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ABSTRACT For the characteristics of fluctuation, periodicity and nonlinearity of power load data, this
paper proposes a short-term power load forecasting model based on VMD-Pyraformer-Adan. Firstly, the
variational modal decomposition (VMD) algorithm is used to modally decompose the electric load data, the
over-zero rate and Pearson correlation coefficient are introduced to divide the modal components to obtain
the low-frequency, mid-frequency and high-frequency parts, and the reconstructed data are formed with
the original load data respectively. Secondly, the reconstructed data are input to the Pyraformer prediction
network containing pyramidal attentionmodule (PAM) and coarse-scale constructionmodule (CSCM). Then
a new momentum optimizer Adan is used to optimize the parameters of the prediction network. The final
output prediction results. The experimental results show that the proposed model in the paper exhibits higher
prediction accuracy compared with other models.

INDEX TERMS Short-term electric load forecasting, variational modal decomposition, pyramidal attention
model, Adan optimizer.

I. INTRODUCTION
Electricity load forecasting plays an important role in the
scheduling andmaintenance of power grids and other aspects,
and it is of great significance to deal with the challenges
brought by power development [1], [2]. Therefore, power
load forecasting has become an important research direction
for power grid operation and maintenance.

Short-term power load data are characterized by high
volatility and randomness, so the difficulty of power load
forecasting is increasing, and the forecasting methods are
constantly being improved and optimized. At present, the
methods of electric load forecasting can be divided into
three categories: mathematical statistics-based, traditional
machine-learning-based and deep learning-based forecast-
ing methods. Mathematical statistics-based methods include
autoregressive model (AR) [3], autoregressive integrated
moving average model (ARIMA) [4], Kalman filtering [5],
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and exponential smoothing [6]. Mathematical statistical
methods are fast to fit, but require very high smoothness
and accuracy of the data, and are less effective for fit-
ting nonlinear series [7]. Traditional machine learning-based
methods include random forest [8], support vector machine
(SVM) [9], and decision trees [10]. These machine learning
methods have the ability to learn nonlinear relationships in
sequences, but they are not efficient and practical for anal-
ysis with large data sets, fail to take full advantage of the
temporal information in load sequences, and have difficulty
capturing the potential temporal dependence between out-
puts and inputs [11]. As an extension of machine learning,
deep learning-based methods with powerful feature mining,
nonlinear mapping, and adaptive capabilities include con-
volutional neural network (CNN) [12], deep belief network
(DBN) [13], residual network (ResNet) [14], and recurrent
neural network (RNN) [15]. In recurrent neural networks,
long short-term memory (LSTM) [16] and gated recurrent
unit (GRU) [17] are widely used. However, traditional RNN
suffer from gradient disappearance and lack the ability to
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capture long-term dependencies [18]. For LSTM and GRU,
problems such as dilution of historical information and loss
of sequence information persist when the input sequence
is too long. Based on this, the Google team proposed the
Transformer model based on the attention mechanism [19],
which has a stronger ability to capture long-range correlation
information by learning the correlated temporal informa-
tion in a sequence through its special attention mechanism.
Based on the Transformer model, Liu et al. [20] proposed a
low-complexity pyramidal attention model - Pyraformer for
time series modeling and prediction. This method captures
temporal dependencies at different scale ranges simultane-
ously in a multi-resolution manner through pyramidal atten-
tion, and is able to capture temporal correlations over longer
distances with the same spatio-temporal complexity.

Since direct prediction of load data often fails to achieve
optimal prediction, the current research trends among schol-
ars are divided into the following three areas: (i) adding
data processing methods for enhancing the characteristics
of data before prediction networks; (ii) exploring more effi-
cient and accurate prediction networks; (iii) pursuing more
efficient parameter optimizers for parameter optimization.
Fan et al. [21] proposed a DBN prediction model based
on empirical mode decomposition (EMD). During the train-
ing process of DBN, multi-objective optimization models
are constructed for accuracy and diversity, and the model
parameters are optimized using the MOEA/D optimizer. But
the number of EMD decompositions is unstable and will
component with white noise, which increases the prediction
difficulty [22]. Unlike EMD, variational mode decomposition
(VMD) uses a variational model to determine the relevant
frequency bands and extract the corresponding modal com-
ponents with better noise immunity and theoretical basis [23].
Jia et al. [24] proposed a combined VMD-ISSA-GRU predic-
tion model. The load data are first modally decomposed using
the VMD algorithm, and then all subsequences and residuals
of the VMD are predicted using the ISSA-optimized GRU
network, and this method can effectively avoid the modal
confounding phenomenon that occurs in EMD decomposi-
tion. Sun et al. [25] combined VMDwith SG filter (Savitzky-
Golay Filter) and proposed a combined VMD-SG-LSTM
prediction model, where the data were noise reduced using
SG filter after VMD decomposition, and then the recon-
structed data were input to LSTM network for prediction to
improve the model prediction accuracy.

Based on the advantages and shortcomings of the above
prediction methods, a combined VMD-Pyraformer-Adan
prediction model is proposed in this paper. First, the power
load data are decomposed using the VMD algorithm, the
over-zero rate and Pearson correlation coefficient are intro-
duced to divide the modal components to obtain the low-
frequency, mid-frequency and high-frequency parts, and the
reconstructed data are formed with the original load data
respectively. Secondly, the reconstructed data are fed into the
Pyraformer network for training, and the parameters in the
neural network are optimized using Adan optimizer to finally

output the electric load prediction results. The contributions
of this paper are as follows.

(1) The power load data are decomposed by VMD, and
the low-frequency, medium-frequency and high-frequency
parts contain different features, which are reconstructed
with the original load data and input into the prediction
network respectively, without causing feature loss, which
can effectively improve the accuracy of the prediction
model.

(2) The pyramidal attention-based Pyraformer is able to
capture the long-range dependencies of the time series despite
the low complexity, which further improves the prediction
accuracy and convergence speed of the model in combination
with the features of the Adan optimizer.

(3) A VMD-Pyraformer-Adan forecasting model is pro-
posed to combine the advantages of each module for power
load forecasting, which shows better forecasting performance
when compared with other models.

This paper is organized as follows: the section II conducts
theoretical analysis of each module of the model and the
overall structure of the power load forecasting model pro-
posed in this paper is stated and model evaluation metrics are
proposed; the section III conducts an arithmetic analysis to
verify the forecasting performance of the model on a real data
set; the section IV concludes the paper with conclusions and
an outlook for future work.

II. FUNDAMENTALS OF THE MODEL
A. VARIATIONAL MODE DECOMPOSITION
The VMD is a data processing method for processing
non-stationary time series signals that integrates Hilbert
transform, alternating direction multiplier, and Wiener fil-
ter [23], [26]. The original signal f (t) is decomposed into
a predefined set of K eigenmodes with different frequency
characteristics uk with the constraint that the sum of all
modes is equal to f (t). The variational problem of the
VMD algorithm under the constraint is formulated as
follows.

min
{uk }{wk }

{∑
k

∥∥∥∥∂t

[
(δ(t) +

j
π t

)∗uk (t)
]
e−jwk t

∥∥∥∥2
2

}
(1)

s.t.
∑

k
uk = f (2)

where uk is the K modal components obtained after decom-
position; wk is the center frequency of each mode; δ(t) is the
unit pulse function; ∗ is the convolution operation.

By introducing the Lagrange multiplier operator λ and the
quadratic penalty factor α into equation (1) and turning it into
an unconstrained variational model, we obtain.

L ({uk} , {wk} , λ) = α
∑

k

∥∥∥∥∂t

[(
δ (t) +

j
π t

)
∗ uk (t)] e−jwk t

∥∥∥2
2
+

∥∥∥f (t) −

∑
k
uk (t)
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+ ⟨λ(t), f (t) −

∑
k
uk (t)⟩ (3)
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The variational model is optimized by the alternating direc-
tion multiplier method, and un+1

k , wn+1
k and λ are updated

iteratively to seek the ‘‘saddle point’’ of equation (3) in the
iterative optimization sequence, and then to find the optimal
solution of equation (1). The updated equation is as follows.

ûn+1
k (w) =

f̂ (w) −
∑
i̸=k

û(w) +
λ̂(w)
2

1 + 2α(w− wk )2
(4)

wn+1
k =

∫
∞

0 w
∣∣ûk (w)∣∣2 dw∫

∞

0

∣∣ûk (w)∣∣2 dw (5)

λ̂n+1(w) = λ̂n(w) + τ (f̂ (w) −

∑
k
ûn+1
k (w)) (6)

where ûn+1
k (w) is the Wiener filter corresponding to each

modal component; f̂ (w) , ûk (w) , λ̂n(w) are the Fourier trans-
forms of f (t), uk (t), λ (t), respectively. wn+1

k is the frequency
center of each modal component, τ is the noise tolerance
of the signal, and n is the number of iterations. Define the
maximum number of iterations as N such that n satisfies
n≤ N . There exists any ε > 0, and the convergence condition
equation (7) is satisfied when the iteration is completed.

∑
k

∥∥∥ûn+1
k − ûnk

∥∥∥∥∥ûnk∥∥ < ε (7)

The overall flow of VMD decomposition is shown
in Figure 1.

In the VMD decomposition, a method based on the
improved signal energy (ISE) is used to select the value of K .
That is, the parameter K can be determined when the ratio of
the residual energy to the original energy (Erse) is sufficiently
small and there is no significant downward trend [27]. The
equation is as follows.

Erse =

∑N
n=1

∣∣∣f (n) −
∑K

k=1 uk (n)
∣∣∣2∑N

n=1 f (n)
2

× 100% (8)

After the VMD decomposition is completed, K intrin-
sic mode functions (IMF) with different frequencies are
obtained, and this paper uses the over-zero rate to measure
the frequency of these K mode subsequences.

Z = nzero/N (9)

where Z is the over-zero rate, nzero is the number of over-
zeros, and N is the sample length.

B. PYRAFORMER NETWORK
Pyraformer is a neural network based on pyramidal attention.
Each module of the Pyraformer network is described in detail
next.

1) PYRAMIDAL ATTENTION MODULE
To capture different ranges of temporal dependencies, the
pyramidal attention module (PAM) is introduced, as shown
in Figure 2.

FIGURE 1. VMD decomposition flowchart.

FIGURE 2. Pyramidal attention module, PAM.

The module uses a tree structure to perform self-attention,
extracting features at different resolutions through inter-scale
connectivity and intra-scale connectivity to model the depen-
dencies at different scales. In the pyramid graph structure,
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the nodes at the bottom level represent the observed values
at each moment, the nodes at the upper level extract features
from the nodes at the lower level, and by connecting the
nodes at each level, the relationship between each node can be
found. Since the nodes in the upper layer contain information
extracted from the nodes in the lower layer, and the nodes in
the upper layer have already extracted and modeled features
for long time sections of information, only the relationships
between neighboring nodes need to be considered in each
layer, reducing the complexity. This pyramidal graph struc-
ture is utilized to characterize the temporal dependencies in
the sequence in a multi-resolution manner.

As shown in Figure 2, from inside to outside, the
blue dashed line indicates the self-attention of each node,
the orange dashed line indicates the information exchange
between nodes within the same scale, the green dashed line
indicates the information exchange between nodes of dif-
ferent scales, and the red dotted line indicates the maxi-
mum information propagation path required for information
exchange between any two nodes.

2) COARSE-SCALE CONSTRUCTION MODULE
Coarse-scale construction module (CSCM) summarizes
the embedded sequences at different scales and builds a
multi-resolution tree structure, which in turn uses PAM to
efficiently exchange information between nodes. The CSCM
module introduces coarse-scale nodes scale by scale from
the bottom to the top by performing a convolution on the
corresponding sub-nodes CS . As shown in Figure 3, several
convolutional layers with kernel size C and step size C are
applied sequentially to the embedded sequences in the time
dimension, resulting in sequences of length L/CS . These
fine-to-coarse sequences are concatenated and fed to the
PAM. To reduce the number of parameters and computation,
each node is downscaled through a fully connected layer
before feeding the sequence to the cascaded convolutional
layers and recovered after all convolutions. Such a structure

FIGURE 3. Coarse-scale construction module, CSCM.

significantly reduces the number of parameters in the module
and prevents overfitting.

Where B is the batch size, L is the sequence length, D rep-
resents the feature dimension of each node, and DK denotes
the feature dimension of the key vector.

The flowchart of pyraformer prediction network is shown
in Figure 4.

FIGURE 4. Pyraformer network flowchart.

3) ADAN OPTIMIZER
The Adan optimizer was proposed by Xie et al. [28], which
combines the advantages of adaptive optimizers, Nesterov
impulses, and decoupled weight decay strategies to provide
faster convergence than previous adaptive gradient algo-
rithms, and can withstand larger learning rates and batch
sizes, as well as enable dynamic L2 regularization of the
model parameters. Adaptivemoment estimation (Adam) opti-
mizer is a common and effective gradient descent algorithm
that uses the reball method impulse paradigm, but there are
still some drawbacks: (i) the adaptive algorithm is similar to
the effect of overlearning, and the generated model is over-
fitted when facing the overall distribution; (ii) the learning
rate of Adam may change drastically during the optimization
process, which may cause Adam not to converge, or miss
the global optimal solution. While the Adan optimizer uses
the Nesterov impulse algorithm, the Nesterov algorithm uses
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the impulse to find an extrapolation point when calculating
the gradient, completes the gradient calculation at that point
and performs the impulse accumulation. The extrapolation
point helps the Nesterov algorithm to sense the geometric
information around the current point in advance, and does not
simply rely on past impulses to bypass sharp local minima,
but adjusts the direction of parameter updates by observing
the surrounding gradients in advance. The operation of the
Adan Optimizer is shown in Figure 5. This feature makes this
optimizer more suitable for complex training paradigms and
model structures.

FIGURE 5. Adan optimizer flowchart.

C. PREDICTIVE MODEL STRUCTURE
In this paper, the VMD algorithm, Pyraformer network and
Adan optimizer are selected for data processing, network
structure and optimizer selection for power load forecast-
ing, i.e. VMD-Pyraformer-Adan forecasting model, and the
model structure is shown in Figure 6.
In the VMD decomposition module, the parameter K is

selected according to equation (8). The power load data are
decomposed by VMD to obtain IMF components with dif-
ferent frequencies, and the multiple components are divided
into low-frequency, mid-frequency and high-frequency parts
using the over-zero rate and PCC analysis. The divided com-
ponents are separately formed into reconstructed data with

FIGURE 6. VMD-pyraformer-adan forecasting model.

the original data. Since the modal components of differ-
ent frequency bands contain different features, the parame-
ters of neural network learning are not uniform. Therefore,
we choose to input the reconstructed data consisting of high,
medium and low frequency components with the original
data respectively to the respective prediction networks for
learning. VMD decomposition of the load data before input
to the prediction network can effectively decompose the load
signal into several sets of signals with finite bandwidth and
center frequency, which has a better signal processing effect
of anti-noise and anti-volatility, and reduces the occurrence
of modal blending phenomenon and endpoint effect, which
can effectively extract the features of the electric load data,
and the reconstructed data input to the network for feature
extraction and prediction The prediction accuracy can be
effectively improved.

In the Pyraformer prediction network, the reconstructed
dataset is fed into the network model. The coarse-grained
nodes on the pyramid structure are first initialized through the
CSCM module, which summarizes the embedded sequences
at different scales and builds a multi-resolution tree struc-
ture. Next, the PAM module is used to efficiently extract
and exchange information between nodes to further capture
different ranges of temporal dependencies. The Pyraformer
model based on pyramidal attention is able to capture the
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FIGURE 7. Power load data.

long-range dependencies of time series and has a faster con-
vergence rate with the addition of Adan optimizer. Therefore,
the VMD-Pyraformer-Adan power load forecasting model
proposed in this paper makes improvements in data pro-
cessing, network structure and optimizer selection, and the
low-frequency components containing the main features of
the original data are obtained by VMD decomposition and
data reconstruction with the original data. The feature extrac-
tion capability of Pyraformer for time series and the param-
eter optimization capability of Adan optimizer are used to
obtain the final power load prediction values to achieve accu-
rate prediction of power load data and improve the prediction
performance of the model.

D. MODEL EVALUATION METRICS
In order to evaluate the prediction performance of the model,
root mean square error (RMSE) and mean absolute percent-
age error (MAPE) are chosen as the evaluation indicators
in this paper. RMSE is often used to measure the deviation
between the predicted and true values, and MAPE considers
not only the deviation between the predicted and true values,
but also the ratio between the deviation and the true values.
yi denotes the true value, ȳi denotes the predicted value, and
n denotes the total number of samples. Smaller values of
RMSE and MAPE represent more accurate load prediction.
The calculation formula is as follows.

RMSE =

√
1
n
(
∑n

i=1
yi − ȳi)

2
(10)

MAPE =

∑n

i=1

|yi − ȳi|
yi

× 100% (11)

III. SIMULATION ANALYSIS OF ALGORITHMS
A. DATASET
The dataset used in this paper is derived from the pub-
lic dataset of the Belgian grid company Elia’s electricity

load [29]. It includes net generation measured from local
power stations injecting electricity into the Elia grid, net
inflows from distribution to the Elia grid and net imports at
the border. The dataset is selected from the electricity load at
15-minute intervals from January 1, 2018 to December 31,
2019, with a total length of 70080. The data set is divided
into a training set and a test set, where the training set is used
for model learning training and parameter tuning, and the test
set experimental results are used to evaluate the prediction
effectiveness of the proposed model. The electric load data
situation is shown in Figure 7.

B. VMD DECOMPOSITION
The power load data are input to the VMD module for
decomposition. In the VMD algorithm, the quadratic penalty
factor α = 2000, the noise tolerance τ = 0, the K value is
selected by the improved signal energy (ISE) method, and the
remaining parameters are default values.

To determine the K value, keep the other parameters con-
stant, decompose the power load data into the corresponding
IMF components and residual signals, and find the ratio of
residual energy to the original energy at different K values
according to equation (8), as shown in Figure 8.

FIGURE 8. Erse at different K values.
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FIGURE 9. Original signal and decomposed IMF components.

As can be seen from Figure 8, when K = 3, Erse≤1%, but
at this time the Erse curve still has a significant downward
trend; when K = 4, Erse = 0.567%, and the downward
trend tends to level off. Therefore, it can be determined that
K = 4 is the appropriate modal number. The results of
the power load data after VMD decomposition are shown
in Figure 9.

The power load data are decomposed into multiple IMF
components by VMD decomposition, and the over-zero rate
of each component is calculated according to equation (9),
as shown in Table 1.

TABLE 1. Over-zero rate of each intrinsic mode function.

As can be seen from Table 1, the modal components IMF1,
IMF2, IMF3, IMF4 and Residual increase in frequency in that
order.

C. PCC ANALYSIS
Pearson correlation coefficient (PCC) analysis refers to
the analysis of two or more elements of variables with
correlation, with the aim of analyzing the degree of

correlation between two variables, so as to measure the close-
ness of the correlation between two variable factors, calcu-
lated as in equation (12).

ρXY=
Cov(X ,Y )

σXσY
=

∑n
i=1 (Xi−E(X ))(Yi−E(Y ))

σXσY

n
(12)

where ρXY is the correlation coefficient between variable X
and variable Y ;Cov(X,Y)denotes the covariance between vec-
tors; σX and σY are the standard deviations of variable X and
variable Y , and E denotes the mathematical expectation.
PCC analysis was performed on each modal component

and the results are shown in Table 2.

TABLE 2. Correlation of each modal component.

According to the results in Table 1 and Table 2, we divide
IMF1 as the low-frequency part, IMF2 and IMF3 as the
medium-frequency part, IMF4 and Residual as the high-
frequency part. Next, the data from each of the three parts
and the original load data are composed into reconstructed
data and fed into the prediction network.
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D. ANALYSIS OF SIMULATION RESULTS
1) PYRAFORMER NETWORK PARAMETERS SELECTION
The selection of appropriate model parameters plays a crucial
role in the predictive performance of the model. Here, the
appropriate model parameters are determined by univariate
comparison experiments. First, the number of attention lay-
ers, attention heads and Batch size are set as default values,
and the parameters to be adjusted are changed according to
the univariate principle. During the experiment, epoch = 10,
the number of neighboring nodes for information transfer of
child nodes in PAM is 3 (including itself), and the number of
child nodes for information transfer of parent nodes is 4.

In the process of selecting the model parameters, the
MAPE of the optimal generation and the average training
time per generation were selected as evaluation indicators.
According to the single variable principle, keeping other
parameters constant and changing the number of attention
layers, the results were obtained as in Table 3.

TABLE 3. Batch size comparison.

In the training process, if the Batch size is set too small,
it is easy to fall into the local optimum and cannot get the
global optimum solution; if it is set too large, the gradient
update direction is not accurate and the error loss is not easy
to converge to the minimum value.

According to the experimental results in Table 4, the
optimal Batch size is selected as 4. According to the same
method, the optimal number of attention layers is 6 and the
optimal number of attention heads is 4.

2) OPTIMIZER COMPARISON
In the network parameter optimization section, the Adan
optimizer selected in this paper is compared with the current
mainstream Adam optimizer. The MSE loss curves under the
two optimizers are shown in Figure 10.
It can be seen from Figure 10 that the Adan optimizer

converges faster than the Adam optimizer, verifying the fast
convergence of the Adan optimizer.

3) OVERALL MODEL COMPARISON
In order to verify the superiority of the proposed model,
experiments are conducted to compare themodel in this paper
with other models under the same conditions to predict the
future electric load data. Experiments 1, 2, 3, and 4 are

FIGURE 10. Loss curves under two optimizers.

FIGURE 11. Comparison of model prediction results.

TABLE 4. Comparison of the models.

used to verify the significant effect after adding each module
algorithm. Experiments 6, 7, and 8 experiments are compared
with the predictionmodels proposed by others [30], [31], [32]
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for verifying the superiority of the combined model in this
paper. The experimental results are shown in Table 4.
Comparing the model in this paper with the models in

Table 4, the model in this paper outperforms the other
models in terms of MAPE and RMSE. Compared with the
other models, MAPE is reduced by 0.03% - 0.81% and
RMSE is reduced by 2916-88632 MW, finally reaching the
optimal accuracy. The model prediction results are shown
in Figure 11.

As can be seen from Figure 11, the model in this paper
can learn the potential characteristics of the power load data
when the power load data changes sequentially or abruptly,
and the prediction curve fits the real data curve more closely
than other models, achieving a better prediction effect.

IV. CONCLUSION
Due to the volatility, periodicity and nonlinearity of power
loads, this paper proposes a VMD-Pyraformer-Adan model
for short-term power load forecasting. The VMD algorithm is
used to decompose the electric load data, and the frequency of
the modal components is measured using the over-zero rate,
and then combined with the Pearson correlation coefficient
analysis to divide the high, medium and low frequency com-
ponents. Next, the original data are combined with each of
the three modal components to obtain three sets of recon-
structed data, which are fed into the Pyraformer network for
training. While the Pyraformer network is being trained, the
parameters in the neural network are optimized using the
advantage of fast convergence of the Adan optimizer, and
the final output of the electric load prediction results. Then
comparing the prediction model proposed in this paper with
other prediction models, the model in this paper shows good
performance and fitting effect, which can improve the accu-
racy of short-term power load prediction, with the following
advantages.

(1) The Pyraformer model based on pyramidal attention
is able to capture the long-range dependencies of time series
and can accurately predict power load data, with faster con-
vergence speed after adding Adan optimizer.

(2) After the nonlinear and volatile power load series are
decomposed byVMD, themodal components of different fre-
quency bands contain different features, which can improve
the accuracy of the prediction model as one of the inputs of
the prediction network.

(3) Compared with the existing models, the VMD-
Pyraformer-Adan model proposed in this paper has a higher
accuracy in short-term power load forecasting as the pre-
dicted values match the true values more closely.

Although the model in this paper shows good prediction
performance, it still has certain shortcomings. The next step
will be to further explore the data characteristics of electric
load, improve the prediction network structure, and find the
parameter automatic optimization algorithm to optimize the
parameters in order to further improve the short-term electric
load prediction accuracy and efficiency.
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