
Received 31 March 2023, accepted 3 May 2023, date of publication 8 May 2023, date of current version 17 May 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3273952

Deep Generative Knowledge Distillation by
Likelihood Finetuning
JINGRU LI 1, XIAOFENG CHEN2,3, PEIYU ZHENG2, QIANG WANG 3, AND ZHI YU 1
1EAGLE Laboratory, Zhejiang University, Hangzhou 310058, China
2Hangzhou Qulian Technology Company Ltd., Hangzhou 310058, China
3Blockchain Research Center, Zhejiang University, Hangzhou 310058, China

Corresponding author: Zhi Yu (yuzhirenzhe@zju.edu.cn)

This work was supported in part by the Key Research and Development Program of Zhejiang Province under Grant 2021C01105, in part by
the Key Research and Development Program of Guangdong Province under Grant 2020B0101090003, and in part by the National Key
Research and Development Program of China under Grant 2021YFB2701100.

ABSTRACT Knowledge Distillation (KD) is designed to train smaller student models using a larger
pretrained teacher model. However, in decentralized data systems such as blockchain, privacy concerns
may arise, making the data inaccessible. To address this issue, Data-Free KD (DFKD) methods have been
proposed, which extract prior knowledge from teacher networks and use it to synthesize data for KD.
Previous DFKD methods faced challenges due to the large search space of data generation. Recently,
deep generative models (DGMs) have been proposed to learn data distribution using deep networks, which
provides an efficient way to reduce the search space by generating a set of pseudo data. In this paper,
we explore the performance of KD trained using pseudo samples generated by pretrained DGMs and find
that the correlation with image quality is not always positive. Based on this observation, we propose a
new DFKD framework called Generative Knowledge Distillation (GenKD) that reduces the search space
by constructing a prior distribution modeled by DGMs for their power of likelihood estimation. Specifically,
we use energy-basedmodels (EBM) to generate data from theMaximumLikelihood Estimation (MLE) of the
EBM and gradients from downstream KD tasks by policy gradient. We then train the student model using the
pretrained teacher model and pseudo samples. We also implement our GenKD framework on several widely-
used benchmarks, including CIFAR100, CIFAR10, and SVHN. Our experiments demonstrate that we can
generate high-quality pseudo samples quantitatively and qualitatively using GenKD. Additionally, the top-1
accuracy of the student network can approach state-of-the-art (SOTA) DFKD methods trained using fewer
pseudo samples and less generation time.

INDEX TERMS Knowledge distillation, deep generative model, image quality evaluation, data-free knowl-
edge distillation.

I. INTRODUCTION
Recently, Deep Neural Networks (DNNs) have gained
widespread adoption across numerous machine learning
applications, and they often suffer from issues of com-
plexity and portability, particularly when dealing with lim-
ited resources. In response to this, Knowledge Distillation
(KD) [1], [2], [3], [4] offers a convenient solution for training
smaller student networks using a pretrained teacher model,
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which minimizes the divergence between the teacher and
studentmodels.Within the field of blockchain, deep networks
are often necessary for proof of work (PoW), and KD can
serve to accelerate PoW for smaller networks.

In recent years, the blockchain system has gained increas-
ing attention due to its ability to ensure privacy protection [5]
and support for federal learning [6]. However, the practical
application of blockchain technology often involves inac-
cessible training data, which limits the ability of student
networks to learn explicit logit information from the teacher
network for effective training. To address this challenge,
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FIGURE 1. The main idea of GenKD. For the previous DFKD framework,
they searched the whole data space. Our GenKD model can search data
by the path of the Boltzmann distribution and also promises MLE. Better
viewed on screen.

Data-Free Knowledge Distillation (DFKD) has been pro-
posed as an approach to extracting knowledge from a pre-
trained teacher model. DFKD employs various loss functions
to evaluate the quality of the generated data, referred to
as pseudo samples. Previous work on DFKD [7], [8], [9],
[10], [11] have employed different strategies to design loss
functions and generate data that represent knowledge. For
instance, some studies [8], [9], [12], [13] use a generator to
produce data points that are similar to the real data points,
while others [10], [11], [14] adopt adversarial learning [15],
[16], [17] to generate challenging data points that are bene-
ficial for training the student network. Recently, DeepInver-
sion [10] has been proposed to align the distribution of each
layer using the running mean and variance of batch normal-
ization layer [18]. However, such an alignment approach is
not explicit enough and may not efficiently search for useful
data for KD training, as it generates pseudo samples instance
by instance. We hope to find a distribution-level alignment
for the generation of pseudo samples and KD training.

One question is whether generating pseudo samples that
closely resemble the data distribution can improve KD per-
formance. To address this, we conducted experiments using
a variety of pretrained generative models to generate pseudo
samples and explored the relationship between the likelihood
estimation of the generated distribution and KD performance
to determine the target of the generation stage. To efficiently
search for informative data points for knowledge distillation,
we developed a simple method for modeling the distribution
of multiple deep generative models (DGMs) using prior dis-
tribution information. We evaluated the quality of the pseudo
samples generated by DGMs optimized by Maximum Like-
lihood Estimation (MLE), such as flow-based models [19],
[20], Energy-Based Models (EBMs) [21], [22], [23], [24],
diffusion models [25], [26], [27], [28], and score-based mod-
els [29], [30], [31], and examined their relationship with KD
performance. Despite the success of DGMs in likelihood and
data estimation, estimating the discriminative model p(y|x)
remains a challenge for most KD tasks. The results of our
research provide important insights into the potential of using

pseudo samples generated by DGMs to improve knowledge
distillation and offer a starting point for future work on the
development of more effective and accurate knowledge dis-
tillation methods.

Motivated by previous work on DFKD, we propose a
novel framework called Generative Knowledge Distillation
(GenKD) that leverages the power of DGMs to improve
the data distribution approximation and search process for
knowledge distillation. Unlike previous DFKD approaches,
which search the entire data space based on guidance from
the teacher model, GenKD efficiently finds informative
data points by utilizing the Boltzmann distribution as a
guide. To achieve faster identification of hard samples,
we use Langevin dynamics to gradually approach the Max-
imum Likelihood Estimation (MLE) of Energy-Based Mod-
els (EBMs). This approach enables GenKD to traverse the
steepest path of the energy function (gray contours) and
dynamically locate the MLE of class-conditional distribution
while finding hard samples for KD training. As illustrated in
Figure 1b, the proposed search process is both interpretable
and computationally efficient, and can be extended to other
MLE-based DGMs, such as DDPM, by incorporating like-
lihood function items during training. We believe that the
GenKD framework has the potential to significantly improve
the performance of knowledge distillation by leveraging
the power of DGMs. This framework offers a promising
approach for addressing the challenges of identifying infor-
mative data points and accurately approximating the data
distribution in KD tasks and can be applied to a wide range
of DGMs for different types of KD tasks. As the DGMs are
black-box for the user to train KD, the generated pseudo sam-
ples by GenKD only contain information that is beneficial
to the KD training. Therefore, GenKD does not have extra
privacy leakage while achieving pseudo samples.

Our contributions of this work are:
• We first build a DGM module to learn the distribution
of original data from pretrained teacher network. It pro-
vides a better estimation of data distribution and teacher
models.

• We give some practical evidence on the relationship
between the generation quality, estimation likelihood of
DGMs and the performance of KD, and we find that the
generation quality is not always positively correlated to
the KD performance.

• As an example of GenKD, we update the likelihood
function by the gradient from the downstream task by
the policy gradient algorithm in EBM, which is effective
for training KD.

• Experiments show that GenKD efficiently generates
high-quality pseudo samples. Our GenKD can help the
student model to learn KD on different benchmarks if we
provide a better DGM, and we also explore the effect of
image quality and class-conditional distribution on the
DFKD task.

This paper is organized as follows. Section II describes
the related work of DFKD and DGMs. Section III describes
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the effect of DGM on the KD and the relationship between
image quality and KD performance. In section IV, we take
EBM as an example to construct a KD method that uses data
samples with finetuned log-likelihood sampling. In section
V, we discuss the mean idea of GenKD related to previous
methods. In section VI, we provide some experiments of our
GenKD on CIFAR10, CIFAR100, and SVHN, and in section
VII we give a conclusion of this paper.

II. RELATED WORK
A. KNOWLEDGE DISTILLATION AND DATA-FREE
KNOWLEDGE DISTILLATION
Knowledge distillation (KD) [1] was originally designed to
enable smaller neural networks to learn from a larger, pre-
trained teacher model. By using the ‘‘soft labels’’ or logits
produced by the teacher model, the student model can learn
not only from the ground truth but also from the knowledge
embedded in the teacher model. In recent work, various
approaches have been proposed to improve KD, such as
aligning logits [32], [33], [34], [35], [36], [37] or intermediate
feature layers [38], [39], [40], [41], [42], [43], [44] between
the teacher and student models.

DFKD, also known as zero-shot knowledge distillation,
refers to the technique of training a knowledge distillation
framework without access to the original training data [7],
[45], [46]. This is achieved by directly extracting knowl-
edge from a pre-trained teacher model to recover the knowl-
edge from the data. For example, Nayak et al. [7] extract
knowledge from a pre-trained teacher model by minimizing
the classification error of generated samples, while Chen
et al. [13] learn with the assistance of prior knowledge from
unlabeled extensive benchmarks like ImageNet [47].

Other methods, like [10], [11], and [14], focus on generat-
ing image samples with adversarial or contrastive methods.
The primary goal is to visualize the knowledge from pre-
trained deep networks using high-quality pseudo samples.
For example, Yin et al. [10] propose DeepInversion and
Adaptive DeepInversion (ADI), which capture the response
from teacher networks and directly update in the image space
beginning with random or uniform samples. These meth-
ods align the mean and variation of each batch normaliza-
tion layer of the teacher model to extract knowledge from
the pre-trained teacher distribution. Recently, some work
have proposed using pseudo samples searched from previ-
ous epochs to avoid the catastrophic forgetting problem in
DFKD [48], [49].

However, searching the entire data space X is computa-
tionally expensive, and simply setting a distribution through
a generator may not result in an optimal data prior. Adopting
a probabilistic perspective, as in ADI [10], can improve the
realism and robustness of generated pseudo samples.

B. DEEP GENERATIVE MODELS
Deep generativemodels (DGMs) utilize probabilistic models,
which are parameterized by deep neural networks, to describe

the distribution of the data space. They have been extensively
used for various applications such as image generation [25],
[26], [50], online learning [51], text generation [52], text-
to-image generation reinforcement learning [51] and out-of-
distribution detection [16], [22], [50]. Maximum Likelihood
Estimation (MLE) is typically used for optimizing DGMs.

Variational Autoencoders (VAEs) [53], [54], [55], [56]
optimize the DGM by marginalizing the distribution of low-
dimensional latent variables. Flow-based models [19], [20]
optimize MLE by log determinants of latent variables com-
bined with a chain of latent variables with the same dimen-
sion. Energy-Based Models (EBMs) [21], [22], [23], [24]
explicitly model the distribution of data, which theoretically
promises a more realistic result, and they use Markov Chain
Monte Carlo (MCMC) [57], [58], [59], [60] for sampling.
Deep diffusion models [25], [26], [27], [28] define a chain of
Markov processes and optimize the likelihood by the approx-
imation of variational lower bound in every single process.
The score-based model [31], [61] defines the gradient of log-
likelihood as a score function and optimizes them by the the-
ory of denoising score matching. The sampling process of the
score-based model includes ODE, Langevin, and Predictor-
Corrector [31], and they have different sampling efficiency
and quality.

Recently, some other work has been designed to com-
bine the benefit of different forms of DGMs. Reference [50]
defines that when the optimal discriminator in GAN is
achieved, the generator can be treated as an EBM. CooperNet
[62] and VAEBM [63] combine the advantages of VAEs and
EBMs, and [64] learns EBM with recovery likelihood like
DDPM. Sliced score matching [30] is also widely used in
EBMs.

Recently, [65] extend the usage of DGM as a data source
for downstream tasks, and they discover that a well trained
generative model can provide a good source of data for
downstream tasks like classification. In this paper, we mainly
explore the effect of the DGM on KD, and analyze how to
provide a proper DGM for KD.

III. DGM FOR KD
A. BASIC SETTINGS
Knowledge Distillation(KD) is formulated by a genera-
tive distribution, and it optimizes the following objective
function:

min
φs
Lkd = Ex∼pθ (x)[KL(pφt (z|x)||pφs (z|x))]. (1)

The distribution of output logit pφ(z|x) typically is some
widely-used discrimination architectures, like ResNet and
VGG. Moreover, in the full-data KD problem, the sampling
process x ∼ pθ (x) is from the data distribution pdata. When
pdata is not available, it falls intoDFKD, and it tends to sample
from the marginal distribution pθ (x) =

∫
pθ (x|z)p(z)dz =

Ez∼p(z)[pθ (x|z)]. Therefore, by using a reparameterize trick,
we model distribution pθ (x|z) by a generator. Then the
optimization of DFKD can be concluded as a likelihood
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TABLE 1. Previous DGMs, as well as their training and sampling strategy.

estimation problem, i.e.,

min
θ

Ex∼pθ (x|z),z∼p(z)[F(pφt (z|x), pφs (z|x))].

DFKD methods focus on the design of different Fs. Dif-
ferent components are implemented as follows:
• Latent code prior p(z), typically N (0, I). Some work
finetunes z for a more balanced class generation.

• Decode process pθ (x|z), typically a generator as a GAN
does.

• Likelihood function F(. . . )typically constraints the
quality of generation, including class balancing, adver-
sarial training, difficulty measuring, or constructive
samples. Previous DFKD methods focus on the design
of the likelihood function.

B. PRELIMINARY ON DGMs
In this section, we explore the design of pθ . As it related to
the distribution of the data space, we can use DGMs. We give
some formulations of recent DGMs.

Generative Adversarial Networks(GANs) [16], [17],
[68]. They are widely-used generative models to get high-
quality images, with two deep networks. Specifically, a gen-
erator Gto model the generative distribution p(x|z), and a
discriminator D to discriminate whether a data sample is real
or fake. The training of GAN is a min-max game, i.e.,

min
G

max
D

F(G,D) = Ex∼pdata[logD(x)]

+ Ez∼p(z)[log(1− D(G(z)))], (2)

When the optimial discriminator D∗is learned (by setting
∂F(G,D)

∂D = 0), the objective function above is to learn
minG JS(pdata(x)||pg(x)) + 2 log 2. There are many variants
to stabilize the training of GAN, including DCGAN [68],
WGAN [16], and StyleGAN [69].We use pretrainedDCGAN
to generate pseudo samples for KD, which is also widely used
in the design of generators in many DFKD tasks.

Variational autoencoders(VAEs) [53], [70]ThoughGAN
achieves great success in generation tasks, the training

TABLE 2. Performance of KD by different DGMs. All results are performed
at CIFAR10.

process of GAN still lacks training stability and thus eas-
ily causes mode collapse. Thus some likelihood estimation
methods are proposed to improve the training stability and
sample diversity. The maximization likelihood estimation is
formulated as

max
θ

Ex∼pdata [log pθ (x)]. (3)

One of the important likelihood estimation ideas is the vari-
ational autoencoder. They optimize Evidence Lower Bound
(ELBO), i.e.

log pθ ≥ Ez∼qφ

[
log pθ (x | z)

]
− DKL

(
qφ(z | x)∥pθ (z)

)
= LELBO. (4)

MLE-based methods. In the context of VAEs, the maxi-
mum likelihood estimation (MLE) technique, represented by
equation 3, is commonly used to optimize the parameters
of the data distribution. However, alternative methods have
emerged recently. The training process for VAEs involves
learning the parameters of θ , followed by obtaining pseudo
data samples from pθ , which is referred to as the generation
process. A summary of the related deep generative models
(DGMs) is provided in Table 1.
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FIGURE 2. The performance of KD by pseudo samples from different pretrained DGMs at different measures of sample quality. We use IS(a) and FID(b)
to measure image quality. Better viewed on screen.

FIGURE 3. t-SNE visualization of the feature map of the last layer of teacher model. The color represents the pseudo label of each pseudo sample,
calculated by yi = arg maxi zt,i . Better viewed on screen.

MLE methods offer a higher theoretical log-likelihood for
the data distribution and are usually optimized using the
Langevin dynamic sampling strategy. The gradient of log-
likelihood is included in all sample update steps to measure
the distance between the data distribution and the learned
distribution. Table 1 summarizes the related DGMs, which
first learn the parameter of θ in the training process and then
obtain pseudo data samples from pθ .

C. PERFORMANCE FOR KD BY DIFFERENT DGMs
In this section, we explore the potential of using pseudo
samples generated by deep generative models (DGMs) for
knowledge distillation (KD) in image generation tasks.
Specifically, we conduct experimental analysis on the perfor-
mance of KD models trained with pseudo samples obtained
from different data distributions pθ . The DGMs used in our
experiments include GAN [17], DDPM [25], [26] and DDIM
[29], JEM++ [67], and score-based models with SDE and
different sampling strategies, such as predictor-corrector (PC)
and ordinary differential equation (ODE) [31]. To obtain the
pseudo samples, we use the pretrained weights of the DGMs
and generate samples from the learned pθ . The generated
samples are then used to train the student models.

The experimental results, presented in Table 2, demon-
strate a substantial enhancement in the performance of KD by
using pseudo samples from the pretrained generative model
to guide the data distribution. However, it is noteworthy that
the pretrained SDEmodel did not perform as well, which will
be discussed in section III-D.
To evaluate the generalization capability of the gen-

erated data, we conducted the same experiments with a
different architecture for the teacher model, specifically

in VGG11 [71], and obtained similar results. Moreover,
we observed better improvements in the vanilla KD struc-
ture. These findings suggest that utilizing different distilla-
tion architectures is crucial for enhancing the quality of the
generated data.

D. RELATIONSHIP BETWEEN IMAGE QUALITY AND KD
PERFORMANCE
Based on the results in Table 2, we conclude that the quality of
the generation stage has a positive impact on the performance
of DFKD, except for the score-based model. To investigate
the reason for this and further improve the performance of
DFKD, we need to examine the distribution of the pretrained
generative models and assess the influence of the data distri-
bution on the performance of KD. In this regard, we use two
commonly used metrics, namely, inception score (IS) [72]
and Fréchet Inception Distance (FID) [73], to measure the
quality of the sampled images from the pretrained DGMs.

The results are presented in Figure 2, which shows that,
although the performance of KD does not increase signifi-
cantly with the higher quality of pseudo samples, the perfor-
mance of SDE is significantly lower than that of othermodels,
despite having high IS and low FID scores. To investigate this
further, we perform t-SNE visualizations of the output fea-
tures of the teacher model for different DGMs in CIFAR10.
We sample 256 images for each method and assign different
pseudo labels to them, using different colors for visualization.

From the visualization results in Figure 3, we observe that
the pretrained GAN model can greatly improve the perfor-
mance of KD.Moreover, the t-SNE visualization of the score-
based model shows that the learned distribution of images
is highly discriminative among different classes but lacks
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diversity within each class, leading to poor performance.
As described in adversarial-based DFKD methods and CMI
[14], data diversity is crucial for the KD task, as it can mine
more challenging samples and improve the robustness of KD.
Therefore, to better utilize DGMs for training KD, we sug-
gest adding the probability flow of adversarial samples to
DGMs.

IV. SAMPLING WITH PRIOR
In the previous section, we explore how different designs of
pθ can affect the output feature map of the teacher model and
the performance of generative KD. However, this information
only offers a limited understanding of the original data distri-
bution and how well the generative KD performs. In this sec-
tion, we propose a more detailed framework called GenKD,
which is inspired by the main idea of DFKD. To extract
knowledge from the KD framework, we aim to estimate
the gradient flow from ∇x−Lkd to ∇θx−. Figure 4 illustrates
the training and generation stages of our GenKD framework,
which involve the following steps: (1) training the EBMmod-
ule using maximum likelihood estimation (MLE) to learn the
energy distribution pθ , as well as leveraging the knowledge
from the pretrained teacher network and pseudo data buffer;
and (2) training the KD model using the pretrained energy
module and pseudo data buffer [7].

A. LOSS FUNCTION FOR IMAGE QUALITY
To extract knowledge from the teacher model and KD frame-
work, as previous work onDFKDhas done [8], [9], [10], [14],
it is crucial to carefully design the downstream loss function
Lc for the KD task.

Adversarial DFKD methods show that generating samples
that are useful for training KD is essential, even though it
goes against the objective of traditional KD. This adversarial
approach can assist EBM in generating challenging samples
for both the teacher and student models.

max
θ
Lkd = Ex−∼pθ

[KL(pφt (y
−
|x−)||(pφs (y

−
|x−))], (5)

Equation 6 can ensure that the positive and negative sam-
ples exhibit similar behavior in downstream tasks. Addi-
tionally, the distribution of the teacher model on generated
data x− and real data x+ should be sufficiently close. This
requirement can be expressed mathematically as follows:

min
θ
Lkl = Ex−∼qθ

KL(pφt (y
−
|x−)||pφt (y

+
|x+)). (6)

Moreover, the generated samples from pθ should be cor-
rectly classified by pretrained teacher model pφt (y|x

−), i.e.,

Lcls = Ex−∼pθ
[−

C∑
i=1

ŷi log(pφt (yi|x
−)]. (7)

Therefore, the total downstream lossLc can be represented
as

Lc = λkl(Lkl − Lkd )+ λclsLcls. (8)

The loss function Lc can be interpreted as the negative
log-likelihood of a distribution pc that is related to the data
distribution. In our approach, we define the condition c as
a random variable that describes the regularization of the
training stage in DFKD. This condition is related to the status
of both the teacher model and the student model. To sample
data from a given DGM, we use the gradient of the log-
likelihood, which is defined as follows:

∇x log pθ (x, c) = ∇x log pθ (x|c)p(c)

= ∇x(log pθ (x|c)+ log p(c))

= ∇x(log pθ (x|c)− Lc). (9)

The likelihood pθ (x|c) is obtained from a pretrained DGM.
As shown in Table 2, despite the availability of a large number
of pseudo labels, EBMs fail to significantly improve the
performance of KD. Therefore, we consider using EBMs
as an example to demonstrate how to fine-tune the DGM
with the downstream probability flow p(c). Since obtaining
an accurate maximum likelihood with EBM is challenging,
we focus on finetuning the DGM instead.

B. CONVERGENT MCMC SAMPLING FOR MLE
At the training stage, the purpose of step (ii) in figure 4 is to
extract the knowledge from teacher models, i.e., we need to
optimize EBMs. The MLE of EBM is to optimize,

max
θ
L(θ ) = Ex∼pdata [log pθ (x)]. (10)

Equation 10 equals minimizing theKL divergence between
generation distribution pθ (x) and real distribution pdata(x).
Therefore, to minimize the negative log-likelihood of EBM,
the gradient is

∂L(θ)
∂θ
= Ex+∼pdata[

∂fθ (x)
∂θ

]− Ex−∼pθ
[
∂fθ (x)

∂θ
]. (11)

fθ (x) represents the negative energy function. When using
label information, it can be reinterpreted as fθ (x, y). How-
ever, the second item of equation 11 is intractable. Thus, the
sampling process x− ∼ pθ can be approximated by MCMC
methods like Langevin dynamics [74]. At a specific time step
t , the update step is

x−t+1 = x−t +
σ 2
t

2
∂fθ (x

−
t )

∂x−t
+ ϵt . (12)

The noise vector ϵt ∼ N (0, σ 2
t I) and the t-step sampling

instance x−t ∼ qtθ , where q
t
θ is the distribution obtained

after t steps of MCMC sampling. If t approaches infin-
ity and σt approaches zero, qθ approaches the pretrained
DGM pθ . However, due to the presence of local modes, the
sampling can result in divergence during the EBM training
process. To overcome this issue, short-run MCMC was pro-
posed by [23] for non-convergent non-persistent EBMs. They
approximate the data distribution pdata instead of maximum
likelihood estimation (MLE). In GenKD, we adopt conver-
gent EBMs to preserve the MLE for downstream KD tasks.
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FIGURE 4. The diagram of GenKD. (a) The training stage of GenKD. (i) Generate label prior distribution p(y ) by pretrained teacher model. (ii) Langevin
MCMC process from replay buffer by equation 12, and compute downstream losses. (iii) Compute and backward the gradient from KD framework.
(iv) Update the EBM and replay buffer, repeat step (ii) until convergence. (b) The generation stage of GenKD. (i) (ii) are the same as (a). (iii) Update replay
buffer. (iv) Train a KD framework by minφs KL(pφt (y |x)||pφs (y |x)). Better viewed on screen.

C. POLICY GRADIENT FOR UPDATING θ

Nowwe update the EBMmodule by the extracted knowledge
from Lc. The learning objective is

min
θ

Ex−∼pθ
[Lc(x)]. (13)

The gradient of equation 13 is calculated as

∇θEx−∼pθ
[Lc(x−)] = Ex−∼pθ

[Lc(x)∇θ log pθ (x)]. (14)

However, the sampling process of x− ∼ pθ is non-
differentiable and non-derivative. To address this issue,
we adopt policy gradient techniques [75], [76] from rein-
forcement learning. Specifically, based on Equations 13 and
14, we consider the update process of θ as choosing the
best paths to decrease Lc and gradually approach the MLE
of EBM. We propose a policy gradient algorithm to update
GenKD, and the details are provided in Section V-B.
Since the Langevin MCMC sampling strategy is a Markov

Chain, we break down the sampling process into several
single-step Langevin processes. By leveraging the Markov
property, we can approximate the expected gradient as
follows:

∇θEx−∼pθ
[Lc(x−)] =

T−1∑
t=0

Lc(xt )∇θpθ (xt+1|xt ) (15)

Here T = ∞ if using convergent persistent MCMC pro-
cess to update, and T ∈ {80, 100} in short-run MCMC by
settings of previous work [23]. In practice, we set T = ∞ by
the design of replay buffer in many previous work [22], [50]
for building a convergent EBM.

D. K-STEP LANGEVIN MCMC POLICY GRADIENT FOR MLE
Specifically, we define the policy πθ in terms of the K -step

Langevin MCMC transition probabilityMθ (x
−

t+K |x
−
t ), which

Algorithm 1 Training Stage of GenKD
Require: Training dataset Ttr , Pretrained teacher model

pφt (y|x), step size σ , noise coefficient ϵ, Replay prob-
ability µ.

Ensure: Generated dataset Tgen
1: Initialize B with U(−1, 1).
2: wt ←Weight of last layer in φt
3: α← f (wt )
4: repeat
5: Sample training batches x+ ∼ Ttr , y ∼ Dir(α)
6: x−0 ∼ B with probability µ otherwise U(−1, 1)
7: s = [].
8: for i = 0 to T − 1 do
9: σk ∼ N (0, σ 2

k I)

10: x−k+1 = x−k +
σ 2
k
2

∂fθ (x
−

k ,y)
∂x−k

+ ϵk

11: s.append((x−k+1, x
−

k ))
12: end for
13: x− = x−T .detach()
14: La = 1

b

∑b
j=1(fθ (x

+, y)− f (x−, y))
{Sample K-steps for policy gradient }

15: t ∼ {0, 1, . . . ,T−K − 1}
16: for i = t to t + K do
17: Lc calculated by equation 8.
18: Lb = SinglePG(t , Lc, s)
19: end for
20: Lcls = CE(pθ (ŷ|x), y)
21: L = La + λaLb + λclsLcls
22: L.backward()
23: until EBM is converged

is similar to the definition of policy in reinforcement learn-
ing. To evaluate the performance of the policy, we can use
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Algorithm 2 Single Policy Gradient step(Single PG)
Require: time step t , downstream loss Lc, sampling list s
Ensure: Reward increment Lb
x−t+1, x

−
t = s[t]

set Gaussian distribution qθ = N (x−t +
σ 2
t
2 sθ (x

−
t ), σ

2
t )

x−t+1 ∼ Mθ (x
−

t+1|x
−
t ) = N (x−t +

σ 2
t
2 sθ (x

−
t ), σ

2
t )

Compute gradient ∂l(θ )
∂θ

by equation 18
Lb = r(x−i , x−i+1) logMθ (x

−

i+1|x
−

i )

the reward function defined as the decrease in the value of
Lc, i.e., r(x−t , xt + K−) = △Lc(x−t , x−t+K ) = Lc(x−t ) −
Lc(x−t+K ). Therefore, we need to find the optimal policy
parameters θ that maximize the expected reward. However,
directly optimizing the objective in Equation 9 can be com-
putationally expensive in deep learning, as it involves O(T )
operations at each forward and backward pass. To mitigate
this issue, we can sample K steps of Langevin MCMC to
estimate the expected reward, as the Langevin MCMC sam-
pling process has a Markov characteristic. The problem can
be defined as,

max
θ

Ex−t+K∼Mθ (x
−

t+K |x
−
t )[r(x

−
t , x−t+K )]. (16)

We can implement a policy gradient algorithm to update θ .
When σt is small, the single-step Langevin MCMC process
is a Markov Process, i.e. x−t+1 ∼ Mθ (x

−

t+1|x
−
t ) = N (x−t +

σ 2
t
2 sθ (x

−
t ), σ

2
t ). Therefore, if Mθ (x

−

i+1|x
−

i ) = Mθ,1, the final
tractable gradient can be derived as,

max
θ

l(θ ) =
t+K−1∑
i=t

Ex−i+1∼Mθ,1
[r(x−i , x−i+1)], (17)

∇θ l(θ ) =
t+K−1∑
i=t

Ex−i+1∼Mθ,1
[r(x−i , x−i+1)∇θ logMθ,1].

(18)

Here the gradient item can be directly calculated due to the
Gaussian distribution ofMθ (x

−

i+1|x
−

i ). The detailed algorithm
specification can be referred to in Algorithm 1 and 2.

V. DISCUSSION ON GenKD
Algorithm 1 samples continuous T steps of the Langevin
MCMC update process for reward calculation and policy
gradient. This process is essential for accurately estimating
the expected reward and updating the policy. In this section,
we present a brief theoretical analysis of GenKD, which aims
to provide insights into the properties of the algorithm and
its performance. This analysis is important for understanding
the strengths and limitations of GenKD and for guiding future
improvements.

A. LIKELIHOOD ESTIMATION
To improve the knowledge distillation process for energy-
based models (EBMs), it is important to understand the effect

of downstream loss Lc on the MLE estimation of the EBM.
Previous DFKD methods have attempted to optimize the
input data x directly, which can lead to getting stuck in local
modes and decrease diversity in the generation stage, harming
the KD task.

Equation 10 presents the MLE estimation of the EBM
distribution pθ , which serves as the foundation for knowl-
edge distillation. The following theorem clarifies that when
optimizing the downstream loss Lc along with the negative
log-likelihood Ex∈pdata [− log pθ (x)], the learned EBM distri-
bution pθ will be sufficiently close to the true data distribution
pdata. This insight can guide the development of more effec-
tive and accurate knowledge distillation methods for EBMs.

B. CONNECTION TO POLICY GRADIENT
The policy gradient algorithm [76] is a commonly employed
technique for function approximation in the field of reinforce-
ment learning [75]. This method involves parameterizing the
policy by θ and updating the value function based on the
gradient of the expected reward with respect to the policy
parameters. For anyMDP, the long-term expected reward per-
step ρ(πθ ) is

∂ρ

∂θ
=

∑
s

dπ (s)
∑
a

∂π (s, a)
∂θ

Qπ (s, a)

The policy is modeled by deep networks [77], so by
function approximation, the parameter of the policy, θ can
be updated with gradients of an approximated function
fπ (s, a) = Qπ (s, a).

Considering GenKD, we can correlate the MDP in
Langevin dynamics with MDP in reinforcement learning.
In this analysis framework, we assume to run ∞ steps of
Langevin dynamics(equation 12). The framework can be,
• State s. The generated sample from specific time step t
at Langevin dynamics.

• Action a. One single step dynamic x t to x t+1.
• Policy πθ . The distribution of single step Langevin
dynamicMθ (x

−

t+1|x
−
t ).

• Approximation function of value function fw. The
negative downstream loss −Lc.

• Stationary distribution dπ (s). Here we set dπ
s as uni-

form distribution because at each time step the distribu-
tion of generated data is close enough.

As explained in the related literature on policy gradient
algorithms, our GenKD model can be considered a specific
framework for function approximation within this class of
methods, allowing for the optimal determination of θ . The-
orem 1 demonstrates that our GenKD framework can theo-
retically enhance the performance of DFKD and enable more
efficient search within a smaller data space.

VI. EXPERIMENTS ON GenKD
In this section, we evaluate the performance of the GenKD
model by examining two aspects: 1) its ability to generate
related image samples to improve the performance of KD,
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TABLE 3. Performance of generation and DFKD compared different methods on CIFAR10, CIFAR100, and SVHN. N : size of pseudo samples, and tinv : GPU
hours for the generation(on 3090TI). GenKD(N): training GenKD without policy gradient, and we set K = 1 in this table.

and 2) its ability to improve the generalization of existing KD
methods. To generate the related image samples, we imple-
ment JEM [50] and JEMPP [67] for generating conditional
pseudo samples. These models can model both generative
models pθ (x) or pθ (x|y), and discriminative models pθ (y|x),
which can benefit the downstream models. However, a minor
difference between our EBM and JEM is that we construct the
conditional distribution pθ (x|y) as EBM instead of the joint
distribution p(x, y).

A. DATASETS AND IMPLEMENTATION DETAILS
We implement our GenKD model on different datasets, and
our implementation is based on Pytorch [78]. The detailed
description of each dataset is:
• CIFAR10 and CIFAR100 [79]. A dataset for the
classification of some scene images with resolution
32× 32× 3.

• SVHN [80]. Real-world image dataset with house
number.

In contrast to JEM, we model the conditional distribution
p(x|y) instead of the joint distribution p(x, y) for the negative
energy function fθ (x, y), i.e., pθ (x|yi) = exp(fθ (x, y)). The
posterior distribution for the classification model pθ (y|x) can
be expressed as:

pθ (yi|x) =
pθ (x, yi)
pθ (x)

=
pθ (x|yi)p(yi)∑C
j=1 pθ (x|yj)p(yj)

.

Thus, compared with the negative energy function f (x, y),
the logit before the softmax operation is li = fθ (x, yi) +
log p(yi). To model the prior distribution of label p(y), we use
the Dirichlet distribution, motivated by [7].We use the frame-
work of JEMPP [67] and set SGLD with noise σ = 0.02 for
all benchmarks.

B. PERFORMANCE ON KD
To evaluate the performance of KD, we first need to deter-
mine whether our re-implemented JEM method is valid for
the downstream KD task. To do this, we compare the inver-
sion capability of DAFL [12], DeepInversion [10] and CMI
[14]. We also implement the KD framework on noise data to
provide a baseline for the generation. For the performance
of DFKD, we set the teacher model as resnet32 × 4 [81]
and the student model as resnet8 × 4 [81]. We use trained
replay buffers as pseudo samples of DFKD and validate the

KD model by the original dataset. All comparison methods
use hyperparameters provided by their respective papers.

We present the quantitative performance of GenKD against
other DFKD frameworks in Table 3. Our comparison mainly
focuses on three aspects: 1) generation performance mea-
sured by IS and FID, 2) DFKD performance evaluated by
student accuracy, and 3) generation time reflecting the time
cost of the training stage. As shown in Table 3, our GenKD
outperforms other DFKD methods in terms of the quality of
pseudo samples and the required data size for effective search,
with less time consumption. Our method also generates high-
quality pseudo samples that are visually appealing compared
to other DFKD approaches. Unlike DFKD, our GenKD is
equipped with data prior and is therefore more focused on
image quality. Incorporating Lc to the model results in some
sacrifice in image quality, but it ensures the superior perfor-
mance of KD by finding pseudo samples that are more ben-
eficial to the training, as opposed to simply generating better
images. The result agrees with our discovery in section III.

In addition, we extend our GenKD model to all datasets
and visualize the generated replay buffer in Figure 5. The
visualization illustrates different instances of samples with
different labels and high-quality pseudo samples, with diver-
sity generation performance.

C. ABLATION STUDY AND HYPERPARAMETER
SENSITIVITY
In this subsection, we explore the performance of generation
and KD with different modules and hyperparameters. Thus,
we check the following factors in our GenKD module:
• The sampling methods: sampling from pθ (x) or
pθ (x|y).The label information can be very important in
training KD.

• The effect of Lc policy gradient item on the perfor-
mance ofKD.Weneed to know if such a plug-inmodule
is valid.

• The sampled steps K for policy gradient. The length
of the Markov chain, we assume it’s related to how we
approach the solution of equation 8.

In addition, various factors such as the starting point of
the policy gradient t , detailed hyperparameters such as λkd
and λcls for the downstream loss, and hyperparameters of the
EBM, such as the step size and data noise, can also play
a critical role. In this section, we specifically examine the
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FIGURE 5. The generation/inversion results of our generation stage sampled by the distribution p(x|y ). We sample one image for each class in dataset
CIFAR100, and 10 images for each class in dataset SVHN and CIFAR10. Better viewed on screen.

FIGURE 6. The quantitative performance of generation (a), (d) and KD (b), (e) sampled from different distributions. (a-c) are from p(x), and (d-f) are from
p(x|y ). The convergence curves of (c) and (f) are plotted with K = 10. Better viewed on screen.

impact of the policy gradient on the generation performance
and the DFKD results.

Sampling strategies.Weuse negative energy function f (x)
or f (x, y) to represent the sample process from p(x) or p(x|y)
in our implementation. When training the EBM, we calculate
the contrastive divergence La for different sampling strate-
gies, following the approach in JEM [50], [67]. Table 4 shows
the quantitative results.

We compare the generation and DFKD performance and
conduct our ablation study experiments on CIFAR100. For
the generation results, when we sample from the marginal
distribution pθ (x), the generation performance can be slightly

better with about 0.13 IS and 0.5 FID score. This improve-
ment is because pθ (x) =

∑C
i=1 pθ (x|y)p(y) aggregates the

information of different classes, and the visual information
learned by the distribution can increase the diversity among
different classes.

Effect of Lc on KD performance. In Table 4, we present
quantitative results on the effect of adding downstream loss
Lc for downstream tasks. In the table, we set Lc to ‘N’
when we do not implement lines 15 to 20 in Algorithm 1.
We observe that as the number of sampling stepsK increases,
the generation quality initially improves, then reaches a peak
and begins to decline. Simultaneously, the performance of
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TABLE 4. The effect of sampling steps K for policy gradient. During KD,
the teacher model is resnet32 × 4, and the student model is resnet8 × 4.
The top-1 accuracy on the teacher model is 72.09%. The size of training
pseudo samples is 40000.

KDalso improves, indicating that knowledge can be extracted
from the EBMs. This implies that not only can the distribution
pφt (y|x) learned by the teacher model be useful, but the data
distribution p(x) can also be learned. Figure 6 provides visual-
izations of the performance and convergence of our GenKD.

To evaluate the performance of DFKD, we use the same
teacher and student networks as in the previous experiments.
The last column of Table 4 presents the quantitative result
of DFKD on the CIFAR100 dataset, and figures 6b and 6e
show the student accuracy for different sampling steps K .
Both results demonstrate that the student accuracy increases
with increasing K in class-conditional samples. Figures 6f
and 6c depict the convergence of Lc with different sampling
strategies, and in both cases, we observe a decrease in Lc.

VII. CONCLUSION AND FUTURE WORK
In this paper, we investigate the influence of Deep Generative
Models (DGMs) on Knowledge Distillation (KD) perfor-
mance. DGMs learn a data distribution with varying degrees
of likelihood function smoothness. We observe that, besides
the quality of the sampled pseudo samples, the smoothness
of the output distribution is also crucial for KD performance.
Specifically, as the log-likelihood and the quality of the
sampled pseudo samples increase, the KD performance first
improves and then deteriorates. We further analyze the effect
of distribution smoothness through tSNE visualization of
teacher features.

Besides, this paper proposes GenKD as a novel approach to
improve the performance of DFKD by treating the EBM as a
plug-in module. Our method updates data by minimizing the
divergence between the generated data distribution pθ and the
real data distribution pdata, and the search process takes place
in the distribution space, which makes it more robust, easier
to generalize, and faster. The use of policy gradient enables us
to update the parameters effectively, and theMarkov property
of Langevin MCMC further improves the performance. Our
approach also allows for greater control over the generation
process, leading to improved KD training results.

As a potential avenue for future research, we suggest two
directions to improve GenKD. Firstly, it would be beneficial

to investigate variants of recent DGMs such as diffusion-
based EBMs [64] and VAEBMs [63]. These models could
offer a tighter approximation of gradients, which may lead to
further improvements in performance. Secondly, we propose
that the EBM module could be applied to other downstream
tasks such as zero-shot and few-shot learning. This extension
would significantly expand the utility of deep generative
models beyond KD.
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