¢ is the time of the
frame f in the stream. Firstly, this component displays the
live stream on the web client in real-time without upload-
ing it to the cloud. Then, a frame f* is collected from the
stream every two seconds, hereafter referred to as keyframe
(examples in Fig. 3a). After that, this component utilizes the
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user-defined coordinates in pixel units to crop the entrance
area f! (ROI keyframe) from its corresponding keyframe f*.
Finally, ! is submitted as an input to the second compo-
nent. For the brevity, we name the ROI keyframe sequence
{24 Yas {fili = 1,2,3,...}, where i is the
order of the ROI keyframe in the stream, and ¢ is the time in
seconds. Fig. 3b displays two examples of f;.

B. MOTION DESCRIPTOR

Using this component, we aim to extract the crowd’s motion
characteristics at the patch level. More specifically, this
component estimates the motion direction, magnitude, and
associated spatio-temporal information from the crowds,
and accordingly visualizes this information. The displayed
information includes relevant features that are important for
representing the pushing behavior. As shown in Fig. 2, the
component uses GPU-based pre-trained RAFT model and
color wheel method to achieve its purpose. Unlike the major-
ity of the already used optical flow methods [34], [35],
a GPU-based pre-trained RAFT model performs well in terms
of speed, accuracy, and generality for dense crowds [7], [19].
This model was created by training an ensemble of CNN and
recurrent neural networks on the Sintel dataset to calculate
the optical flow between two images. For further details about
the model, we refer the reader to [19]. Firstly, the component
uses the pre-trained model to calculate the displacement of
each pixel (x, y) between each pair of f; and fi, |, generating
the dense displacement field d;. Each pixel location (x, y) in
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FIGURE 2. Motion descriptor component pipeline. i is the order of the ROI keyframe in the stream. d refers to a dense displacement field.

MIM represents motion information map.
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FIGURE 3. An illustration of two keyframes (experiment Entrance_2 [33],
two ROI keyframes, color wheel schema [21], MIM, 2 x 4 MIM-patches,
annotation mask, annotated ROI keyframe and annotated frame. t is the
time of the frame f in the stream. i is the order of the ROI keyframe in
the stream. s means second. The red boxes indicate pushing patches,
while the green boxes mean non-pushing patches.

d; is presented by a vector, given by
(Uix,y)s Vix,y) >ﬁ',_i+1 = RAFT ({x, y>fifi+1)’ M

where u and v are horizontal and vertical displacements of a
pixel at the (x,y) location between f; and f; 11, respectively.
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This implies that d; is a matrix of the vectors, as described in

(w,h)

di = [(“(x,y)’ V) )i ] ' @
(x,y)=(1,1)

where w and h are the f; width and height, respectively.
After the estimation of d;, the descriptor applies the
color wheel method to deduce the visual motion informa-
tion from d;. It begins by calculating the direction 6 and
magnitude of each vector (uy y), v(x,y)) in d; using Eq. (3)
and Eq.(4), respectively. The color wheel then visualizes the
magnitude and direction information to generate MIM; from
the calculated information, where MIM; € R¥*"*3_and 3 is
the number of channels in MIM;. Fig. 3c is the color wheel
scheme, and Fig. 3d is an example of MIM; that is generated
from the pair of f; and f; 1 (Fig. 3b). According to the wheel
schema, the color represents the motion direction, while the
color intensity denotes the motion magnitude or speed.

_ Vix,
O((x. Y j,, =7 arctan(="2), 3)
’ U(x,y)
mag((x, YWe; = Uy 5y + Vi) )

The motion descriptor component divides each MIM; into
nx m MIM;-patches to help the framework localizing pushing
in ROL. The MIM;-patches can be expressed as {pix €
ROV/m X (h/mx3 | =1 2 ... nx m}, where k is the order
of the patch in MIM;. For more clarity, MIM; (Fig. 3d) is
divided into 2 x 4 MIM-patches (Fig. 3e). It is worth noting
that the patch should cover an area on the ground that can
accommodate a group of pedestrians, as crowd characteristics
are required for representing pushing behavior. To summa-
rize, the MIM-patches represent the output of the motion
descriptor component and the input of the next component.

C. PUSHING DETECTION AND ANNOTATION

The primary purpose of this component (Fig.4a) is to localize
the pushing patches in the live stream, as well as blurring
and storing the annotated ROI keyframes in the cloud stor-
age. Labeling MIM-patches as pushing or non-pushing is
the most important aspect of localizing pushing in the live
stream. Therefore, we created an efficient binary classifier by
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FIGURE 4. (a) The pipeline of pushing detection and annotation component. (b) Adapted EfficientNetV2B0 Architecture.

TABLE 1. The hyperparameter values used in the training process.
S¥ H—

HW.C Hw.C Parameter Value

Optimizer Adam
convix1 convixi Loss function Binary cross-entropy

Learning rate 0.001
Batch size 32
Epoch 100

depthwise
conv3x3

Conv1x1

HW.C

MBConv

Fused-MBConv

FIGURE 5. Structure of MBConv and Fused-MBConv [22].

adapting and training the EfficientnetV2B0 CNN architec-
ture [22] from scratch, which is then utilized to label the
MIM-patches.

1) ADAPTED EfficinetNetV2BO ARCHITECTURE
EfficientNetV2BO0 is a convolutional neural network belong-
ing to the EffivientNetV2 family, designed by the Google
Brain team [22]. Such a family outperforms state-of-the-art
accuracy in different classification tasks with a far smaller
model and faster converging speed. EfficientNetV2BO0 is the
smallest model in this family and achieves high accuracy with
minimal computational cost.
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Fig. 4b depicts the overall architecture of the modified
EfficientNetV2B0, which firstly performs a 3 x 3 convolu-
tion operation on the input image, which has dimensions of
224 x 224 x 3. Then it utilizes a combination of 5 Fused-
MBConv (Fused Mobile Inverted Residual Bottleneck Con-
volution) [36] and 16 MBConv [37] modules for extracting
the feature maps (7 x 7x1280) from the input image. The
model then employs a global average pooling layer and a
fully connected layer with a Sigmoid activation function for
binary classification. The global average pooling2D layer
transforms the dimensions of the stacked feature maps to
1 x 1x1280 and assigns them to the fully connected layer.
Finally, the fully connected layer with a Sigmoid activation
function finds the probability § of the label of the input MIM-
patch. Then, the classifier uses the threshold to determine the
class of the MIM-patch as Eq. (5):

if§ > 0.5
if§ < 0.5

pushing

Class(MIM — patch) = (@)

non-pushing

It’s important to note that the classification part of this
model differs from the original EfficientNetV2B0, which was
designed to classify images into 1,000 categories. However,
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pushing detection requires labeling the input image into one
of two possible classes.

As mentioned above, the main fundamental blocks in
EfficientNetV2B0 for feature extraction are MBConv and
Fused MBConv [22]. As shown in Fig. 5, MBConv firstly
uses a 1 x 1 convolution operation to expand the input
activation maps to increase the depth of the feature maps.
Next, 3 x 3 depthwise convolutions are applied to reduce
the computational complexity and the number of parame-
ters. Then, a Squeeze-and-Excitation (SE) block enhances
the representation power of the architecture. Finally, another
1 x 1 convolution is employed to reduce the dimensional-
ity of the output feature maps, producing the final output
of this block. Moreover, A residual connection is added to
enhance the performance further. Despite depthwise convolu-
tions having fewer parameters, they can not often fully utilize
modern accelerators. In contrast, the Fused-MBConv tries to
solve this problem by replacing the depthwise and expansion
convl x 1 in MBConv conv3 x 3 with a single regular
conv3 x 3, resulting in a faster training process (see Fig. 5).
It is worth mentioning that using only Fused-MBConv in
the architecture increases parameters while slowing down the
training. Therefore, EfficientNetV2B0 applied a combination
of MBConv and Fused-MBConv to improve training speed
with a small overhead on parameters and enhance the feature
extraction process [22].

The following subsection will discuss the training process
for the adapted EfficientNetV2B0 model to classify MIM
patches into pushing and non-pushing.

2) ADAPTED EfficientNetV2BO TRAINING

To classify the MIM-patches into pushing and non-
pushing categories, we trained the adapted EfficientNetV2B0
model (Fig. 4b) using new training and validation sets com-
prising both types of MIM-patches (details about the dataset
can be found in Section IV-A). The model parameters used
during the training process are listed in Table 1, and were cho-
sen based on experimentation to obtain optimal performance
with the given dataset. To prevent overfitting, we halted
the training if the validation accuracy did not improve after
20 epochs.

Fig. 4a shows the pipeline of the pushing detection and
annotation component. Firstly, the trained classifier labels
MIM-patches p; received from the previous component.
Then, the current component displays an annotation mask
of the pushing patches in the live stream on the web client.
Simultaneously, it blurs and annotates the corresponding
ROI keyframe f; before saving it in the cloud storage.
Notably, web clients can access this storage via an internet
connection.

IV. EVALUATION AND RESULTS

This section introduces the dataset, implementation details,
and performance metrics utilized in evaluating the proposed
framework. The results of various experiments conducted to
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assess the performance of our classifier and the proposed
framework are also discussed.

A. DATASET PREPARATION

Here, we explain how we prepared the labeled dataset (train-
ing, validation, and test sets) for training and evaluating the
adapted EfficientNetV2BO0 as well as all models used in the
evaluation. The dataset contains two classes of MIM-patches,
which are pushing and non-pushing.

1) DATA COLLECTION

In this section, we discuss the data sources used to obtain our
dataset. The sources are mainly based on video experiments
of crowded event entrances, trajectory data, and ground truth
data for pushing behavior. Five video experiments with their
trajectory data are chosen from the data archive hosted by
Forschungszentrum Jiilich under CC Attribution 4.0 Interna-
tional license [33], [38]. Static top-view cameras were used to
record the videos with a frame rate of 25 frames per second.
It is worth mentioning that the selected experiments contain
varied characteristics, which help to improve the generality of
the dataset, as seen in Table 2. The ground truths for the last
data source were manually created by social psychologists,
who established the definition of pushing behavior in for-
ward motion among crowds [2]. These ground truths indicate
whether the behavior of each pedestrian in every frame is
classified as either pushing or non-pushing.

2) DATASET GENERATION
The methodology of the labeled dataset generation, as seen
in Fig. 6, includes three steps: (1) MIM-patches generation,
(2) MIM-patches labeling and (3) Labeled dataset generation.
In the MIM-patches generation step, the motion descriptor
component was employed (Fig. 2) on the video experiments
and their n x m patches (Table 2) to produce MIM-patches.
To increase the number of patches, the component is applied
four times for each video with a different commencement;
half a second is the delay duration of each time compared to
the previous time. According to [7], half a second delay helps
to generate diverse MIM-patches, while less than this period
may result in redundant samples. Based on the trajectory
and ground truth data, the second step labels the patches as
pushing and non-pushing. Patches are classified as pushing if
it contains at least one pushing behavior, and non-pushing if
no pedestrians engage in pushing behavior. On the other hand,
the patches that only show a portion of one pedestrian pushing
are discarded; because they do not offer complete information
about pushing or non-pushing behavior. According to the
labels of the patches, the last step stores the patches in pushing
and non-pushing directories to create the labeled dataset.
At the end, the generated dataset consists of 2257 pushing and
1684 non-pushing samples. To generate the holdout data, the
produced dataset is randomly divided into three sets: 70% for
training, 15% for validation, and 15% for testing. This split
ratio is one of the most commonly used splitting methods in
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TABLE 2. Characteristics of the selected video experiments.
Video Entrance type | Gates | Width (m) Ped. | Dur Resolution ROI coordinates (pixel) n X m patches *
110 Straight 1 1.2 63 53 1920 x 1440 (374, 548) , (1382, 864) 1x3
150 Straight 1 5.6 57 57 1920 x 1440 | (364 , 200) , (1378 , 1250) 3x3
270 Straight 1 34 67 59 1920 x 1440 | (374, 330) , (1390 , 1070) 2 x3
280 Straight 1 34 67 67 1920 x 1440 | (374, 330) , (1390 , 1070) 2 x 3
Entrance 2 90° Corner 2 2 123 125 1920 x 1080 (213, 110) , (1337, 540) 2 x4

The video experiments’ names are the same as reported in [33, 38]. “Dur.” means duration. “Ped.” is an abbreviation for the number of
pedestrians. ROI coordinates: left—top and bottom-right coordinates of ROI in the pixel unit. n X m: number of rows and columns that
are used to divide ROI into n X m regions, which are required for dividing MIM; into n X m MIM;j-patches. * These values ensure that the
dimensions of each region on the ground are greater than one meter, which is enough to accommodate a group of pedestrian [7].

the deep learning field [39]. Table 3 shows the number of
pushing and non-pushing samples in the training, validation,
and test sets.

TABLE 3. A number of samples in training, validation, and test sets in the
generated dataset.

Video | 110 | 150 | 270 | 280 | E 2 Total

I3 122 | 182 | 215 | 258 808 1585

Training NP 72 206 | 197 | 182 525 1182
Total | 194 | 388 | 412 | 440 | 1333 2767

I3 26 38 45 55 172 336

Validation NP 15 44 42 38 112 251
Total 41 82 87 93 284 587

P 26 38 45 55 172 336

Test NP 15 44 42 38 112 251
Total 41 82 87 93 284 587

All Total | 276 | 552 | 586 | 626 | 1901 3941

“All” refers to all sets. P means pushing. NP is non-
pushing. E_ 2 stands for Entrance 2.

B. IMPLEMENTATION DETAILS AND EVALUATION
METRICS
In this article, all the experiments and implementations were
conducted on Google Colaboratory Pro (with a GPU NVIDIA
of 15 GB and system RAM of 12.7 GB), utilizing JavaScript
and Python 3 programming languages along with Keras, Ten-
sorFlow 2.0, and OpenCV libraries. Furthermore, all models
in the experiments were trained using the same hyperparam-
eter values utilized in the training of our adapted version of
EfficientNetV2BO0 (Table 1).

In order to evaluate the performance of our framework,
we utilized a combination of metrics, including accuracy,
macro F1-score, and area under the receiver operating charac-
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teristic curve (AUC) over the test set. This set of metrics was
necessary due to the imbalanced nature of our dataset [40].
In addition to these metrics, computational time was also
measured as an essential performance metric. The following
provides a detailed explanation of these metrics.

Accuracy: the ratio of successfully classified MIM-patches
to the total number of samples in the test set, and mathemat-
ically can be defined as

TP + TN
accuracy = , (6)
TP+ FP+ TN + FN

where TP and TN denote correctly classified pushing and
non-pushing patches, respectively. FP and FN represent
incorrectly predicted pushing (P) and non-pushing (NP) sam-
ples. Accuracy is not enough to evaluate the classifier’s
performance over an imbalanced dataset, such as our used
dataset. Therefore, we used the macro F1-score and AUC
metrics, which are valuable for evaluating imbalanced clas-
sification problems.

Macro Fl-score: the mean of class-wise Fl-scores as
described in the formula below:

F1 — score(P) + F1 — score(NP)
2 9

Macro F1 — score =

(N

where Fl-score is the harmonic average of precision and
recall as described in:
2 x precision X recall

F1-— = , 8
seore precision + recall ®)
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where recall of pushing class is the ratio of correctly classified
pushing MIM-patches to all pushing samples, while precision
of pushing class is the ratio of correctly classified pushing
patches out of all the samples labeled as pushing by the clas-
sifier. Recall and precision are defined in Eq. (9) and Eq. (10),
respectively.

recall = T}.ﬁ% s 9)

.. TP
precision = 7ppp. (10)

AUC is the area under the Receiver Operating Character-
istics (ROC) curve. ROC is a graph showing the performance
of a classification model at all thresholds. The ROC curve
plots the false positive rate on the horizontal axis and the
true positive rate on the vertical axis. The AUC value ranges
from O to 1, while a model with an AUC of 1 is considered
perfect, while a value of 0.5 indicates that the model performs
no better than random guessing.

Computational time: this metric was employed to calculate
how long the proposed framework takes to read, analyze
and annotate every input, which is two seconds of stream.
In other words, computational time determines whether our
framework can detect pushing patches within a reasonable
time or not.

C. EVALUATION OF OUR CLASSIFIER PERFORMANCE

We conducted three main comparative empirical experiments
to evaluate the effect of our modified EfficientNetV2BO0 clas-
sifier on the performance of the proposed framework. The
first experiment compared the proposed classifier against
eleven of the most popular CNN architectures. In the sec-
ond experiment, we compared it to two custom CNN archi-
tectures designed for detecting abnormal behavior. Lastly,
it was compared to CNN architecture used for pushing detec-
tion. Our classifier and all other models were implemented,
trained, and assessed utilizing the same MIM-patches dataset,
environment, and settings. Moreover, we utilized accuracy,
Fl-score, and AUC metrics to measure each model’s
performance.

1) A COMPARISON WITH ELEVEN POPULAR CNNs
Table 4 depicts the popular CNN architectures used in the
first experiment, as well as the comparison results. It is clear
that the adapted version of the EfficientNetV2B0 classifier
outperformed the rest of the exploited classifiers. In par-
ticular, the proposed classifier achieved 87% accuracy and
86% F1-score, whereas the second top model in this com-
parison, DenseNet169, produced an 83% level of both accu-
racy and Fl-score. This finding is primarily attributable to
EfficientNetV2B0’s superior efficiency for feature extrac-
tion compared to earlier CNN architectures. The main rea-
son for this efficiency is the combination of MBConv and
Fused-MBConv blocks used in EFficientNetV2BO0.
Furthermore, as shown in Fig. 7, the proposed classifier
obtained the highest AUC score (93%) among all the models
tested, while the next best model achieving 85%.
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TABLE 4. Comparison results to the well-known CNN-based classifiers.

CNN Acc. % | Pre. % | Rec. % F1. %
Xception [41] 81 81 81 81
VGG16 [42 57 36 29 50
VGG19 [42 61 61 62 62
ResNet50 [43 80 79 81 79
ResNet50V2 [44] 7 76 7 75
ResNet101 [43 72 70 72 70
ResNet101V2 [44 72 72 72 71
ResNet152V2 [44 74 73 73 73
DenseNet121 [45 79 79 79 79
DenseNet169 |45 83 83 83 83
NASNetMobile [46] 57 56 56 56
Our classifier 87 87 86 86

“Acc.” refers to Accuracy. “Pre.” stands for Precision. “Rec.”
means Recall. “F1.” means F1-score.
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FIGURE 7. ROC curves of our classifier and eleven popular CNN models.

2) A COMPARISON WITH CUSTOMIZED CNNs IN
ABNORMAL BEHAVIOR DETECTION
Here, we have two objectives, 1) Evaluating the performance
of some existing CNN models developed to detect abnormal
human behavior for pushing detection purposes. 2) Further
evaluation of our classifier. The customized architectures are
CNN-1 [10] and CNN-2 [24]. The first architecture, CNN-1,
employed product75 x 75 pixels as an input image. Further-
more, three convolutional layers, batch normalization, and
max pooling operations were used for feature extraction. The
developers of this model utilized a fully connected layer with
a softmax activation function for classification. The second
architecture, CNN-2, downsized the input images to prod-
uct32 x 32 pixels before employing three convolutional lay-
ers with three max-pooling layers. For classification, it used
two fully connected layers, with the first layer based on a
ReLU activation function and the second layer employing a
softmax activation function.

The results in Fig. 8 and Fig. 9 show that our classifier
surpassed the two classifiers in terms of accuracy, F1-score
and AUC. Furthermore, as pushing detection in crowded
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FIGURE 9. ROC curves of our classifier and the two customized CNNs.

scenarios is highly complex, CNN-1 and CNN-2’s simple
architectures failed to identify pushing MIM-patches. In par-
ticular, CNN-1 outperformed CNN-2, but it still produced
unsatisfactory outcomes with accuracy, F1-score, and AUC
values of 57%, 56%, and 56%, respectively.

3) A COMPARISON WITH RELATED WORK IN PUSHING
DETECTION

Here, we compare the proposed classifier with the CNN
architecture (EfficientNetV1B0) employed in [7], which is
the only published work for detecting pushing behavior for
forward motion. Notably, this work does not meet the early
identification requirements. As demonstrated in Table 5 and
Fig. 10, our combination of adapted EfficientNetV2B0 and
MIMs achieved better performance than integrating Efficient-
NetV1B0 with MIMs by a margin of at least 3% in accuracy
and F1-score. While EfficientNetV1BO0 achieved 91% AUC,
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TABLE 5. Comparison results to the state-of-art pushing detection
approach.

CNN Acc. % | Pre. % | Rec. % | F1. %
State-of-art approach [7] 83 83 84 83
Our hybrid approach 87 86 87 86
“Acc.” refers to Accuracy. “Pre.” stands for Precision. “Rec.”

means Recall. “F1.” means F1-score.
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FIGURE 10. ROC curves of our classifier and EfficientNetV1B0.

our classifier achieved 93%. This comparison highlights that
our hybrid approach surpassed the state-of-art method in
pushing detection regarding the accuracy, F1-score, and AUC
metrics. In Section IV-D2, we will analyze the computational
time of both approaches.

To summarize the three comparisons, the new hybrid
approach based on adapted EfficientNetV2B0O and MIMs
outperformed all other tested combinations of CNN models
and MIMs in the experiments. This superiority is due to
the power of MBConv and Fused-MBConv blocks used in
EfficientNetV2BO0 for learning the features. Based on the
experiments, it can be concluded that our classifier enhanced
the performance of the proposed framework.

D. THE OVERALL FRAMEWORK EVALUATION

To evaluate the quality of the proposed framework, we not
only evaluated its accuracy and Fl-score, but also mea-
sured the computational time required for each framework

component.

1) PERFORMANCE IN TERMS OF ACCURACY AND F1-SCORE

The evaluation methodology used comprises several steps as
follows: 1) To simulate acquiring the actual inputs, we created
a live video stream of crowded event entrances using video
recordings of entrances (Table 2) and a virtual camera on a
web client. In this context, we changed the camera’s input to
the video recordings. Moreover, we down-scaled the dimen-
sions of each video to half their original resolution to reduce
the computational time of the framework. 2) We executed
the cloud-based framework to display the live camera stream
on the web client, detect pushing patches and record the
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FIGURE 11. Confusion matrix for the proposed framework on all videos.

predicted labels for the test patches in a file. 3) We counted
the number of true pushing, false pushing, true non-pushing,
and false non-pushing for all videos by comparing the ground
truth data with the predicted labels for the test patches, Fig. 11
exhibits the confusion matrix that presents them. 4) Finally,
we computed the accuracy and F1-score metrics. After com-
puting the accuracy and Fl-score metrics from the values
in the confusion matrix (as shown in Fig. 11), our proposed
framework achieved an accuracy of 87%, precision of 87%,
recall of 86%, and F1-score of 86%. These results are con-
sistent with the corresponding quantitative outcomes in our
adapted EfficientNetV2BO0 classifier over the test set.

2) COMPUTATIONAL TIME ANALYSIS

In order to evaluate the overall computational time of the
proposed framework, we computed the required time for each
component in the framework. Then, we compared the results
against the corresponding parts in the baseline framework [7].
After running both the proposed and baseline frameworks
in the same environment using twenty inputs, where each
input is a two-second video stream, we calculated the average
run-time of all runs. As mentioned in the previous paragraph,
our framework read the videos using a live camera, while the
baseline framework read the same videos directly. Fig. 12
depicts the time of each component in the proposed frame-
work over every experiment. As indicated by the produced
results, the preprocessing component took more than 50% of
the overall time to collect and process keyframes from the
client camera stream. The resolution of the keyframes pri-
marily determines the time required for this component. For
example, experiments 110, 150, 270, and 280 took roughly
the same time because they have the same resolution, while
experiment entrance_2 needed less time because its resolu-
tion is lower. In contrast, the motion descriptor component
took the least time compared to others, where the ROI res-
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olution plays the most critical role in this component speed.
While in the pushing detection and annotation component,
the number of patches affects the computational time of this
component because each patch requires one classification
process. Fig. 13 and Table 2 display the ROI resolution and
the number of patches in each experiment, respectively.

In general, the computation time increases as the number
of patches, frames resolution, and ROI size increase. Fig. 12
shows that our framework needed less than two seconds to
collect, process, detect and annotate each input from the live
stream camera. This means that our framework can annotate
the live camera stream within 4 seconds; two seconds for the
input duration and lower than two seconds for identifying the
pushing patches.
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TABLE 6. The computational time of motion descriptor and detection components in our and the baseline frameworks.

Baseline framework Our framework
Experiment | Motion information extraction (s) | Detection (s) | Motion descriptor (s) | Detection and annotation (s)
110 19.42 0.15 0.10 0.19
150 19.86 0.47 0.20 0.53
270 19.38 0.32 0.16 0.35
280 19.30 0.30 0.16 0.36
Entrance 2 13.51 0.41 0.11 0.45

The results in Table 6 show the comparisons between
the motion descriptor, and pushing detection and annotation
components in our framework with the corresponding parts
in the baseline framework. The motion information extrac-
tion part in the baseline framework is similar to the motion
descriptor component in our framework, whereas the motion
information extraction is slow; it needs more than 13.5 sec-
onds to generate MIM-patches from two seconds of the video
stream. The main reason for this slowness is that it employed
CPU-based RAFT to estimate the optical flow vectors for
all pixels in the frame. To address this problem, the motion
descriptor in our framework implemented RAFT on GPU
to calculate the optical flow vectors for each pixel in ROIs
instead of all pixels in the frame. As shown in Fig. 13, the
number of pixels in ROIs is lesser than 40% of the total pixels
in the corresponding frames. As a result, the new component
took 0.2 seconds or less to produce MIM-patches from the
two seconds of the live stream. On the other hand, the baseline
framework’s detection part is slightly faster than the detection
and annotation component in the proposed framework. For
example, the previous and new components required 0.47 and
0.53 seconds to work with one input from experiment 150,
respectively. It is important to highlight that the detection part
in the baseline framework only finds the labels of the patches,
whereas the component in our framework labels, annotates,
blurs, and stores the inputs.

In summary, the proposed cloud-based framework can
annotate the pushing patches in the live camera stream within
four seconds and an accuracy rate of 87%.

V. CONCLUSION

This paper proposed a novel automatic framework for
the early detection of pushing patches in crowded event
entrances. The proposed framework is based on live cam-
era streaming technology, cloud environment, visualization
method, and deep learning algorithms. The framework first
displays the live camera stream of the entrances on the
web client in real-time. Then, it relies on the color wheel
method and pre-trained RAFT model to extract the visual
motion information from the live stream. After that, the
EfficientNetV2B0-based classifier is adapted and trained to
identify pushing patches from the extracted information.
Finally, the framework annotates the pushing patches in the
live stream on the web client. Additionally, it stores the
annotated data in the cloud storage, where the stored data
is blurred to protect people’s privacy. In order to train and
evaluate the classifier, a new dataset was generated using
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five real-world video experiments and their associated ground
truth data. The experimental results show that the framework
identified pushing patches from the live camera stream with
87% accuracy rate within a reasonable time delay.

One of the current limitations of the proposed framework
is that it is only compatible with a fixed and top-view camera.

In future, the plan is to develop a new pushing data rep-
resentation method for machine learning. This method aims
to generate dynamic patches based on temporal, spatial, and
size dimensions, focusing on one pedestrian for labeling each
patch. This could potentially help to generate a large dataset
with a more efficient sample representation.
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