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ABSTRACT Mapping the spatial distribution of nodal inertia is crucial for helping system operators identify
locational frequency stability issues in the power system operation planning process. Currently, index-based
methods cannot retrieve the nodal inertia values for all load buses. To do so, this paper proposes an accurate
analytical formulation relying only on steady-state system parameters to determine the nodal inertia values
and, thus, map the spatial distribution of system inertia. The performance and reproducibility of the proposed
formulation are evaluated using three test systems: a 5-bus radial system with two synchronous generators,
a multimachine IEEE 68-bus benchmark system, and a larger NPCC 140-bus test system. We validate the
proposed spatial distribution of nodal inertia using time-domain simulations and numerical estimations.
In addition, we compare our method against the inertia distribution indexes presented in the literature. The
results indicate that our formulation adequately quantifies the nodal inertia value in system buses, with low
computational cost, and providing a suitable tool for operation planning analysis.

INDEX TERMS Nodal inertia, inertia distribution, locational stability, frequency stability, power system
dynamics.

I. INTRODUCTION
A. MOTIVATION
One of the critical challenges in power systems operation
planning with high penetration of inverter-based resources
(IBRs) is the decrease in system inertia, which results in
a high initial rate of change of frequency (ROCOF) [1].
Furthermore, recent theoretical studies [2], [3], [4] and data-
driven analyzes [5], [6], [7] have shown that inertia providers
are unevenly distributed across the system, and the frequency
response after a disturbance has spatial-temporal character-
istics. The practical problem is the unexpected tripping of
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ROCOF-based protection and triggering of under-frequency
load shedding (UFLS) schemes at specific locations [8], [9].

In recent years, several works have been conducted in the
industry and academia to detect and quantify different levels
of inertia across power systems using real-time measure-
ments [10]. The main idea is to use available synchrophasor
measurements to estimate the equivalent [11], regional [12],
and distributed inertia [13], [14], [15]. The results are promis-
ing, and industrial applications are already operating in
control centers, particularly equivalent and regional inertia
estimation approaches. However, these methodologies are
employed in real-time operations and may not be helpful
for power system operation planning that strongly relies
on power system models. Thus, there is a clear need to
develop analytical methodologies to identify and quantify
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the locational lack of inertial resources in modern power
systems, thereby improving the operation planning process
and addressing problems such as optimal generation schedul-
ing [16], [17] and allocation of inertial sources [18], [19].

B. LITERATURE REVIEW
Refining the system frequency response information to make
it more granular is essential for enhancing locational fre-
quency stability. The spatial distribution of nodal inertia and
its applicability has recently been investigated in several stud-
ies [13], [14], [15], [20], [21], [22], [23], [24]. These studies
can be divided into two categories based on the level of detail
of the model: (i) dynamic models [20], [21], [22], [23], [24]
and (ii) static models [2], [15], [25].

In the first approach, conventional nonlinear time-domain
or linear simulations are explored using full dynamic models.
Regarding the nonlinear time-domain simulation method, the
authors in [20] aim to determine the inertia distribution by
comparing the difference in each bus frequency with the
frequency of the system center of inertia (COI) calculated
during transient events. In this sense, they proposed an inertia
distribution index that is correlated with the location of the
system COI. Buses near the system COI have higher inertial
responses than those far from the system COI and are subject
to higher frequency variations [20], [26]. In [27], the index
proposed in [20] is applied for placing actuators in a meshed
system, aiming to enhance the power system stability. In [28]
and [29], the inertia distribution index was used as a metric
to adequately place the resources capable of providing fast
frequency response. However, the need to carry out several
time-domain simulations is computationally intensive [21],
[27], particularly for meshed systems, where the location of
the disturbance directly affects the index.

Using linear models, the authors in [23] and [24] explore
the correlation between the dominant oscillation mode and
inertia distribution, introducing amodal-based index that uses
the sensitivity of the bus voltage angles andmode shape of the
identified critical inter-area mode. The concept of sensitivity
of network variables (voltage bus, angle bus, and line current)
is applied to analyze the propagation of electromechanical
oscillations after disturbances [30], guiding the description
of the influence of a particular mode on the grid variables.
Thus, [23] proposed a novel interpretation of the sensitivity
of network variables by associating it with the spatial distri-
bution of the nodal inertia. Although this formulation avoids
time-domain simulations, it requires a linear dynamic model
of the system, which may be subject to the complexities
associated with the modeling of generators and their con-
trollers. Additionally, the efficiency of this analytical index
in a meshed system with various inter-area and local modes
has not been addressed.

In the second approach, the authors relied on the net-
work topology and inertia source locations to analyze the
spatial-temporal frequency variations. In [2], the propaga-
tion of disturbances through the system from the ROCOF

perspective was investigated. The authors showed the rela-
tionship between the disturbance propagation and spectral
analysis of the Laplacian matrix of the system. In this
sense, [25] proposed an evaluation of frequency stability
using clusters based on the Fiedler vector, that is, the eigen-
vector related to the lowest non-zero mode of the Laplacian
matrix. In both works, the authors explore the properties of
the Laplacian matrix to identify and evaluate the locational
frequency stability. In [15], the authors proposed an analytical
formulation based on generator inertia and frequency partic-
ipation factor [31] to validate their data-driven inertia distri-
bution estimation. However, the derived formulation does not
consider the system topology parameters and magnitude of
the disturbance, which may affect the explicit calculation of
nodal inertia.

None of these works can explicitly calculate the spatial
distribution of nodal inertia. The works that rely on full
dynamic models are limited to indexes that do not directly
quantify the lack or excess of the nodal inertia resources.
Full dynamic models are also complex, with strong parameter
uncertainties depending on the planning process phase. The
existing static models are limited to specific problems and
may require further work to be applied to other planning
applications.

C. CONTRIBUTIONS
In this paper, we propose a new analytical model that deter-
mines the value of the nodal inertia of each system bus.
Explicitly finding the inertia value is more accurate than the
approximation of current index-based methods and is readily
understood by system operators. By mapping the nodal iner-
tia, a visual spatial distribution facilitates the identification
of inertia scarcity, supporting potential correction actions.
Since our methodology is based on steady-state parameters,
it avoids complex analysis and can be reproduced in different
power systems with low computational cost.

Therefore, the main contributions of this paper are summa-
rized as follows:

• A new and accurate analytical formulation to quantify
the value of nodal inertia of power system buses as an
alternative to index-based methods.

• Since our formulation depends only on steady-state
parameters, the methodology is replicable and requires
low computational effort, regardless of the different
types of generator and control models and the network
size.

• Our approach allows a straightforward analysis of the
results from the mapping of system inertia, serving as a
tool for system operators in operation planning studies,
enabling actions to improve the locational frequency
stability.

D. ORGANIZATION
The remainder of this paper is organized as follows. Sec-
tion II introduces the concepts of frequency dynamics in
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power systems and challenges in determining an analytical
expression for the spatial distribution of nodal inertia. Sec-
tion III introduces the proposed formulation, and in Sec-
tion IV it is tested in three systems: a 5-bus radial, IEEE
68-bus system, and the NPCC 140-bus system. The main
parameters affecting the spatial distribution of the inertia are
investigated. The results are validated through time domain
simulations. Section V compares existing inertia distribution
indexes (time-domain andmodal analysis-based). In addition,
the consistency of the spatial distribution of inertia using our
formulation is validated by considering the total inertia of
the slow coherency areas. Section VI discusses the potential
applications of nodal inertia knowledge. Finally, the conclu-
sions are summarized in Section VII.

II. THEORETICAL BACKGROUND
A. SWING EQUATION AND RoCoF
The frequency dynamics after a power imbalance for a syn-
chronous generator i are described by a first-order differential
equation, as shown in (1) [32]:

2Hi
d1ωi(t)

dt
= 1Pmi (t) − 1Pei (t) − Di1ωi(t) (1)

where Hi is the inertia constant, Di is the load damping
coefficient,1 denotes variations from the equilibrium values,
ωi is the angular rotor speed, Pmi is the mechanical power
supplied in generator i, and Pei is the electrical power output
of generator i. The inertia constant represents the kinetic
energy stored in the rotating masses normalized by the nom-
inal power of the generators.

During the inertial response period (i.e., the first seconds
after contingency), variations in the mechanical power can
be neglected [32], [33]. Considering 1ω(0+) = 0, the syn-
chronous generator rate of change of frequency (RoCoF) is
determined by (2).

dωi(t)
dt

∣∣∣∣
t=0+

= −
1Pei (t)
2Hi

∣∣∣∣
t=0+

(2)

The magnitude of the RoCoF is inversely proportional to the
generator’s inertia constant, which means that lower values of
the inertia constant result in higher RoCoF values. Moreover,
the RoCoF is proportional to the generator’s electrical power
deviation after a contingency.

B. CENTER OF INERTIA
During the transient period, the dynamic behavior of the
synchronous generators is not necessarily the same. To for-
mulate the swing equation for a multimachine power system,
the aggregate generator model uses an equivalent generating
unit that represents the average frequency response of all the
generators [31]. The equivalent generating unit defines the
center of inertia (COI) frequency

1ωCOI =

( ng∑
i=1

Hi1ωi

)/ ng∑
i=1

Hi (3)

The frequency of COI is a theoretical reference, and it may
not correspond to any physical point in the system [34].
However, system buses with frequency responses closer to
the COI’s frequency behavior have fewer oscillations after a
disturbance [20], [23].

C. BUS FREQUENCY
To derive a formulation that allows an estimation of the inertia
value at power system buses, we first consider the estimation
of the frequency through the frequency divider formula (FDF)
proposed in [31]:

1f b(t) = D1ωg(t) (4)

From (4), the frequency variations of power system buses
(1fb(t)) are estimated using the rotor speeds of the syn-
chronous generators (1ωg(t)) and considering the system
topology through the frequency divider matrix (D), obtained
as

D = −B−1
extBg (5)

where the matrix Bext = Im{Yext } ∈ Rnb×nb , and Yext is the
extended admittance matrix commonly used in fault analy-
sis that comprises the standard admittance matrix with the
internal reactances of synchronous generators. In addition,
Bg = Im{Yg} ∈ Rnb×ng , and Yg is the admittance matrix
of the internal reactances of the synchronous generators. The
matrix D ∈ Rng×nb is full rank and indicates the participation
of all synchronous generators in the frequency variations at
the system buses.

D. INERTIA DISTRIBUTION
The dynamic frequency behavior of a large-scale power sys-
tem has a spatial-temporal characteristics. According to (4),
this behavior is directly correlated with the electromechanical
dynamics of the synchronous generators connected to the
system. In this sense, after a disturbance, any system bus
will have a dynamic frequency behavior similar to that of
synchronous generators, including an initial resistance to fre-
quency variations after disturbances, that is, inertial response
(neglecting transient responses). Therefore, the inertia distri-
bution problem assumes that a particular bus j, despite not
having an inertial response source connected to it, receives
the contribution of the inertia constants of all generators
connected to the system. Themain question is how to quantify
these contributions for all system buses and thus obtain the
spatial inertia distribution.

The underlying formulation for the inertia distribution
problem can be obtained using equation (2), applied to con-
sider the inertia contribution at a particular bus j. Considering
the critical case where a disturbance 1PjL is applied in a bus
j at time t = 0, a fictitious inertia can be represented by [15]

hj = 1PjL

/(
2
dfj(t)
dt

∣∣∣∣
t=0+

)
(6)

where fj is the frequency of bus j, 1PjL is the magnitude of
the disturbance at bus j, and hj is the inertia at bus j.
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FIGURE 1. A system with nb buses, internal machine buses and transient
reactances (x ′

di ) and a power disturbance at bus k [32].

Considering that the network topology and generators are
constant parameters, the derivative of (4) with respect to time
results in the relationship between the frequency of system
buses and the swing equations of synchronous generators,
as [15]

d
dt

1f b(t) = D
d
dt

1ωg(t) (7)

For the time t = 0+, equation (7) is rewritten considering the
formulation for a particular bus j as

dfj(t)
dt

∣∣∣∣
t=0+

= −

ng∑
i=1

Dj,i
2Hi

1Pei (0
+) (8)

Note that the RoCoF at bus j depends on the inertial response
of all synchronous generators in the system and their respec-
tive active power magnitudes immediately after the distur-
bance. From the underlying equation (6), the RoCoF of bus j
can be written as [15].

1PjL
hj

=

ng∑
i=1

Dj,i
Hi

1Pei (0
+) (9)

To find the values of 1Pei (0
+) that are dependent on 1PjL ,

it is necessary to use dynamic simulations. To avoid this, the
authors in [15] consider 1Pei (0

+) = 1PjL = 1 pu as a
reasonable approximation. Therefore, the inertia at each bus
of the system is calculated as shown in (10).

hj =
1

ng∑
i=1

Dj,i
Hi

(10)

However, the individual power mismatch of synchronous
generators is not the same at the moment of disturbance, and
the approximation 1Pei (0

+) = 1 pu may not be valid for
all cases, thereby harming the accuracy of the system inertia
distribution mapping. To overcome this issue, we propose
a new analytical formulation to determine the exact inertia
distribution, that is, the value of inertia in all buses of the
system.

III. ANALYTICAL FORMULATION
A. DISTRIBUTION OF POWER IMPACTS
In a multimachine power system with ng synchronous gen-
erators, the linearized electrical power output of a generator

i, following a change in δi,j regarding an initial steady-state
condition δi,j0, is described as [32]:

1Pei =

ng∑
j=1
j̸=i

Ki,j1δi,j (11)

where δi,j is the angle difference between the internal buses
of generators i and j, and the term Ki,j is called the synchro-
nizing power coefficient between generators i and j, which is
calculated as

Ki,j = EiEj(Bi,j cos δi,j0 − Gi,j sin δi,j0) (12)

Here Ei and Ej are magnitudes of the internal voltages of the
generators on buses i and j, respectively, Gi,j = Re{Y red

i,j } ∈

Rng×ng and Bi,j = Im{Y red
i,j } ∈ Rng×ng , are the real and

imaginary elements of the system admittance matrix reduced
to internal generator nodes (Y red

i,j ), for buses i and j.
This concept can be extended when a sudden load distur-

bance 1PkL is applied at bus k in the transmission system,
as shown in Figure 1, where x ′di,Ei, δi are internal parameters
of generator i. In this case, the network is reduced to the
internal machine buses and the node k (Y red

k ∈ Cng+1) [32].
Immediately after the perturbation (t = 0+), the electrical
active power output of generator i is approximated as a func-
tion of total disturbance 1PkL , as shown in (13) [32]:

1Pei (0
+) =

Ki,k/ ng∑
j=1,

Kj,k

1PkL (13)

where (Ki,k ) is the synchronizing power coefficient between
generator i and bus k and is defined as

Ki,k = EiVk (Bki,k cos(δi0 − θk0) − Gki,k sin(δi0 − θk0)) (14)

Here, Vk and θk0 are the voltage magnitude and voltage angle
of bus k , respectively. Notice that Bki,k and G

k
i,k now refers to

the reduced matrix with the disturbed bus k , i.e., elements of
Y red
k ∈ C(ng+1)×(ng+1).
Therefore, the active power imbalances resulting from the

disturbance is distributed throughout all generators in the
system by synchronizing power coefficients between i and
k , with i = 1, 2 . . . , ng. Consequently, the impact of a
load disturbance relies on the steady-state conditions and the
location of the contingency [32], [35], andmust be considered
in the inertia distribution formulation.

B. PROPOSED INERTIA DISTRIBUTION FORMULATION
In order to properly quantify the inertia distributed to a bus
j, equation (13) is applied to (9), leading to the elimination
of the dependency of 1Pei (0

+) and 1PjL in the underlying
formulation (9). Thus, the inertia distribution is written as a
function of synchronizing power coefficients:

1
hj

=
1( ng∑

k=1
Kk,j

) ng∑
i=1

Dj,iKi,j
Hi

(15)
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Hence, using equation (12) and assuming a high Xi,j/Ri,j
ratio at the transmission level, where Gi,j ≈ 0, the inertia
distribution formulation is finally obtained as,

hj =

∑ng
k=1 Bk,jEk cos(δk0 − θj0)

ng∑
i=1

(
Dj,i
Hi

)
Bi,jEi cos(δi0 − θj0)

(16)

Note that in contrast to the approximated formulation
in (10), the inertia distribution equation in (16) properly
includes the behavior of synchronous generators’ active
power through steady-state conditions and its electrical dis-
tance to the particular bus. Therefore, the quantification of the
inertia for each system bus is obtained considering two terms:
the first takes into account the contributions of each generator
inertia constant (Hi), as well as its participation in frequency
bus behavior through the Di,j factor. The second handles the
total electrical distance between the generators and the par-
ticular bus j, that is, the total resistance through (

∑ng
k=1 Bk,j).

The value of inertia obtained for each bus reflects the con-
tribution of all synchronous generators to the local inertial
response. Therefore, this value is limited to the total inertia
of the system.

Figure 2 summarizes the steps to calculate the nodal inertia
for a generic bus j. Extending the these steps to determine the
nodal inertia of all system buses, the spatial distribution of
inertia is readily achieved. Next, we describe the steps needed
in detail:

• Step 1: Calculate the power flow to determine the initial
conditions of the network (Vi0 and θi0), i = 1, . . . , nb;

• Step 2: From the initial conditions, the internal voltage
of synchronous generators (Ei ̸ δi0) is calculated using
(17), i = 1, . . . , ng:

Ei ̸ δi =

(
Vi ̸ θi +

Qix ′
di

Vi ̸ θi
)
)

+ j
Pix ′

di

Vi ̸ θi
(17)

• Step 3: The Dj,i element of the D matrix is determined
from (5) for a configuration with ng generators. The
reduced admittance matrix (internal generator buses)
with respect to bus j

(
Y red
j ∈ C(ng+1)×(ng+1)

)
is com-

puted according to the system of equations[
IGj
0

]
=

[
YGjGj YGjBj
YBjGj YBjBj

] [
VGj
VBj

]
(18)

Here, the subscript ‘‘Gj’’ refers to the internal generator
buses including system bus j. Additionally, ‘‘Bj’’ refers
to system buses except bus j, and the internal generator
buses. The solution of (18) is

IGj = Y red
j VBj (19)

where

Y red
j = YBjBj − YGjBjY

−1
BjBjYBjGj (20)

The equivalent susceptances between the generator k ,
for k = 1, . . . , ng, to the disturbed bus j is calculated

FIGURE 2. Steps to calculate the inertia of a particular bus j .

FIGURE 3. 5-bus with 2 generators and a load of 1.5 pu radial system.
To achieve a symmetric system α must be 0.5.

using the imaginary part of the matrix Y red
j , i.e., Bjk,j =

Im{Y red
j }k,j.

• Step 4: Using the parameters calculated in the previous
steps, the inertia value at bus j is determined by (16).
By performing steps 3 and 4 for each bus in the system,
we can map the spatial distribution of inertia.

Notice that the proposed analytical formulation primarily
relies on matrix algebra making our model comprehensible
and replicable for planning studies. Furthermore, since our
formulation is not an index, it also serves as a benchmark for
measurement-based methods.

IV. ANALYSIS AND RESULTS
To validate our analytical formulation illustrated in Fig. 2,
we introduce three test systems: (i) a radial 5-bus system with
two synchronous generators, (ii) the IEEE 68-bus systemwith
16 generators and (iii) NPCC 140-bus and 48 generators.

A. RADIAL TEST SYSTEM
The impact of changes in parameters related to the spatial
distribution of nodal inertia is analyzed using the 5-bus radial
test system illustrated in Figure 3. The two synchronous
generators aremodeled as a constant voltage sourceE ′

i behind
a d-axis transient reactance x ′

di , resulting in a second-order
model. The reactances of the transformers are XT1 = XT2 =

0.1 pu, while the reactances of the lines and d-axis transient
reactance of synchronous generators (100 MW rating) are
XL = 0.8 pu, X ′

d1
= X ′

d2
= 0.05 pu, respectively; all on a

common base of 100MVA.
We investigated the sensitivity of changes in parameters

that directly affect the nodal inertia considering three anal-
yses: (i) variations in the inertia constant of the generating
units and operating conditions, and (ii) variations in the elec-
trical distance (reactance) between the generators and buses.
Finally, the COI location of a radial system is discussed, and
a brief comparison is performed with the simplified inertia
distribution model proposed in [15].

1) SENSITIVITY ANALYSIS I
In this section, we apply our method to show how changes
in the inertia constant of synchronous machines and the
operating point impact the nodal inertia. Firstly, we consider
a symmetric network (α = 0.5, see Fig. 3) and three cases
for the value of the generators’ inertia constant. Typical
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TABLE 1. Individual inertia constant of generators and the inertia at the
COI for the sensitive analysis I studies.

FIGURE 4. Inertia distribution of the radial system for the three cases
analyzed, considering two scenarios for initial operating points.

values of inertia constant and reactances were selected for the
radial test system [10], [32]. They are described in Table 1
by case I (symmetric inertia) and cases II and III (uneven
inertia). Furthermore, V1 = 1.05 pu, V2 = 0.95 pu, and
Bus 1 is the reference (θ1 = 0◦). Also, for each case, two
scenarios regarding the initial operating points are consid-
ered: (a) P1 = P2 = 0.75 pu, which results in δ1 = 1.91◦, and
δ2 = 4.94◦, after the convergence of the power flow; and (b)
P1 = 0.3 pu, P2 = 1.2 pu, reaching δ1 = 0.76◦, and δ2 = 44◦.
Thus, the operating point (b) presents amore significant angle
deviation between the generating buses than (a).

Figure 4 shows the inertia distribution for the radial system
in each case, considering the nodal inertia values obtained for
all system buses with our analytical formulation. Notice that
scenario (a) are represented by blue bars, whereas scenario
(b) is by red bars. The step-by-step formulation to deter-
mine the nodal inertia for the radial system is presented in
Appendix A.

In case I, as shown in Fig. 4(a), the nodal inertia increases
towards Bus 5, which presents the highest inertia value
(h5 = 10 s). Furthermore, the inertia of Bus 5 is exactly the
inertia of the system COI, that is, the sum of H1 and H2.

TABLE 2. Inertia constant of each generator and the inertia at the COI to
analyze the impact of network topology on the system’s COI location.

In addition, the inertia of the generator buses (Buses 1 and
2) are slightly higher than their inertia constant (5 s). There-
fore, despite the electrical distance between the generators,
a mutual contribution influences the nodal inertia values of
the generator buses. In cases II (Fig. 4(b)) and III (Fig. 4(c)),
the total system inertia is 7 s, and the COI does not match any
bus. The bus with the highest inertia is shifted to the right or
left towards the generator with the higher inertia constant, that
is, Bus 4 for case II, and Bus 3 for case III. In all three cases,
the results of the two initial operating point scenarios are
quite close, corroborating a minimal influence on the nodal
inertia values. In contrast, the generators’ inertia constant
and the electrical distance are crucial parameters for mapping
the values of the distributed inertia. Next, we consider some
changes in the system reactances to evaluate the impact of
electrical distances on the inertia distribution.

2) SENSITIVITY ANALYSIS II
Here, the impact of the electrical distance (reactance)
between the generators and buses on the nodal inertia is
analyzed. By varying parameter α, as shown in Fig. 3, it is
possible to change the electrical distance between the gener-
ators and Bus 5. In this sense, the nodal inertia of Bus 5 can
be calculated using (16) and considering the variation of α

in the range [0, 1.0]. Furthermore, three additional cases are
introduced according to Table 2, considering the same inertia
at the COI in all cases (HCOI =15 s).
The nodal inertia of Bus 5 as a function of α values is

shown in Fig. 5. It is worth noting that, for all cases, there
is an α value (α∗) where the nodal inertia at Bus 5 reaches its
maximum value (h5[α∗] = 15 s), making Bus 5 the system
COI. For the case where the generators have the same inertia
constant (Case VI), the maximum nodal inertia occurs for
a symmetrical system (α∗

III = 0.5). However, for cases IV
and V, we notice that Bus 5 moves toward the generator
with the greatest inertia constant (α∗

I = 0.79, α∗
II = 0.21,

respectively). Therefore, nodal inertia is significantly affected
by the equivalent electrical distances between the bus and
inertia providers and their respective inertia responses.

3) PILOT BUS IDENTIFICATION
A direct application of our analytical formulation is the loca-
tion of the bus with the highest nodal inertia and, conse-
quently, the systemCOI location (pilot bus) and its true inertia
value:

HCOI = max (hi) i ∈ {1, . . . , nb} (21)

where hi is the nodal inertia of all system buses, and HCOI
is the inertia value of the system COI located at bus k =

argmax hi. It should be noted that the highest value of nodal
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FIGURE 5. Value of inertia at Bus 5 for cases of Table 2 from varying the α

parameter to find the COI point, that is, the point of maximum inertia.

TABLE 3. Comparative of nodal inertia obtained for all buses in the radial
system (Case III and α = 0.5).

inertia does not necessarily correspond to the sum of the
inertia of the sources connected to the system.1

For a radial system, such as that shown in Fig. 3, the
obtained COI location can be validated analytically. This
proof is similar to the example proposed in [34] to determine
the bus with COI frequency (3). The comparison is presented
in detail in Appendix B, showing that the obtained α∗ values
that make Bus 5 the highest nodal inertia of the system are
the same as those found in [34] which renders the frequency
of Bus 5 equal to the COI frequency.

4) COMPARISON WITH [15]
In this section, we compare our methodwith the one proposed
in [15]. We analyze a simple case, which helps compare
and reproduce the two methodologies easily. The symmetric
radial system (α = 0.5) with H1 = H2 is selected (case VI
in Table 2).2 The nodal inertia of all buses in the system is
presented in Table 3.

The results obtained from [15] shown a constant nodal iner-
tia value in all the buses of the system. This clearly indicates
that the electrical distance parameters are not properly taken
into account in that formulation. On the other hand, the results
of the present approach are coherent with the inertia location
and weighted by the transmission line and internal generator
reactance. The central bus (Bus 5) is the COI of the system
given by the total value of inertia available. In the boundaries
represented by Buses 1 and 2, the inertia value is slightly
higher than the individual generator’s inertia. These results
are obtained by explicitly including the electrical distance
parameters in the proposed formulation.

1See Cases II and III for the radial system in Fig. 4.
2The frequency divider matrix D for this system is presented in

Appendix A.

TABLE 4. Inertia constant of each generating unit considering 100 MVA
as system base.

FIGURE 6. Spatial distribution of nodal inertia for the IEEE 68-bus test
system.

B. IEEE 68-BUS TEST SYSTEM
The effectiveness of our analytical formulation is tested
through the simulations considering the IEEE 68-bus test
system. This system includes 16 generators represented by a
sixth order model equipped with automatic voltage regulator
(AVR) and power system stabilizer (PSS) [36]. Also, the
system is divided into five areas: New England transmission
system (NETS), New York power system (NYPS), and three
areas represented by equivalent generators [36]; all loads
are assumed as constant impedance. The individual inertia
constant of generators and the total inertia for the areas NETS
and NYPS are shown in Table 4.

Following the steps introduced in Fig. 2, the spatial distri-
bution of nodal inertia is accessed after calculating the nodal
inertia value of all load buses. Figure 6 illustrates the obtained
results. The lowest nodal inertia values in NETS area are
located at Buses 20 and 29 (h20=139.5 s and h29=140.9 s),
which are also the lowest nodal inertia values in the system.
The buses with the highest nodal inertia in the NETS area are
60 and 59, with h60=514.5 s and h59=481.0 s, respectively.
These two buses are directly coupled to the interconnection
between the NETS and NYPS areas (line 60-61), and thus,
their nodal inertia level are influenced by the generators with
higher inertial response within NYPS area.

Note that the buses with the highest nodal inertia values
(green color) are all in the NYPS area. For instance, Buses
51 and 50 achieve the highest value of nodal inertia (h51 =

1061.0 s and h50 = 1011.0 s) between all system buses.
Contrarily, Buses 32 and 33, reach the lowest inertia values
in the NYPS area, with h32 = 161.3 s and h33 = 282, 7 s,
respectively. We can notice a more uneven spatial distribution
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FIGURE 7. Estimation of local RoCoFs after the disturbance applied at
each load bus.

of nodal inertia within NYPS area, with locations with the
highest nodal inertia and locations among the lowest.

1) PILOT BUS IDENTIFICATION
Based on the obtained spatial distribution of nodal inercia,
no bus matched the total inercia of the system (HCOI =

1, 980.1 s). This is to be expected, as the system is meshy and
owing to the distribution of generators. In this case, the pilot
bus for the entire system is 51, that is, the bus with the highest
nodal inertia in the system. However, since we are able to
determine the nodal values of inertia, it is possible to find the
nearest bus from the regional COI for each area: (i) NETS:
Bus 21 (h21=275.0 s), (ii) NYPS: Bus 34 (h34=653.6 s).

2) NUMERICAL VALIDATION OF THE INERTIA DISTRIBUTION
To validate the obtained results for the meshed system, sev-
eral nonlinear time-domain simulations are carried out using
ANATEM from CEPEL [37]. To determine the local RoCoF,
a load step of 100MW is applied at each load bus (Bus 17 to
68), resulting in a total of 52 time-domain simulations.
Despite themagnitude of the disturbance selected as 100MW,
during the time-domain simulations this values varies by the
disturbance location. For each simulation, the local RoCoF
of the disturbed bus is calculate using a 500ms time window.
Figure 7 points out the estimations of the local RoCoF for all
load buses. Fig. 7(a) shows the local RoCoF in NETS area,
where Buses 20 and 29 have the highest RoCoF magnitude,
which is consistent with the results of Fig. 6. Similarly, Buses
32 and 33 have the highest RoCoF magnitude in the NYPS
area, confirming that these buses are located in a locationwith
a lack of inertial response.

In order to validate the obtained nodal inertia values,
we can use the estimation of the local RoCoF and the mag-
nitude of each disturbance to numerical estimate the nodal

FIGURE 8. Scatter plots (a) and (b) relates the nodal inertia values from
the proposed analytical and numerical methods presented in (c) for the
IEEE 68-bus test system.

inertia through the underlying formulation in (6). Since the
generator model directly affect the simulations and, conse-
quently, the estimation of RoCoF, we consider the second-
and sixth-order model of synchronous generator to numerical
estimate the nodal inertia and compare with our analytical
model.

The results are summarized on Fig. 8. Particularly,
Figs. 8(a) and 8(b) shows that the nodal inertia from the
analytical and numerical methods are pretty close for values
of nodal inertia below than 600 s. As shows Fig. 8(c), the
value of nodal inertia for the buses with higher nodal inertia
are more conservative regarding our analytical formulation,
which does not affect the awareness of the spatial distribution
of inertia. It is worth emphasizing that the RoCoF estimation
has inherent drawbacks, as the setting of an adequate window,
which could figure up errors in the estimated nodal inertia
values [38].

C. NPCC 140-BUS
We consider the Northeast Power Coordinating Council
(NPCC) 140-bus with 48 generators and 233 transmission
lines test system to demonstrate the scalability of our method-
ology [39]. Table 5 shows the inertia constant of synchronous
generators. Following the steps presented in Figure 2, the
distribution of nodal inertia is depicted in Figure 9. High
nodal inertia values are noticed in Buses 39, 73, 74, 75, 76,
77, 81, 125, and 126, reaching a maximum in Buses 73 and
75, with 1,469.5 s and 1,465.2 s, respectively. Low nodal
inertia buses are distributed across the system, particularly at
boundaries. Bus 136 has the lowest nodal inertia between the
load buses, with 68.16 s, due to the influence of the low nodal
inertia of the generating Bus 137.

To validate the obtained distribution of nodal inertia,
we select a region with unequal nodal inertia distribution,
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TABLE 5. Inertia constant of each generating unit considering 100 MVA
as system base - NPCC 140-bus.

FIGURE 9. Spatial distribution of nodal inertia for the NPCC 140-bus
system.

highlighted with a dashed line in Figure 9, to perform the
frequency response analysis of individual buses. Figure 10
shows the frequency response and RoCoF estimation consid-
ering a load step of 100MW applied at Buses 75, 132, 128,
138, and 136. Previous colors defined for buses in Figure 9
are again applied to facilitate the understanding. Note that
Buses 136 and 138 are more prone to have higher RoCoF,
corroborating our results that these buses have low nodal
inertia (less than 400 s). Also, Bus 75 has fewer frequency
deviations, resulting in higher nodal inertia (greater than
1400 s) according to our analytical formulation.

V. COMPARATIVE ANALYSIS
In this section, we compare the results obtained using our
analytical formulation with those from two methodologies
proposed in the literature. In addition, we provide an asymp-
totic analysis regarding the concept of slow coherence areas,
introducing the interpretation of the spatial distribution of
inertia from the point of view of the coherence of generators
and buses. In this section, we use the IEEE 68-bus system,
which is the benchmark system widely used in the literature.

A. INERTIA DISTRIBUTION METHODOLOGIES
COMPARISON
The first method, introduced in [23], proposes an index based
on modal analysis to obtain a spatial distribution of inertia.
By contrast, [20] designed an index based on time-domain

FIGURE 10. Frequency Response and Estimation of RoCoF dynamics
considering the first second after a load step applied to Buses 75, 132, 18,
138 and 136.

simulations. Because these methodologies rely on indexes,
they are incapable of explicitly determining the values of
inertia at each bus in the system. Thus, a comparative analysis
should consider the ranking of the buses based on their nodal
inertia levels.

1) MODAL ANALYSIS-BASED INDEX
Following [23], we consider the linearized power system
model to obtain the network sensitivities (Cθ ), which is the
sensitivity of bus voltage angles with respect to changes in
the state variables (1ω, 1δ), and the system modeshapes
(8). The inertia distribution is determine through the network
modeshape (Sθ ), that is, the product of the network sensitivi-
ties by a particular modeshape (Cθ · 8j).

The IEEE 68-bus system presents four inter-area modes.
The network modeshape is calculated for each inter-area
mode, as shown in Fig. 11. For each inter-area mode there
is a bus that indicates the center of oscillation: Bus 50 for the
modes 0.38Hz and 0.5Hz, and the Buses 53 and 54 for modes
0.79Hz and 0.59Hz, respectively. However, to determine the
nodal inertia distribution using this approach, it is necessary
to define the critical/dominant inter-area mode. As presented
in [23], the critical mode corresponds to the one with 0.38Hz,
and can be obtained through the localness index proposed
by [40]. Therefore, the mapping of nodal inertia distribution
should be calculated using this mode.

2) TIME-DOMAIN-BASED INDEX
Authors [20] and [21] propose an index considering the dis-
tance between each bus frequency and the COI frequency
after a disturbance. The distance are calculate using (22)

dj =

∫ T+t0

t0

(
fj(k) − fCOI (k)

)2 dk (22)

where t0 is the time of disturbance and T is the parsed
window size. The distances are normalized with respect to
the highest value, defining the inertia distribution index (IDI).
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FIGURE 11. Network modeshapes (Sθ ) of all inter-area modes considering
only buses around the center of oscillations for better visualization.

FIGURE 12. Time-domain-based index calculated for all load buses
considering the disturbances applied at each bus.

To better visualization, we calculate the value of 1 − IDI ,
that is,the buses closest to the system COI have an index
close 1, whereas buses furthest have an index close to 0.
Figure 12 shows the IDI calculated for the IEEE 68-bus test
system considering a disturbance of 100MW applied at all
load buses.We can notice that there are some locationwith the
inertial index closest to 1 for all the disturbances, for instance,
Buses 48-50. However, in several locations the index varies
according to the disturbance location. Therefore, to compare
with our analytical formulation, we should consider the criti-
cal case depicted in the main diagonal elements of Fig. 12,
that is, the calculated index for a particular bus when the
disturbance is applied to it.

3) ANALYTICAL VS INDEX-BASED METHODS
Here, we compare the nodal inertia distribution using our for-
mulation with the above indexes. Figure 13 shows the nodal
inertia ranking, where position 1 of the ranking represents the
bus with the highest nodal inertia and position 52 represents
the bus with the lowest nodal inertia. The modal-based and

FIGURE 13. Inertia ranking of load buses considering our formulation
and two index-based methods.

time-domain-based indexes are compared in terms of critical
mode and critical disturbance, respectively.

Regarding the highest and lowest nodal inertia buses, both
indexes are in accordance with the obtained nodal inertia
values. For instance, a low nodal inertia index was obtained
for Buses 20, 22, 23, and 29 within the NETS area, and a
high nodal inertia index for Buses 40, 45, 50, and 51 within
the NYPS area. However, for some locations, the results from
the index-based methods deviate from the obtained nodal
inertia values. For instance, while index-basedmethodologies
suggest high nodal inertia in Buses 32 and 33, our proposed
formulation properly shows a lack of inertial response in this
location. This behavior can be explained by the observation
of local oscillations.

Themodal-based analysis depends on the critical inter-area
mode (0.38Hz), which comprises generators of the NETS
and NYPS areas that oscillate against equivalent generators
14, 15, and 16. However, in the NYPS area, there is a local
oscillation mode (1.8Hz) related to generator 11. This local
mode impacts the frequency behavior of Buses 32 and 33 after
a local disturbance, resulting in faster frequency oscillations
(see the local RoCoF in Fig.7(b)). The time-domain-based
index properly reflects the low nodal inertia of Bus 32;
however, the ranking of Bus 33 indicates high nodal inertia.
These differences can be understood as numerical issues in
obtaining the index.

In conclusion, unlike the existing inertia distribution
indexes, our straightforward analytical formulation prop-
erly reflects the locational inertial response, independent of
time-domain simulations or the analysis of oscillation modes.
Additionally, we calculated all nodal inertia values in less
than 140ms, following the four steps described in III-B,
avoiding running and analyzing successive time-domain sim-
ulations.3 Also, our proposed analytical formulation is suit-
able as a reference model for comparison with other inertia
distribution indexes based on measurements.

B. INERTIA DISTRIBUTION AND SLOW COHERENCY
AREAS
Slow coherency is an analytical method to determine the
coherent machines based on the lower frequency inter-area
mode, where a group of coherent machines oscillates against
another coherent group [41]. This concept can be extended to

3All simulations were carried out in MATLAB R2018a on an Intel Core
i5-8265U 2.00 GHz processor with 8 GB of memory.
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FIGURE 14. Inertia distribution of IEEE 68-Bus System considering three scenarios of reduction of internal reactances of the coherent areas.

non generating buses, to group all system buses into coherent
areas. The frequency response on all the buses in the coherent
area is considered in unison, which means that in the ideal
case, all the reactances within a coherent area are close to
zero (infinite admittances), keeping the reactances of lines
connecting different coherent areas the same.

In this sense, we can obtain the inertia distribution for
this edge case using our proposed formulation. For the IEEE
68-Bus system, the coherent areas obtained by the slow
coherency method are the five areas: NETS, NYPS, Gen.
14, Gen. 15, and Gen. 16 [42]. Accordingly, the internal
reactances of these five areas are reduced by factors of: 10,
100, and 200. For all these cases, the internal reactances of
generators are reduced by 10. The line reactances of the lines
60-61, 25-53, 54-53, 40-41, 41-42, 42-18, 49-18, and 50-18
connecting different areas are kept constant. Figure 14 shows
the inertia distribution obtained for the three cases detailed
above.

We can observe that, as expected by the slow coherency
method, the inertias of buses within a coherent area converge
to the same values, the total inertia of the respective area
(see the Table 4), as the internal reactances are reduced.
Therefore, our inertia distribution formulation is supported
by an asymptotic analysis and consistent with the coherent
areas. Furthermore, our inertia distribution formulation can
more accurately reveal the coherence of the buses, taking into
account the cases in which the internal reactances of the areas
are far from zero, that is, the base case.

VI. DISCUSSION
By mapping the nodal inertia using our analytical formula-
tion, system operators can accurately and quickly identify
critical regions to take local preventive actions, helping in the
operational planning process. We summarize some potential
applications arising from the knowledge of the distribution of
nodal inertia below.

• The locational inertial response can be improved in
low-inertia nodes by placing synchronous compensators
or IBRs supplying virtual inertia.

• As a byproduct of determining nodal inertia values,
system operators can identify the system or regional
COI, that is, the pilot buses, to measure the frequency
response. These measurements are essential for design-
ing special protection schemes and controls.

TABLE 6. Power flow for the radial system with α = 0.5 and
P1 = P2 = 0.75 pu.

• The scheduling of units can consider the impact of gen-
erators and transmission lines on the local frequency
response. The proposed methodology can be embedded
in a scheduling problem to optimally determine the least
cost operation ensuring locational system security.

VII. CONCLUSION
This paper proposes a novel analytical formulation that relies
only on steady-state parameters for determining the nodal
inertia value and attaining the spatial distribution of inertia
in a power system. The analyses carried out in the radial test
system, varying the generators’ inertia constant and network
topology, show that our formulation adequately quantifies
the spatial distribution of inertia. Time-domain simulations
and numerical estimations support the nodal inertia values
obtained by considering the meshed IEEE 68-bus and the
large interconnectedNPCC 140-bus system. The comparative
analysis against existing inertia distribution indexes high-
lights the strengths of our analytical formulation considering
meshed systems with several inter-area and local modes.
In addition, slow coherency analysis provides additional val-
idation for the proposed formulation and an innovative inter-
pretation of the spatial distribution of inertia. Future work
will focus on including our formulation in the scheduling
problem to optimally determine the need for inertial resources
to support decision-making.

APPENDIX. A)
NODAL INERTIA FOR THE RADIAL SYSTEM
Following the steps of Fig.2, the distribution of nodal inertia
for the radial system in Fig. 3 with α = 0.5 and P1 =

P2 = 0.75 pu can be determined. The system operating point
(voltage and angle) is obtained by solving the AC power flow.
Table 6 summarizes the results. Next, synchronous machine
internal voltage (Ei) and angle (δi) are obtained as E1 =

1.0718 pu, E2 = 0.9637 pu, δ1 = 1.9096◦, δ2 = 4.9433◦.
Frequency divider matrix (D) is determined in (23) and

the reduced admittance matrix (Y red ) in (24). Notice that
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each row of (24) is calculated using (20), and thus, (24)
includes the equivalent susceptancies between each generator
and bus. For example, B1,5 = Im{Y red }1,5 is the equivalent
susceptance between generator 01 and Bus 5.

D =


0.9545 0.0455
0.0455 0.9545
0.8636 0.1364
0.1364 0.8636
0.5000 0.5000

 (23)

Y red =


20 0.7781

0.7781 20
6.6667 0.8958
0.8958 6.6667
1.8182 1.8182


T

(24)

Finally, using the inertia constant of synchronous gener-
ators, the nodal inertia for all system buses is calculated
through (16). For the radial system, given a bus j, the nodal
inertia is determined according to (25).

hj =
B1,jE1 cos

(
δ10 − θj0

)
+ B2,jE2 cos

(
δ20 − θj0

)
Dj,1
H1
B1,jE1 cos

(
δ10 − θj0

)
+

Dj,2
H2
B2,jE2 cos

(
δ20 − θj0

)
(25)

APPENDIX. B)
COI IDENTIFICATION IN A RADIAL SYSTEM
To check the consistency of the obtained α∗ values, we use
the frequency divider formulation (4), and the underlyingCOI
equation (3) [34]. Using equation (4), the frequency of Bus 5
is:

1f5 =
X52′

X51′ + X52′

1ω1 +
X51′

X51′ + X52′

1ω2 (26)

where X51′ and X52′ are the total reactances between Bus 5
and the internal buses of generators 1 and 2, respectively:

X51′ = X ′
d1 + XT1 + αXL (27)

X52′ = X ′
d2 + XT2 + (1 − α)XL (28)

By equation (3), the COI frequency is

1fCOI =
H1

H1 + H2
1ω1 +

H2

H1 + H2
1ω2 (29)

Comparing the terms of (26) with those of (29), it is possible
to determine the values of reactances that make the frequency
of the bus equal to the frequency of the COI (1f5 = 1ωCOI )
as

X51′ =
H2

H1+H2
[(X ′

d1+X
′
d2 ) + (XT1+XT2 )+XL)] (30)

X52′ =
H1

H1 + H2
[(X ′

d1+X
′
d2 )+(XT1+XT2 )+XL)] (31)

Finally, the value of α∗ can be achieved by substituting (27)
on the left-hand side of (30):

α∗
=
H2(X ′

d2
+ XT2 + XL) − H1(X ′

d1
+ XT1 )

(H1 + H2)XL
(32)

TABLE 7. α∗ values for bus 5.

Table 7 shows a comparison between the values of α∗ pro-
vided by our analytical formulation with those obtained
using (32). There are no sharp differences in the results,
which validates the proposed formulation also for the COI
identification for a radial system.

REFERENCES
[1] F. Milano, F. Dorfler, G. Hug, D. J. Hill, and G. Verbic, ‘‘Foundations and

challenges of low-inertia systems (invited paper),’’ in Proc. Power Syst.
Comput. Conf. (PSCC), Jun. 2018, pp. 1–25.

[2] L. Pagnier and P. Jacquod, ‘‘Inertia location and slow network modes
determine disturbance propagation in large-scale power grids,’’PLoSONE,
vol. 14, no. 3, pp. 1–17, Mar. 2019.

[3] A. Ulbig, T. S. Borsche, and G. Andersson, ‘‘Impact of low rotational
inertia on power system stability and operation,’’ IFAC Proc. Vols., vol. 47,
no. 3, pp. 7290–7297, 2014.

[4] D. Doheny and M. Conlon, ‘‘Investigation into the local nature of rate
of change of frequency in electrical power systems,’’ in Proc. 52nd Int.
Universities Power Eng. Conf. (UPEC), Aug. 2017, pp. 1–6.

[5] L. R. Gorjão, R. Jumar, H. Maass, V. Hagenmeyer, G. C. Yalcin, J. Kruse,
M. Timme, C. Beck, D. Witthaut, and B. Schäfer, ‘‘Open database analysis
of scaling and spatio-temporal properties of power grid frequencies,’’
Nature Commun., vol. 11, no. 1, p. 6362, Dec. 2020.

[6] P. Wall, N. Shams, V. Terzija, V. Hamidi, C. Grant, D. Wilson, S. Norris,
K. Maleka, C. Booth, Q. Hong, and A. Roscoe, ‘‘Smart frequency control
for the future GB power system,’’ in Proc. IEEE PES Innov. Smart Grid
Technol. Conf. Eur. (ISGT-Europe), Oct. 2016, pp. 1–6.

[7] S. You, H. Li, S. Liu, K. Sun, W. Wang, W. Qiu, and Y. Liu, ‘‘Calculate
center-of-inertia frequency and system RoCoF using PMU data,’’ in Proc.
IEEE Power Energy Soc. Gen. Meeting (PESGM), Jul. 2021, pp. 1–5.

[8] M. Sun, G. Liu, M. Popov, V. Terzija, and S. Azizi, ‘‘Underfrequency load
shedding using locally estimated RoCoF of the center of inertia,’’ IEEE
Trans. Power Syst., vol. 36, no. 5, pp. 4212–4222, Sep. 2021.

[9] B. A. Osbouei, G. A. Taylor, O. Bronckart, J. Maricq, and M. Bradley,
‘‘Impact of inertia distribution on power system stability and operation,’’
in Proc. IEEE Milan PowerTech, Jun. 2019, pp. 1–6.

[10] B. Tan, J. Zhao, M. Netto, V. Krishnan, V. Terzija, and Y. Zhang, ‘‘Power
system inertia estimation: Review of methods and the impacts of converter-
interfaced generations,’’ Int. J. Electr. Power Energy Syst., vol. 134,
Jan. 2022, Art. no. 107362.

[11] P. M. Ashton, C. S. Saunders, G. A. Taylor, A. M. Carter, and
M. E. Bradley, ‘‘Inertia estimation of the GB power system using syn-
chrophasor measurements,’’ IEEE Trans. Power Syst., vol. 30, no. 2,
pp. 701–709, Mar. 2015.

[12] D. Wilson, J. Yu, N. Al-Ashwal, B. Heimisson, and V. Terzija,
‘‘Measuring effective area inertia to determine fast-acting frequency
response requirements,’’ Int. J. Electr. Power Energy Syst., vol. 113,
pp. 1–8, Dec. 2019. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S0142061519304892

[13] S. You, Y. Liu, G. Kou, X. Zhang, W. Yao, Y. Su, S. W. Hadley, and
Y. Liu, ‘‘Non-invasive identification of inertia distribution change in high
renewable systems using distribution level PMU,’’ IEEE Trans. Power
Syst., vol. 33, no. 1, pp. 1110–1112, Jan. 2018.

[14] N. Ma and D. Wang, ‘‘Extracting spatial–temporal characteristics of fre-
quency dynamic in large-scale power grids,’’ IEEE Trans. Power Syst.,
vol. 34, no. 4, pp. 2654–2662, Jul. 2019.

[15] F. Zeng, J. Zhang, Y. Zhou, and S. Qu, ‘‘Online identification of inertia
distribution in normal operating power system,’’ IEEE Trans. Power Syst.,
vol. 35, no. 4, pp. 3301–3304, Jul. 2020.

[16] V. Trovato, ‘‘The impact of spatial variation of inertial response and
flexible inter-area allocation of fast frequency response on power
system scheduling,’’ Electr. Power Syst. Res., vol. 198, Sep. 2021,
Art. no. 107354.

VOLUME 11, 2023 45375



B. Pinheiro et al.: Analytical Formulation for Mapping the Spatial Distribution of Nodal Inertia

[17] M. Tuo and X. Li, ‘‘Security-constrained unit commitment consider-
ing locational frequency stability in low-inertia power grids,’’ IEEE
Trans. Power Syst., early access, Oct. 19, 2022, doi: 10.1109/TPWRS.
2022.3215915.

[18] L. Pagnier and P. Jacquod, ‘‘Optimal placement of inertia and primary
control: A matrix perturbation theory approach,’’ IEEE Access, vol. 7,
pp. 145889–145900, 2019.

[19] M. Tuo andX. Li, ‘‘Optimal allocation of virtual inertia devices for enhanc-
ing frequency stability in low-inertia power systems,’’ in Proc. North Amer.
Power Symp. (NAPS), Nov. 2021, pp. 1–6.

[20] H. Pulgar-Painemal, Y. Wang, and H. Silva-Saravia, ‘‘On inertia dis-
tribution, inter-area oscillations and location of electronically-interfaced
resources,’’ IEEE Trans. Power Syst., vol. 33, no. 1, pp. 995–1003,
Jan. 2018.

[21] Y. Wang, H. Silva-Saravia, and H. Pulgar-Painemal, ‘‘Estimating inertia
distribution to enhance power system dynamics,’’ in Proc. North Amer.
Power Symp. (NAPS), Sep. 2017, pp. 1–6.

[22] L. Hu, Y. Li, W. Wang, Y. Tan, Y. Cao, and K. Y. Lee, ‘‘Inertia estimation
of power grid with VSC-MTDC system,’’ IFAC-PapersOnLine, vol. 51,
no. 28, pp. 197–202, 2018.

[23] D. Brahma and N. Senroy, ‘‘Sensitivity-based approach for assessment
of dynamic locational grid flexibility,’’ IEEE Trans. Power Syst., vol. 35,
no. 5, pp. 3470–3480, Sep. 2020.

[24] D. Brahma and N. Senroy, ‘‘Spatial distribution of grid inertia and dynamic
flexibility: Approximations and applications,’’ IEEE Trans. Power Syst.,
vol. 36, no. 4, pp. 3465–3474, Jul. 2021.

[25] W. J. Farmer and A. J. Rix, ‘‘Evaluating power system network inertia
using spectral clustering to define local area stability,’’ Int. J. Electr. Power
Energy Syst., vol. 134, Jan. 2022, Art. no. 107404.

[26] J. H. Chow, A. Chakrabortty, L. Vanfretti, and M. Arcak, ‘‘Estimation
of radial power system transfer path dynamic parameters using synchro-
nized phasor data,’’ IEEE Trans. Power Syst., vol. 23, no. 2, pp. 564–571,
May 2008.

[27] Y. Wang, H. Silva-Saravia, and H. Pulgar-Painemal, ‘‘Actuator placement
for enhanced grid dynamic performance: A machine learning approach,’’
IEEE Trans. Power Syst., vol. 34, no. 4, pp. 3119–3128, Jul. 2019.

[28] D. A. Kez, A. M. Foley, and D. J. Morrow, ‘‘Analysis of fast frequency
response allocations in power systems with high system non-synchronous
penetrations,’’ IEEE Trans. Ind. Appl., vol. 58, no. 3, pp. 3087–3101,
May 2022.

[29] P. B. Garcia-Rosa, S. D’Arco, and J. A. Suul, ‘‘Placement of virtual inertia
from HVDC terminals based on a frequency deviation index,’’ in Proc.
IEEE Madrid PowerTech, Jun. 2021, pp. 1–7.

[30] L. Vanfretti and J. H. Chow, ‘‘Analysis of power system oscillations for
developing synchrophasor data applications,’’ in Proc. IREP Symp. Bulk
Power Syst. Dyn. Control VIII (IREP), Aug. 2010, pp. 1–17.

[31] F. Milano and A. Ortega, ‘‘Frequency divider,’’ IEEE Trans. Power Syst.,
vol. 32, no. 2, pp. 1493–1501, May 2017.

[32] J. H. Chow and J. Sanchez-Gasca, Power System Modeling, Computation,
and Control, 1st ed. Hoboken, NJ, USA: Wiley, 2020.

[33] P. M. Anderson and A. A. Found, Power System Control and Stability,
2nd ed. Hoboken, NJ, USA: Wiley, 1977.

[34] F. Milano and O. M. Álvaro, Frequency Variations in Power Systems,
1st ed. Hoboken, NJ, USA: Wiley, 2020.

[35] N. Shams, P. Wall, and V. Terzija, ‘‘Active power imbalance detection, size
and location estimation using limited PMU measurements,’’ IEEE Trans.
Power Syst., vol. 34, no. 2, pp. 1362–1372, Mar. 2019.

[36] C. Canizares, T. Fernandes, E. Geraldi, L. Gerin-Lajoie, M. Gibbard,
I. Hiskens, J. Kersulis, R. Kuiava, L. Lima, F. DeMarco, N. Martins,
B. C. Pal, A. Piardi, R. Ramos, J. dos Santos, D. Silva, A. K. Singh,
B. Tamimi, and D. Vowles, ‘‘Benchmark models for the analysis and
control of small-signal oscillatory dynamics in power systems,’’ IEEE
Trans. Power Syst., vol. 32, no. 1, pp. 715–722, Jan. 2017.

[37] Análise de Transitórios Eletromecânicos Manual do Usuário, CEPEL
Centro de Pesquisas de Energia Elétrica, Brasília, Brazil, 2020.

[38] Y. Zuo, G. Frigo, A. Derviškadic, and M. Paolone, ‘‘Impact of syn-
chrophasor estimation algorithms in ROCOF-based under-frequency load-
shedding,’’ IEEE Trans. Power Syst., vol. 35, no. 2, pp. 1305–1316,
Mar. 2020.

[39] J. Chow and G. Rogers, ‘‘User manual for power system toolbox,
version 3.0,’’ 2008. [Online]. Available: https://sites.ecse.rpi.edu/~chowj/
PSTMan.pdf

[40] S. Ghosh and N. Senroy, ‘‘The localness of electromechanical oscillations
in power systems,’’ Int. J. Electr. Power Energy Syst., vol. 42, no. 1,
pp. 306–313, Nov. 2012.

[41] J. H. Chow, Power System Coherency and Model Reduction, 1st ed.
New York, NY, USA: Springer, 2013.

[42] J. H. Chow, Time-Scale Modeling of Dynamic Networks With Applications
to Power Systems. New York, NY, USA: Springer, 1982.

BRUNO PINHEIRO (Graduate Student Member,
IEEE) was born in Manaus, Amazonas, Brazil,
in 1997. He received the B.E. degree from the Fed-
eral University of Amazonas, Amazonas, in 2018,
and the M.Sc. degree in electrical engineering
from the University of Campinas, São Paulo,
Brazil, in 2021, where he is currently pursuing the
Ph.D. degree. His research interests include power
system stability and control, modeling, and inertia
estimation methods.

LUIGI VIOLA (Graduate Student Member, IEEE)
received the B.E. degree from São Paulo State Uni-
versity (UNESP), Guaratinguetá, Brazil, in 2014,
and the M.Sc. degree in electrical engineering
from the University of Campinas, Brazil, in 2017,
where he is currently pursuing the Ph.D. degree.
His research interests include power system oper-
ation and economics.

JOE H. CHOW (Life Fellow, IEEE) received the
M.S. and Ph.D. degrees from the University of
Illinois at Urbana–Champaign, Champaign, IL,
USA. After working with the General Electric
Power System Business, Schenectady, NY, USA,
he joined the Rensselaer Polytechnic Institute,
Troy, NY, USA, in 1987, where he is currently an
Institute Professor in electrical, computer, and sys-
tems engineering. His research interests include
power system dynamics and control, FACTS con-

trollers, and synchronized phasor data. He is also a member of the U.S.
National Academy of Engineering. He was a past recipient of the IEEE PES
Charles Concordia Power Engineering Award and the Outstanding Power
Engineering Educator Award.

DANIEL DOTTA (Member, IEEE) received the
B.S., M.S., and Ph.D. degrees from the Fed-
eral Institute of Santa Catarina, Florianópolis,
Brazil, in 2001, 2003, and 2009, respectively.
From 2006 to 2015, he was a Professor with
the Federal Institute of Santa Catarina. In 2015,
he joined the University of Campinas, Campinas,
Brazil, where he is currently an Assistant Pro-
fessor. He also spent two sabbatical leaves as a
Visiting Scholar with the Rensselaer Polytechnic

Institute, Troy, NY, USA, from 2011 to 2013 and from 2018 to 2019,
respectively.

45376 VOLUME 11, 2023

http://dx.doi.org/10.1109/TPWRS.2022.3215915
http://dx.doi.org/10.1109/TPWRS.2022.3215915

