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ABSTRACT Security is paramount in public places such as subways, airports, and train stations, where secu-
rity screeners use X-ray imaging technology to check passengers’ luggage for potential threats. To streamline
this process and make it more efficient, researchers have turned to object detection techniques with the
help of deep learning. While some progress has been made, there are few comprehensive literature reviews.
This paper provides a comprehensive overview of the standard object detection algorithms and principles
in X-ray dangerous goods detection. The article begins by classifying and describing the more popular
deep learning object detection techniques in detail and presenting the commonly used publicly available
datasets and metrics. And then go on to summarize previous applications of deep learning techniques in
X-ray dangerous goods detection, highlighting their successes and limitations. Finally, based on an analysis
of the experimental results, it summarizes some of the limitations of deep learning in X-ray baggage detection
thus far. It offers insights into the future of this exciting field. With this review, we hope to provide valuable
insights and guidance for those seeking to improve public safety through X-ray imaging and deep learning

technology.

INDEX TERMS Object detection, deep learning, x-ray image detection, baggage security, yolo.

I. INTRODUCTION

X-ray baggage security screening is essential to maintaining
public safety in airports, train stations, and subways. In the
past, this process was primarily performed by hand, relying
on the experience and knowledge of security staff. How-
ever, this manual approach was prone to human error and
could be impacted by factors such as fatigue and emotional
turmoil [1]. A fully automated approach to X-ray baggage
security screening is required to overcome these limitations.
In this regard, deep learning object detection techniques offer
new hope for achieving fully automated detection.

The task of object detection is one of the most fundamental
tasks in the field of computer vision. Getting computers to
recognize objects in their field of view, especially dangerous
materials in luggage backpacks, has been difficult. With the
rise of new generation deep learning techniques such as Con-

The associate editor coordinating the review of this manuscript and

approving it for publication was Zhongyi Guo

volutional Neural Network (CNN) and Transformer [2], [3],
which completely replaced the original hand-made feature
extractors [4], and have achieved stunning results.

The current mainstream trend is towards hybrid algorithms,
as they combine the advantages of CNN and Transformer
algorithms, with the former specializing in extracting texture
constructs from images and the latter preferring to extract the
contour features of the object [5]. Figure 1 lists some of the
most representative algorithms in categories.

On the other hand, as a particular type, X-ray images have
always been a focus of research in computer vision. However,
the imaging principle of X-ray images differs from that of
ordinary images in natural light, which leads to poor detec-
tion of ordinary algorithmic models on X-ray data sets [76].
An increasing number of researchers are conducting focused
research and developing various algorithms to alleviate these
problems:

e In terms of research content, it can be divided into
two main points: Firstly, from a model perspective,
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FIGURE 1. Overview of CNN-based, Transformer-based and hybrid algorithms.

it focuses on improving the accuracy of detection tasks
under multiple overlapping obstacles or in pseudo-color
images. Secondly, from a data perspective, it focuses
on using deep learning techniques to synthesize bet-
ter pseudo-color images similar to natural images and
how to quickly and efficiently expand X-ray datasets to
improve the final recognition accuracy.

« In terms of research approaches, there are three main
types: image classification, object detection, and object
segmentation. In practical applications, these three types
of algorithms are often combined in order to improve
the final recognition accuracy. The primary pieces of
literature are shown in figure 2.

We are motivated by the fact that few articles have provided
adetailed and comprehensive summary of deep learning algo-
rithms and their applications in X-ray hazardous materials
detection. This paper provides a comprehensive review of
object detectors based on CNN, Transformers, and hybrid
algorithms and a summary of their application to the X-ray
image security screening field to fill this gap. The main
contributions of the article are:

o An introduction to the popular object detection algo-
rithms so far and an overview of their classification,
including CNN-based, Transformer-based, and hybrid
algorithms.

o A series of models for applying deep learning algo-
rithms in X-ray baggage hazardous materials detection
are described in detail.

« Experiments using different detection algorithms on an
open dataset of X-ray baggage and giving meaningful
analytical results.

o The article provides an outlook on the application of
deep learning algorithms in the field of X-ray image
security detection.
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The other sections of this paper are organized as follows:
Section 2 introduces the basic principles of object detection
algorithms, the differences between CNN and Transformer
algorithms, and the principles of X-ray imaging; Section 3
details each of the three types of object detection algo-
rithms according to their algorithmic structure, namely, CNN-
based, Transformer-based, and hybrid algorithms; Section 4
describes the application of deep learning to X-ray hazardous
material detection, including classification, detection, and
segmentation. In section 5, four algorithms (YOLOVS5 [96],
YOLOvV7 [27], DINO [43], and Next-ViT [72]) are used to
perform dangerous goods detection on the publicly available
X-ray baggage dataset and give a meaningful analysis of the
results; Section 6 provides a summary and outlook, showing
the shortcomings of current deep learning algorithms applied
in X-ray security screening and looking into the future.

Il. BACKGROUND

A. DEEP LEARNING ARCHITECTURE

Object detection aims to localize and identify the targets in
the given image. Locating the number and class of objects
can become quite challenging due to the masking, exposure,
and perspective of the objects in the image. It is necessary for
the computer model to overcome these problems to the best
of its ability and to consider timeliness [97]. Three common
backbone architectures are listed below.

1) CNN-BASED BACKBONE

Krizhevsky et al. [2] won the 2012 ILSVRC (ImageNet

Large-Scale Visual Recognition Challenge) due to its out-

standing performance, quickly making CNN the first choice

for handling various tasks in the field of computer vision.
Many classical CNN feature extraction networks have

emerged, including VGG [6], GoogLeNet [7], ResNets [8],
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Trans [77], DualEnergy (78], GansX [79; 80], CHR [81], Ganomaly [? ], CNNX [82], MultiViewX [83].
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DDoAS [94], TensorX [95].

FIGURE 2. Overview of deep learning algorithms in the field of X-ray baggage dangerous goods detection.

ResNeXt [98], CSPNet [99], EfficientNet [16]. These net-
work structures are shown in figure 3.

Take VGG—16 as an example, and its specific structure is
shown in figure 4.! The process of extracting features from
the convolutional layer is shown in equation 1.

Nl—l
=0 x7wl 4, 1)
i=1

where x]l. denotes the jy; feature of the [/, layer, N denotes
the number of features, wf’ ; denotes the convolution kernel
of the Iy, layer, b denotes the corresponding bias term, and
o denotes the nonlinear function ReLu. It has been shown
that CNN is not good at processing high-frequency noise
in images, so they are more biased in extracting the texture
features of images [100].

2) TRANSFORMER-BASED BACKBONE

The transformer was used to solve problems such as machine
translation in the NLP domain [101], and its structure is
shown in figure 5. After the great success of the Transformer-
based model, [3] applied it to the image classification task
and proposed the ViT model [3], which structure is shown
in figure 6. Later, the ViT model and its variants are applied
in various computer vision tasks, including object detection,
scene segmentation, and so on [102], [103], [104], [105],
[106].

A large part of the reason why transformer is so successful
is attributed to the attention mechanism, namely the multi-
head self-attentions (MSAs) [107]. Specifically, given the
query matrix Q € RM*Pk the key matrix K € RM*Px,
and the value matrix to be matched V. € R™*Dv where N
and M denote the lengths corresponding to Q and K, and Dy
and D, denote the dimensions corresponding to K and V. The
computation process is as follows:

T

K )V—AV 2)
Dy N ’

Attention(Q, K, V) = softmax (Q

.
where the attention matrix A = softmax (%) The dot

product of Q and K divided by /Dy, can alleviate the gradient
vanishing problem of the softmax function.

Besides, the training process of MSAs can be viewed as the
process of smoothing the feature mapping space, as shown
in figure 7. The subfigure (a) is the Loss-Landscape of

1Drawing tool from https://github.com/HarisIgbal88/PlotNeuralNet
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ViT before smoothing, and (b) is the Loss-Landscape after
smoothing using SAM [108]. The flatter Loss-Landscape, the
better model performance and generalization ability. It is also
shown in equation 2 that a positive average eigenvalue map-
ping enhances the performance of MSAs, while a negative
value disrupts the optimization of the model. This provides a
direction for optimizing ViT. The reason why ViT requires
a large amount of data for pre-training to achieve better
results is that a large amount of data can help the model
suppress negative Hessian eigenvalues in the early stages of
training to achieve the effect of smoothing Loss-Landscape
and convexity of Loss [5], [109]. [110] shows that MSAs are
good at extracting outline information of objects and are not
good at processing low-frequency signals.

In vanilla ViT, if the pixels are directly processed using
the attention mechanism as in NLP tasks, the computational
complexity is a quadratic multiple of the image size, which
is unacceptable for most image processing tasks. In addition,
ViT with a fixed scale token is not fully applicable to vision
tasks because the objects in the images are variable. A lot of
improvements have been made to these flaws.

Taking Swin Transformer as an example, the appeal defect
is solved by using the hierarchical feature maps obtained by
downsampling operation, and the shifted window attention
mechanism [54]. From figure 8, we can see that the spatial
resolution of the hierarchical feature map in Swin Trans-
former is the same as that in ResNet, which can easily replace
ResNet as the backbone in the network. The use of W-MSA
and SW-MSA modules to implement the attention mecha-
nism greatly reduces the computational resources required in
the computation process through window exchange.

3) HYBRID BACKBONE
Hybrid frameworks are one of the current research
hotspots [59], [60], [61], [72], [74], [111]. It has been shown
that CNN will filter the low-frequency part of the image, and
MSAs will filter the high-frequency part of the image, which
is known that the high-frequency signal corresponds to the
outline edge in the image, and the low-frequency part mostly
corresponds to the background part [5].

The latest generation of the hybrid framework is to
hybridize CNN with MSAs inside the stage [5], [72], not
outside the stage, as shown in figure 9.

B. X-RAY IMAGING
The different imaging principles lead to different X-ray and
natural light images, as shown in figure 10. The current

VOLUME 11, 2023



J. Wu et al.: Object Detection and X-Ray Security Imaging: A Survey

IEEE Access

Input

Convolution Layer

gi

F‘.....

Pooling Layer
Fully Connected Layer

Linear Operations

o

Output

"

ot e o e o™

Sleeee
"3

@
@

o do ot ey o

o o
000, 000
i

FIGURE 4. This is a diagram of VGG-16 architecture. In the diagram,
“conv1” denotes the first convolutional layer, and “fc” denotes the fully
connected layer. Specifically, conv1...5=Convolution+ReLu+MaxPooling,
fc=FullyConected+ReLu.
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FIGURE 3. CNN-based backbone architecture [97]. From left to right in the
figure are AlexNet, VGG—16, GooglLeNet, ResNet—50, CSPResNeXt—50,
EfficientNet—B4.
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FIGURE 6. Overview of vanilla ViT architecture [3].

X-ray images are available in 2D and 3D. 3D images are
usually baggage images scanned by CT (Computed Tomog-
raphy) machines [112]. Because of their high price, the most
common X-ray dangerous material images in the market are
mainly 2D images, so the study in this paper mainly focuses
on 2D images.
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FIGURE 7. (a) is the Loss-Landscape of ViT-B; (b) is the Loss-Landscape
after smoothing by SAM [109].
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FIGURE 8. In this figure, (a) is the Swin Transformer architecture; (b) is
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simulate the convolutional kernel operation in CNN; (e) is the cyclic shift
self-attentive mechanism, which is used to simulate the Cross-Attention
operation [54].
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FIGURE 9. A mix of MSAs and Conv in the stage. The above diagram
shows the regular CNN block. The diagram below shows the convergence
of the Conv and MSAs layers within the stage.

Principle of X-ray imaging The main principle of X-ray
imaging is that the X-ray tube produces a beam of light
that can penetrate the scanned object. Different objects have
different densities, and X-rays will attenuate differently at
different material densities. This process can be expressed as
equation 3:

I, = Iy 3

where I, denotes the intensity of the X-ray at x, Iy is the ini-
tialized intensity value, and p denotes the linear attenuation
coefficient based on the material thickness.

Currently, with the development of technology, X-ray
machines are equipped with various energies that can produce
a wide range of X-ray images for identifying the density
and adequate atomic number of objects Zg. The intensity
estimates can be found with Z, by [113], converting them to
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FIGURE 11. X-ray pseudo color map imaging process [116], and [114].

the corresponding pseudo-color images as shown in figure 11.
In addition, it is also possible to form X-ray maps from
multiple angles [76], [114], [115].

C. OBJECT DETECTION METRICS
The two most common metrics used in object detection tasks
are as follows:
1) GFLOPs: Giga Floating-point Operations Per Second
refers to the number of billion floating-point operations
per second, often used to evaluate the performance of a
model on GPU.
2) mAP: i.e., Mean Average Precision, was first proposed
in the VOC competition. Among them, the calculation
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FIGURE 12. 10U example diagram. The ground truth in the figure is the
complete one horse. The ratio of the green candidate box to the
overlapping part of ground-truth is 0.42 [104].

of precision requires the participation of IOU (Intersec-
tion over Union), which is the ratio of the overlap area
between the ground truth and the predicted bounding
box to the union area, as shown in figure 12

When quantifying the prediction bounding box, a thresh-
old must be set to determine if the detection is correct.
If the IoU is greater than the threshold, it is classified as
True Positive, while IoU below the threshold is classified
as False Positive. If the model fails to detect objects in
the ground truth, it is called a False Negative. Precision
is used to measure the percentage of correct predictions.
In contrast, recall measures the correct predictions rel-
ative to ground-truth and is calculated by referring to
equation 4, equation 5:

. True Positive
Precision =

True Positive + False Positive
True Positive

- All Observations
True Positive
Recall =

“

True Positive + False Negative
True Positive

= )
All Ground Truth

Based on equation 4 and equation 5, the average preci-
sion of each category is calculated separately, i.e., with
N different recall rates, N precision rates are obtained.
Moreover, mAP is the average of the precision of all
categories, which can serve as a single metric for the
final evaluation [117].

D. DATASETS

Four common datasets for object detection tasks are presented
in this section, along with many X-ray baggage detection
datasets.

1) OBJECT DETECTION DATASETS

Four standard public datasets for object detection tasks are
described below, with detailed parameters in table 1.

VOLUME 11, 2023

a: PASCAL VOC [118]

The PASCAL VOC (Pascal Visual Object Classes) dataset
refers to the dataset used in the challenge that started in
2005 and included four object class objects for classifica-
tion and object detection tasks [117]. In 2007, the VOCO07
dataset collected 5K training images and 12K objects with
labels [119]. VOC12 expands the dataset to 11K training
images, over 27K labeled objects, and 20 classifications and

also includes tasks such as segmentation and action detection
in 2012.

b: ILSVRC [120], [121]

ILSVRC (ImageNet Large Scale Visual Recognition Chal-
lenge) is a challenge that ran from 2010 to 2017. Two hun-
dred of these categories were hand-picked for the object
detection task and consisted of more than 500,000 images.
Meanwhile, Meanwhile, ImageNet1000 is a subset of Ima-
geNet with 1000 different object categories and a total of
1.2 million images. It provides a standardized benchmark for
the ILSVRC image classification challenge.

¢: MS-COCO [122]

The MS-COCO (Microsoft Common Objects in Context)
dataset is the most commonly used dataset for the object
detection task. Eighty target categories are used in the detec-
tion task, as shown in figure 13, corresponding to the recogni-
tion level of a young human 4-year-old child. It was launched
in 2015, and its popularity has only grown since then. It has
over 2 million instances with an average of 3.5 categories per
image. In addition, it contains 7.7 instances per image, much
more than other popular datasets. MS COCO also includes
images from different perspectives.

d: Open Image [123]

Open Image is from Google. This dataset contains 9.2 mil-
lion images, and each image is annotated at the image level
with object bounding boxes and segmentation masks. Sixteen
million bounding boxes, 600 categories, and an average of
8.3 object categories per image were annotated on 1.9 million
images by Open Image for the object detection task.

2) X-RAY BAGGAGE DETECTION DATASETS

Six of these public datasets and one private dataset are
described in detail below. The X-ray images in these six
public datasets are shown in figure 14. In addition, table 2
summarizes additional X-ray security screening imaging
datasets.

a: GDXray [140]

Grima X-Ray Dataset contains 19, 407 images of castings,
welds, luggage, natural images, and backgrounds as shown
in table 3. Although this dataset contains multi-view luggage
detection images, it is not suitable for deploying contem-
porary large-scale deep learning algorithms on it due to the
single scene.
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TABLE 1. Detailed parameters for four types of object detection datasets [104].

Num. Of Pictures Num. Of Marked Obj. Total Num. (Train+Val)
DataSet [Category - -
Train | Val | Test Train Val Images | Boxes |B0xes/ Image
PASCAL VOC
vOCo7 20 2,501 2,510 | 4,952 | 6,301(7,844) | 6,307(7,818) 5,011 12,608 2.5
VOC08 20 2,111 2,221 | 4,133 | 5,082(6,337) | 5,281(6,347) 4,332 10, 364 2.4
VOC09 20 3,473 | 3,581 | 6,650 | 8,505(9,760) | 8,713(9,779) | 7,054 17,218 2.3
VOC10 20 4,998 5,105 | 9,637 |11,577(13,339)|11,797(13,352)| 10,103 23,374 2.4
VOC11 20 5,717 5,823 |10,994(13,609(15,774)|13,841(15,787)| 11,540 27,450 2.4
VOC12 20 5,717 5,823 |10,991(13,609(15, 774)[13,841(15,787)| 11,540 27,450 2.4
ILSVRC
ILSVRC13 | 200 | 395,909 | 20,121 [40,152] 345,854 55, 502 416,030 | 401,356 1.0
ILSVRC14 200 456,567 | 20,121 (40,152 478,807 55,502 476,668 | 534,309 1.1
ILSVRC15 200 456,567 | 20,121 (51,294 478,807 55,502 476,668 | 534,309 1.1
ILSVRC16 200 456,567 | 20,121 ({60,000 478,807 55,502 476,668 | 534,309 1.1
ILSVRC17 200 456,567 | 20,121 |65, 500 478,807 55,502 476,668 | 534,309 1.1
MS-COCO
MS COCO15 80 82,783 |40,504 |81,434 604,907 291,875 123,287 | 896, 782 7.3
MS COCO16 80 82,783 |40,504 |81,434 604,907 291,875 123,287 | 896,782 7.3
MS COCO17 80 118,287 | 5,000 |40,670 860, 001 36,781 123,287 | 896,782 7.3
MS COCO18 80 118,287 | 5,000 |40,670 860, 001 36,781 123,287 | 896,782 7.3
Open Images
OICOD18 | 500 [1,643,042[100,000[99,999] 11,498,734 | 696,410  [1,743,042[12,195,144 7.0
TABLE 2. Commonly used data sets for X-ray baggage detection of dangerous goods [125].
Datasets Year | Classes | #Positive | #Negative | AnnotationType | Views | Public | Download
FSOD 2022 20 12,333 0 bbox 1 Y [126]
EDS 2022 10 14,219 0 bbox 1 [126]
Xray-PI 2022 12 2,409 0 bbox, mask 1 Y [127]
PIXray 2022 12 5,046 0 bbox, mask 1 Y [128]
CLCXray 2022 12 9,565 0 bbox 1 Y [129]
HiXray 2021 8 45,364 0 bbox 1 Y [130]
deeib 2021 6 7,022 0 bbox, mask 2 N [131]
PIDray 2021 12 47,677 0 bbox, mask 1 Y [132]
AB 2021 - 417 6,608 bbox 2 N [133]
dbf4 2020 4 10,112 0 bbox, mask 4 N [134]
OPIXray 2020 5 8,885 0 bbox 1 Y [135]
SIXray 2019 6 8,929 10,500,302 bbox 1 Y [136]
COMPASS-XP | 2019 366 1,928 0 bbox 1 Y [137]
TSADatasets 2019 4 182 13,586 bbox N [138]
dbf6 2018 11,627 0 bbox, mask 4 N [91]
GDXray 2015 5 19,407 0 bbox 1 Y [139]

b: SiXray [81]
The dataset contains 1059231 X-ray images, divided into
six categories: guns, knives, wrenches, pliers, scissors, and
hammers, as shown in table 4. The SIXray dataset restores the
actual scene and is a class of datasets with a severe imbalance
between positive and negative samples, which is suitable for
real-time detection.

In the experimental part of the article, the authors set up
three sub-datasets, SIXray10, SIXray100, and SIXray1000,
where the numbers 10 and 100 in the first two sub-datasets

45422

represent the ratio of normal to prohibited items. For example,
in the SIXray10 dataset, there are 98,219 images, of which
8,929 are prohibited items and 89,290 are normal items.
The SIXray1000 sub-dataset is a mixture of 1,000 randomly
selected prohibited images and 1,050,302 ordinary images.

c: Compass-XP Dataset [116]

The instances in this dataset are 501 instances drawn from
369 target classes of ImageNet, as shown in table 5. More-
over, it contains 1901 image pairs, and each pair contains
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FIGURE 13. Data distribution of COCO training dataset and validation
dataset [124].
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FIGURE 14. The six most common public datasets in X-ray baggage
detection.

TABLE 3. GDXray Dataset [140].

Category Series | ImageNum | Size (MB)
Casting 67 2,727 307.5
WeldSeams 3 88 209.4
Baggage 7 8,150 2,734.8
Naturallmages 13 8,290 191.9
Background 7 152 45.5
Total 167 19,407 3,489.0

X-ray images scanned with a Gilardoni FEP ME 536 with
natural images taken with a Sony DSC-W800 digital camera.
Each X-ray image package contains different image versions
of low energy, high energy, material density, grayscale (a
combination of low and high energy), and pseudo-color RGB,
which are ideal for studying X-ray imaging principles. How-
ever, it is unsuitable for deep learning-based target recogni-
tion tasks.

d: OPIXray [141]

This dataset comes from real-time airport security data, man-
ually annotated by professional security officers. It contains
8,885 X-ray images, divided into five categories: folding
knives, straight knives, scissors, utility knives, and multi-tool
knives, as described in table 6.
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TABLE 4. SlXray Dataset [81].

Category Classes #Num.
Gun 3,131
Knife 1,943
Wrench 2,199
Positive Plier 3,961
Scissor 983
Hammer 60
Negative - 1,050,302

e: PIDray [89]

This dataset covers many real-world scenarios for detect-
ing prohibited items, especially intentionally hidden items.
The PIDray dataset contains 12 categories with a total
of 47,677 X-ray images, and each image comes with a
high-quality annotated segmentation mask and bounding box.
The test set composes of three classes according to the degree
of masking: easy, medium, and challenging, as described
in table 7.

f: HiXray [92]

This dataset contains eight categories: lithium-ion pris-
matic batteries, lithium-ion cylindrical batteries, water, lap-
tops, cell phones, tablets, cosmetics, and non-metallic
lighters, for a total of 102,928 contraband items, which
is by far the most significant number of contraband items
(2022) included in the dataset. The data was collected
from accurate airport security checks and manually anno-
tated by professional security screeners, as described in
table 8.

g: DB

Durham Baggage (DB) Patch/Full Image. This database
is private and not publicly available. The dataset includes
pseudo-color 15,449 X-ray images from dual-energy four-
view Smiths 60401 machines, including 494 cameras,
1596 ceramic knives, 3208 knives, 3192 guns, 1203 gun
parts, 2390 laptops, and 3,366 benign images. The derived
databases include DBP2 with DBP6 [142], that do the classi-
fication task, and DBF2 with DBF6 [84], [91].

Ill. OBJECT DETECTION

Detectors early can be classified into two categories accord-
ing to the detection process: single-stage and two-stage. The
latter uses more candidate frames than the former and may
contain object suggestions for detection objects. However,
as research progressed, introducing more advanced detec-
tors broke the boundaries of single/dual-stage classifica-
tion. Single/dual-stage classification using detectors alone
has become inadequate. Therefore, instead of presenting the
classification of detectors according to the single/dual-stage
approach as other papers have done, this paper presents the
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TABLE 5. COMPASS-XP Dataset [116].

Category Instance ImagePair
Positive | Negative | Total | Positive | Negative | Total | Positive | Negative | Total
ImageNet 11 176 187 26 224 250 93 845 938
Custom 24 158 182 43 208 251 165 798 963
Total 35 334 369 69 432 501 258 1,643 1,901

TABLE 6. OPIXray Dataset [141].

Category Train Test Total
FoldingKnife 1,589 404 1,993
StraightKnife 809 235 1,044

Scissor 1,494 369 1,863
UtilityKnife 1,635 343 1,978
Multi-toolKnife 1,612 430 2,042
Total 7,109 | 1,776 | 8,885

TABLE 7. PlDray Dataset [89].

. Test
Mode Train Easy | Medium | Challenging
Num | 29,457 | 9,482 3,733 5,005
Total 47,677

TABLE 8. HiXray Dataset [92].

Category Train Test Total
Li-ionPrismaticBattery 9,919 2,502 12,421
Li-ionCylindricalBattery 6,216 1,572 7,788
Non-metalLighters 706 177 883
Water 2,471 621 3,092
Laptop 8,046 1,996 10,042
Mobile 43,204 | 10,631 53,835
Tablet 3,921 997 4,918
Makeup 7,969 1,980 9,949
Total 82,452 | 20,476 | 102,928

classification according to model architecture categories [97],
[104].

Three types of object detectors are presented in this sec-
tion: CNN-based detector(section III-A), Transformer-based
detector(section III-B), and hybrid detector(section III-C).
Figure 15 lists the various models that are more mainstream
in the field of object detection.

A. CNN-BASED DETECTOR

The two most common series of CNN-based detectors are the
R-CNN series and the YOLO series [97], [104]. The former
is a two-stage detector with slow speed and long training
time but high accuracy. Meanwhile, the latter is a single-
stage detector, characterized by relatively low accuracy and
poor detection of small objects but faster detection. The most
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common object detection algorithms in both families are
summarised in table 9.

1) RCNN SERIES DETECTORS

R-CNN [18] is the first to use CNN classification pre-training
models (such as AlexNet [2]) to extract image features and
implement the object detection task with the region candidate
box selective search algorithm [155], as shown in figure 16.
The R-CNN algorithm is divided into four steps as follows:

1) Draw candidate regions A selective search algorithm is
used on the input image to select multiple high-quality
candidate regions. These regions usually have different
shapes and sizes. Each candidate region may contain a
certain number of targets.

2) Using CNN pre-training model to fine-tune For fine-
tuning, in the CNN model, the classification head after
pre-training through the ImageNet1K dataset changed
to 20 from 1000. After that, the candidate region in the
original image, after changing the size, is input to the
CNN model and using the pre-trained model to extract
the features of the images in the regions.

3) Training using SVM classifier We are training the SVM
classifier (containing two categories, i.e., positive and
negative samples) using the features extracted by CNN
to decide the target category in the region. When training
the SVM, if the result belongs to the target classification,
it is determined as a positive sample. Otherwise, it is a
negative sample. It labels N candidate regions (typically
2K) with positive and negative samples using IOUs.
Suppose the IOU of the candidate regions and the ground
truth are more significant than 0.5. In that case, the
sample is considered positive, and its category keeps the
same as the ground-truth category. If the IOU is less than
0.3, it is considered a negative sample.

4) Regression-based training bounding box It used regres-
sion to fine-tune the location of the bounding box.
A linear regression model is trained for each class to
determine if the bounding box is optimal.

Afterward, a series of improvement algorithms were pro-
posed based on R-CNN, and these improvements include two
kinds: speed and network structure.

SPPNet [19] adds spatial pyramid pooling [156] to the
top of the last convolutional layer of the CNN for the first
time, generating fixed-length features for candidate regions
of arbitrary size on the image, which speeds up the R-CNN
evaluation.

Fast R-CNN [20] is an improvement of the training pro-
cess of R-CNN and SPPNet. It achieves unified training
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FIGURE 15. Timeline of object detection algorithm development.

TABLE 9. CNN-based detectors on the COCO 2017 val dataset.

Method Epochs | GFLOPs | #Params(M) | mAP | APso | APrs | APs | APy | AP
Fast R-CNN [20] - - R 197 | 35.9 R R - R
Faster R-CNN [21] 36 180 42 40.2 61.0 43.8 24.2 43.5 52.0
Faster R-CNN+ [21] 108 180 42 42.0 62.1 45.5 26.6 45.4 53.4
Faster R-CNN+FPN [150] - - - 36.2 59.1 39.0 18.2 39.0 48.2
Mask R-CNN [22] 36 739 82 46.3 64.3 50.5 - - -
Cascade Mask R-CNN [149] 36 260 44 41.0 61.7 44.9 - - -
HTC-R50-FPN [151] - - - 43.6 60.0 41.5 20.4 40.7 51.2
YOLOvV7 [27] 300 105 36.9 51.2 69.7 55.5 35.2 56.0 66.7
YOLOvV7-E6E [27] - 843 151.7 56.8 74.4 62.1 40.8 62.1 70.6
YOLOV6-L(v2.1) [152] - 144 58.5 51.0 - - - - -
YOLOV5-L(16.1) [96] - R 465 190 | 67.3 R R - R
YOLOv4 [26] - 143 64.4 49.7 68.2 54.3 32.9 54.8 63.7
YOLOv4-CSP [153] - 120 52.9 47.5 66.2 51.7 28.2 51.2 59.8
YOLOR-u5 [28] - 109 46.5 50.2 68.7 54.6 33.2 55.5 63.7
YOLOV3 [25] - 157 63 38.5 - - - - -
YOLOX-M [30] - - - 46.4 65.4 50.6 26.3 51.0 59.9
PPYOLOE-S [154] - 17 7.9 42.7 60.5 46.6 23.2 46.4 56.9
PPYOLOE-X [154] - 207 98.4 51.9 69.9 56.5 33.3 56.3 66.4

network. Fast R-CNN significantly improves computational
efficiency.

Faster R-CNN [21] uses the region recommendation net-
work RPN (Region Proposal Network) to replace the selective
search strategy in the previous network, which can generate
a series of candidate boxes for any input image. From fig-
ure 17(b), we can see that the Faster R-CNN consists of four
major components in general, which are:

CNN-based
models

Image
features

« Backbone. It is used to extract features from images;

« Region Proposal Layer. This layer is the core layer of the
network and consists of four parts, namely RPN (region
proposed network), proposed layer, anchor target layer,
and proposed target layer. (i) RPN is used to calcu-
late and generate class prediction scores and bound-
ary box regression coefficients; (ii) The proposed layer
uses the anchor box generated by the anchor generator
and trims the number of bounding boxes by applying
non-maximum suppression (NMS) based on the fore-
ground score. It also generates a converted bounding box

Bounding box
regressor

FIGURE 16. Overview of R-CNN architecture.

of softmax classifier, SVM, and bounding box regressor by
region candidate box shared convolutional computation and
adds a new layer, namely Rol (Region of Interest), to the
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by applying the regression coefficient generated by RPN
to the corresponding anchor box; (iii) The goal of the
Anchor Target Layer is to select the anchors that can
be used to train the RPN network; (ix) The Proposal
Target Layer aims to select good Rols from the list of
Rols output from the proposal layer. These Rols will
perform Rol pooling operations with the feature maps
generated from the backbone and pass them to the rest
of the RPN for computing the predicted category scores
and bounding box regression coefficients;

« Rol Pooling Layer implements the spatial transforma-
tion of features, specifically, samples the input feature
map gave the coordinates of the proposed bounding box
of the region generated by the proposed target layer.
These coordinates are usually not on integer boundaries
and therefore require interpolation-based sampling;

« Classification Layer is used to obtain the output feature
maps generated by the Rol Pooling Layer and perform
convolution operations. The final output is realized by
two fully connected layers, namely bbox_pred_net, and
cls_score_net. The former can generate the class prob-
abilities of each region suggestion, and the latter gener-
ates a set of class-specific bounding boxes.

In general, Faster R-CNN is still the most widely used type
of detector in the industry today.

R-FCN [146] is further improved the problem of position
sensitivity of targets in images in different sub-networks
of the Faster R-CNN. In Faster R-CNN, the image is pro-
cessed in the first step of the backbone and then fed into
the sub-network associated with Rol in the second step for
processing. In the feature maps obtained after the first step
of processing, the Rol is shared and insensitive to the object
location. In the second step, the Rol is processed indepen-
dently, i.e., they are sensitive to the target location.

The R-FCN divides the Rol into k x k regions, which are
mapped by a position-sensitive score map to each region,
generating the corresponding response values. If all of this
response value information is greater than the threshold of a
certain category, then this region is judged as this category
category. Otherwise, it is judged as the background category.

FPN [150] is a feature processing approach that is
often applied in frameworks such as Faster R-CNN. FPN
connects top-down side-by-side high-level features with
low-resolution and high-semantic information to low-level
features with high-resolution and low-semantic information
so that features at all scales are rich in semantic information.
This allows multi-scale feature representations with strong
semantic information to be learned while improving compu-
tational efficiency.

Cascade R-CNN [149] is more like a training method.
The essence is to cascade multiple R-CNN networks based
on different IOU thresholds on the Faster R-CNN, i.e., the
output of the previous R-CNN network is used as input to the
latter R-CNN network, after which the results of the detection
are optimized to keep rising the IOU threshold. Almost all
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FIGURE 17. Overview of Faster R-CNN.

detectors based on R-CNN structures can use this cascading
approach to improve detection accuracy.

Mask R-CNN [22] extends Faster R-CNN and can handle
pixel-level segmentation of target instances. It classifies each
pixel into multiple segments, uses Faster R-CNN for object
framing, and adds an extra mask in the header. Mask R-CNN
uses the previous RolPool layer using a RolAlign layer to
avoid pixel-level misalignment due to spatial quantization.
It is also among the most popular models in the R-CNN
family.

HTC [151] is an improvement on the Cascade R-CNN and
Mask R-CNN:

« By introducing the Interleaved Execution operation, the
algorithm increases the information interaction between
different branches within each stage, i.e., the informa-
tion processed by the box branch is then passed to the
mask branch for processing, eliminating the information
gap between the training and testing processes.

o The algorithm adds an information flow connection
between the mask branches of adjacent stages, allowing
the mask branches of different stages to interact with
each other.
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o The algorithm will process the information for semantic
segmentation.

The HTC algorithm is mainly used for semantic segmenta-
tion problems but can also be modified for object detection
problems, e.g., HTC++ [157].

2) YOLO SERIES DETECTORS

The YOLO series detectors received much attention once they
were introduced. YOLO, or You Only Look Once, differs
from R-CNN in that YOLO does not select targets by gen-
erating candidate frames but performs target prediction and
recognition directly at the pixel level.”

YOLOV1 [23] grid the images and then use the grid for
detection. Each grid is responsible for detecting targets that
fall within its region. Each cell can detect multiple bound-
ing boxes, and the bounding box is denoted by ppox =
(x,y,w, h, @), where (x, y) denotes the center coordinates of
the target object, (w, i) denotes the width and height, and the
confidence o = pop; x 10U, p,p; denotes the probability of
having an object fall in the grid with probability. The final
prediction res = (Ppox, Ciasses), Where € denotes the number
of target classifications in the dataset. The above procedure
is shown in figure 18.

YOLOV2 [24] is an improvement on YOLOvI. The
YOLO9000 model can detect 9000 target classes. YOLOv2
strives for a balance of speed and accuracy.

YOLOV3 [25] used Darknet-53 as the backbone for fea-
ture extraction compared to the previous two versions and
achieved SOAT in the same period.

YOLOvV4 [26] makes changes to the model structure.
A BOF (Bag Of Freebies) strategy is used in the model, which
can improve detection accuracy with only an increase in train-
ing cost and no impact on inference speed. The BOF strat-
egy in YOLOvV4 includes data augmentation, regularization,
CmBN (Cross mini-Batch Normalization), CloU-loss [162],
and other techniques. BOS (Bag of specials) strategies, i.e.,
plug-in modules and post-processing methods that add only a
small amount of inference time but can significantly improve
object detection accuracy, are also used in YOLOv4. The
former enhances certain models’ properties, such as expand-
ing the perceptual field, introducing attention mechanisms,
or enhancing feature integration capabilities. At the same
time, the latter can filter the model prediction results. BOS
strategies in YOLOv4 include Mish activation [163], CSP
(Cross-stage partial connections ) [99], and other techniques.
The architecture is shown in figure 19.

YOLOV5,°YOLOV6* only open the source code and no
related academic paper. YOLOVS5 retains much of the network
structure of YOLOv4. YOLOVS is one of the most used and
popular object detection models within the industry, espe-
cially for applications in the field of real-time video detection.

2 [158], [159], [160], [161] integrates the common YOLO series algo-
rithms.

3https://github.com/ultralytics/yolovS

4https://github.com/meituan/YOLOV6
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The backbone design idea of YOLOV6 is mainly derived from
RepVGG [17], with the primary purpose of achieving more
straightforward deployment and faster inference speed in the
industry.

YOLOx [30] believes that YOLOv4 and YOLOVS may
have over-optimized the anchor-based detection method,
so YOLOx chose to make improvements to YOLOV3. Previ-
ously, YOLOVS achieved the best performance on the COCO
dataset (48.2%AP). The improvements made by YOLOx
include: (i)YOLOx changes the original Coupled Head to
Decoupled Head, as shown in figure 20(b). Specifically,
YOLOx decouples Cls, Reg, and 10Us, allowing the net-
work to learn the categories and the corresponding coordinate
regressions better; (ii)Detection is carried out in an anchor-
free manner, i.e., by generating an a priori frame (anchor) of
different sizes and aspect ratios at each position on a given
feature map. The purpose of this is to:

1) Reducing the computational effort of the model, produc-
ing fewer prediction frames;

2) Mitigating positive and negative sample imbalances;

3) There is no need to design the parameters of the anchor
manually.

YOLOR [28]’s encoder is used to learn both implicit and
explicit knowledge representations, using implicit informa-
tion to perform different tasks, and this technique is also
integrated into YOLOV7.

YOLOV7 [27] increases the training cost in order to
improve accuracy. By using the reparametrization trick, the
inference cost is kept constant. In addition, YOLOv7’s back-
bone is the basis of a cascade structure. Changes in network
depth often bring about changes in width when the model
is scaled and thus need to consider comprehensively when
the model is scaled for evaluation. Several trainable Bag-of-
Freebies methods are designed in the paper for solving the
above problems, including planned reparametrization module
design, dynamic label assignment strategy (coarse for auxil-
iary, fine for loss), batch normalization in topology, and EMA
module usage. YOLOV7 can effectively reduce about 40%
of the parameters and 50% of the computation of existing
real-time object detectors and has faster inference and higher
detection accuracy, with the structure shown in figure 21.

B. TRANSFORMER-BASED DETECTORS

The MSAs mechanism in the transformer allows for bet-
ter extraction of contour information from the image. The
main limitation of the Transformer is its high computational
overhead, which is usually a quadratic amount of the input
feature size. Common Transformer-based object detection
algorithms are outlined in table 10.

DETR [31] is one of the first end-to-end transformer-
based object detectors. It treats the object detection prob-
lem as an ensemble prediction problem. Unlike traditional
object detectors, DETR learns anchors (not by hand) and does
not use non-maximum suppression (NMS) post-processing.
Instead, position-encoded ‘‘object queries” are fed to the
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FIGURE 18. Overview of YOLOv1 architecture [23].

TABLE 10. Transformer-based detectors on the COCO 2017 val dataset.

Method Epochs | GFLOPs | #Params(M) | mAP | APso | APrs | APs | APy | APy,
DETR-R50 [31] 500 86 41 42.0 62.4 44.2 20.5 45.8 61.1
DETR-DC5 [31] 500 187 41 43.3 63.1 45.9 22.5 47.3 61.1
Deformable DETR [33] 50 78 34 39.7 60.1 42.4 21.2 44.3 56.0
Deformable DETR-DC5-R50-SS [33] 50 128 34 41.5 61.8 44.9 24.1 45.3 56.0
Deformable DETR-Iter [33] 50 173 40 43.8 62.6 47.7 26.4 47.1 58.0
Deformable DETR-Two-Stage [33] 50 173 40 46.2 65.2 50.0 28.8 49.2 61.7
Conditional DETR-R50 [37] 108 90 44 43.0 64.0 45.7 22.7 46.7 61.5
Conditional DETR-DC5-R101 [37] 108 262 63 45.9 66.8 49.5 27.2 60.3 63.3
DAB-DETR-R50 [40] 50 100 44 42.6 63.2 45.6 21.8 46.2 61.1
DAB-DETR-DC5-R101 [40] 50 296 63 46.6 67.0 50.2 28.1 50.5 64.1
DN-DETR-R50 [39] 50 94 44 44.1 64.4 46.7 22.9 48.0 63.4
DN-DETR-DC5-R101 [39] 50 282 63 47.3 67.5 50.8 28.6 51.5 65.0
DINO-4scale [43] 24 - - 49.9 67.4 54.5 31.8 53.3 64.3
DINO-5scale [43] 36 - - 51.0 69.0 55.6 34.1 53.6 65.6
Sparse-DETR-0.1 [35] 50 105 41 45.3 65.8 49.3 28.4 48.3 60.1
Sparse-DETR-0.5 [35] 50 136 41 46.3 66.0 50.1 19.0 49.5 60.8
EVA-Cascade R-CNN [164] - - 1,074 64.5 82.1 70.8 49.4 68.4 78.5
Swin-L-HTC++ [54] - 1,470 284 57.1 82.1 70.8 49.4 68.4 78.5
SwinV2-G-HTC++ [157] - - >=3,000 62.5 - - - - -
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To avoid the problem of ‘““object queries” in which the
object cannot be matched accurately during the query pro-
cess, DETR adds a particular class, the no object label (@),
in addition to matching the regular class labels. In the training
process, the Hungarian algorithm, a bivariate graph matching
algorithm, is used to perform one-to-one matching of the
ground-truth y; with the predicted target y(;), and the match-
ing pair strategy & with the loss function Laich as:

FIGURE 19. Overview of YOLOv4 architecture [26].

A

lo
decoder for finding the features of an object in the image and

decoding image features. The predictor produces detection
results directly from the decoder’s output queries, as figure 22
shows.

Lmatch (.Yi ’ 5’0 (i))
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FIGURE 20. YOLOXx architecture and its uncoupled head
mechanisms [109].
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FIGURE 21. Overview of YOLOv7 architecture.

In addition, the Hungarian loss function £y includes class
label loss and bounding box loss on all matching pairs (¢; #
a):

~ N ~ ~
Lui Yoi)) = 2 [—10gps i(ci) + Lic;22) Loox (bis bo(i))]-
i=1
@)

where Lpox denotes the bounding box loss and is calculated
as:

Lpox(boiys b1) = kiouLioubotiy, bi) + 2Lillboqy — bill1,
(8
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(b) Detailed diagram of the
DETR framework

(a) Overview of the DETR
framework

FIGURE 22. DETR architecture [103], and [31].

where Ajoy, Ap1 € R are hyperparameters, L;,,(-) is calcu-
lated as:

|bg (i) N bl
[be iy U bil
|B(b0'(l)1 b ) \ ba(z) U b |) (9)
|B(bo iy, b
where |.| denotes the set, the intersection or the union can be
calculated by the linear function b, ;) with min / max of b;,
B(bs ), bi) denotes the maximum bounding box containing
bo (i), bi [31].
Although DETR was one of the first object detectors to use
a transformer structure, its disadvantages include poor con-

vergence and poor performance on high-resolution images,
mainly due to:

Liou(be iy, bi) =1 — (

1) Encoder: the input is an image feature extracted through
the backbone (ResNet [8]), and the length and width of
this feature are denoted by H and W, respectively. The
complexity of the self-attention calculation (i.e., equa-
tion 2) grows quadratically with the feature pixel space,
i.e., OC(H>W?2C), where C is the feature dimension.

2) Decoder: the DETR requires the computation of both
cross-attention and self-attention modules. In comput-
ing cross-attention, “‘object queries” are computed and
extracted from the feature mapping output by encoder
through the attention mechanism (i.e., equation 2),
specifically, Q which is “object queries” and K is the
feature mapping of the Encoder output. So the com-
putational complexity of cross-attention grows linearly
with the feature pixel space, i.e., O(HWC 2 4 NHWC ),
where N denotes the number of “object queries”. When
computing self-attention, ‘“‘object queries” do QKV
computations on each other, so the computational time
complexity is O(2NC? + N2C) [33].

In response to the shortcomings of DETR, many algo-
rithms have focused on improving the internal structure of the
encoder and decoder, including the descending calculation of
attention, improvements in the structure of “object queries”’,
and the selection of the feature mapping part of the encoder
output in the cross-attention calculation.

Deformable DETR [33] is one of the most widely
used improved algorithms for DETR. Its most significant
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FIGURE 23. The Deformable Attention Module [33].

contribution is to improve the performance and accuracy of
DETR in detecting small objects using a multi-level vari-
able attention mechanism. In the case where 10x is smaller
than the original DETR training epochs, the computational
complexity is O(2ZN,C 2 - min(HWC?, NyKC 2)), an inference
speedup of 1.6 times.

The Deformable Attention Module in Deformable DETR
only on a few key sampling points near the reference point
rather than the entire feature mapping map. This reduces
the dimensionality of K in equation 2 and thus reduces the
computational complexity, as shown in figure 23.

The calculations of deformable attentional characteristics
are given by:

M K
DeformAttn(zy, p,, X) = Z W ZA’”’!"
m=1 k=1

- W x(p, + Ap0]- (10)

where x € REXH*W denotes the feature mapping output by
the encoder, Py denotes the 2D reference point, z4 denotes
the g content feature, A, denotes the attention weight of
the m™ attention head at the k"™ sampling point, and Ap,,x
denotes the sampling offset with respect to the reference
point. From equation 10, it can be seen that the 2D reference
points are involved in the computation as part of the cross-
attention query.

According to equation 10, the formula for multi-level vari-
able attentional features can be written as:

MSDeformAttn(zy. p,. {x'}_))

M L K
= Z W, - [Z ZAmlqk . W;nxl((bl(ﬁq) + Apmlqk)]'
m=1

— I=1 k=1
(1D
L

where {x'} 7y is the [y level input feature map, f)q S
[0, 1]% denotes the normalized coordinates of the reference
point corresponding to each query element g, Ap, ;. denotes
the sampling offset, and A4 denotes the attention weight
of the m™ attention head under the /™ level input feature map
with respect to the k™M sampling point.

In addition, Deformable DETR provides the so-called
“two-stage” selection strategy as a candidate strategy. The
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FIGURE 24. Overview of Conditional DETR architecture.

top—K feature values output from the last layer of the encode
is selected as prior knowledge to strengthen the queries in the
decoder.

Conditional DETR’s [37] most significant contribution
is the different treatment of content queries in the decoder
(the output of self-attention in the decoder) from location
space queries, as shown in figure 24. From the figure, the
K in the decoder cross-attention is generated by the position
embedding rvpy and the encoder output content embedding
¢, respectively. Moreover, Q includes the spatial location
embedding p, in addition to the content embedding ¢, formed
by the decoder self-attention.

It is generated by first normalizing the reference point s
and mapping it into a 256-dimensional sinusoidal position
embedding ps (keeping the same generation as py), after
which the p; formed by the reference point s is transformed
in the embedding space using T to obtain the spatial position
embedding p, in Q, i.e., p;, = T - p;. Since the decoder’s
embedding includes the position information, it can be used
by T = FFN (decoderembedding).

DAB-DETR [40] is based on Conditional DETR, com-
bining reference points with “object queries” to form a 4D
learnable probe frame, (x, y, w, k), where (x, y) is the center
coordinate point of the probe frame, and (w, k) is the width
and height of the probe frame, as shown in figure 25.

DAB-DETR updates the detection frame as a learnable
parameter in the model. In the decoder, the self-attention
module is used for query updates, and the cross-attention
module is used for feature detection.

Given the gy probe frame A; = (x4, ¥4, Wy, hy), the
position query P, is generated by P, = MLP(PE(4,)),
where PE denotes the position encoder that generates the sine
embedding, calculated as:

PE(A,) = PE(xg, yg, Wy, hg)
= Cat(PE(x,), PE(y,), PE(wy), PE(hy)).  (12)
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FIGURE 26. Overview of DAB architecture.

where Cat denotes the splicing function. We also use
Self-Attn: Q;, = Cy + Py, K, = C; + P4, Vy = C4 to
calculate the self-attention module.

Use the following formula to calculate the cross-attention
module:

Cross-Attn: O, = Cat(C,, PE(xy, y4) - MLP9(C,)),
Kx,y = Cat(Fx,y» PE(x, y)), Vx,y = Fx,y' (13)

where F) , represents the image features at the point (x, y).
figure 26 shows all the above processes.

DN-DETR [39] changes the training way of DETR. Based
on the previous framework, DN-DETR improves the bivariate
bipartite graph-matching strategy in the original DETR. DN-
DETR adds noise to the ground truth. The training model
re-learns the ground truth, which can substantially reduce the
matching instability caused by the Hungarian algorithm, thus
speeding up the convergence. The decoder is comprises two
parts, the noise reduction module and the matching module.
The two modules were previously trained collaboratively
through a complex masking mechanism, and the ‘“no-object”
class in the original DETR was eliminated from the model.

SPARSE DETR [35] improves on the encoder in DETR;
previous algorithms have mainly been improving on the
decoder, but SPARSE DETR offers a different perspective.
SPARSE DETR proposes a DAM (Decoder cross-Attention
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FIGURE 27. Training score network using DAB in SPARSE DETR [35].

Map) to construct a score network for the encoder part, which
filters the features that can participate in the calculation of the
cross-attention part of the decoder, as shown in figure 27.

DINO [43] has summarised its previous work and

upgraded DETR, including three improvements on the
encoder and decoder.

1) DINO builds on the previous DN-DETR by using a
contrast learning strategy for the noise reduction module
and re-adding the ““no-object” category;

2) The model uses a Mixed Query Selection strategy to
select the output portion of the encoder dynamically.
When making a selection, the model retains only the
a priori position information and not the content infor-
mation, as the feature content information at this point
can mislead the decoder into making a wrong selection;

3) When iteratively updating the probe box, DINO updates
the iy, and (i + 1)y, layers using the parameters of the
i layer. It will make better use of the previous position
information, and the iterative formula is equation 14.

Ab; = Layeri(bi—1), b; = Update(bi_1, Ab;),
bi = Detach(s)), b = Update(b, ,, Aby). (14)

where b;_1 denotes the (i — 1)y, input box, bgpred) denotes the
prediction box to be obtained, and b; denotes that it is not
involved in the backpropagation calculation.

C. HYBRID MODELS

By hybrid detector in this paper, we mean a detector with
both CNN and MSAs layers in the backbone. In terms of
the training process, the algorithm is generally trained in a
pre-training dataset (generally ImageNet-1K dataset [121])
for classification or others. After obtaining the pre-training
model, the powerful representation capability of the model is
used to fine-tune it in the downstream object detection task.
Some of the most common algorithms in this series are listed
in table 11.

ConvViT [58]was an early use of the MSAs layer to simu-
late CNN layer operations in order to improve the representa-
tion capability of the model, which inspired the development
of subsequent models. ConvViT is influenced by [167] and
[168], i.e. MSAs can simulate arbitrary convolution layers
as long as they have enough heads. It developed a new self-
attentive layer, the GPSA (Gated Positional Self-Attention)
layer. The GPSA has a strong induced bias similar to the
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TABLE 11. The hybrid architecture detector on the COCO 2017 val dataset. “P-Epochs” indicates the number of times the model was pre-trained.

Method P-Epochs | GFLOPs | #Params(M) | mAP | APso | APrs | APs | APy | APL
Next-ViT-S-MaskRCNN1X [72] 300 290 52 45.9 68.3 50.7 - 41.8 -
Next-ViT-B-MaskRCNN2X [72] 300 340 65 47.2 69.6 51.6 - 42.8 -
GC ViT-S [73] 300 866 108 52.4 71.0 57.1 - - -
GC ViT-B [73] 300 1,018 146 52.9 71.7 57.8 - - -
Pix2seq-R50 [32] 300 - 37 43.0 61.0 45.6 25.1 46.9 59.4
Pix2seq-R101-DC5 [32] 300 - 57 45.0 63.2 48.6 28.2 48.9 60.4
MaxViT-S-Cascade MaskRCNN [74] 300 595 107 53.1 72.5 58.1 - 45.4 -
MaxViT-B-Cascade MaskRCNN [74] 300 856 157 53.4 72.9 58.1 - 45.7 -
ConvMAE-Mask-RCNN [165] 1,600 900 104 53.2 - - - - -
InternImage-B-Mask-RCNN1X [166] 300 501 115 48.8 71.0 53.9 - 44.0 -
Internlmage-XL-Mask-RCNN1X [166] 300 1,782 387 55.3 74.5 60.2 - 48.0 -

convolutional layer, and its role is to replace the original SA

(Self-Attention) layer in the ViT. Specifically, the GPSA layer .

is initialized to simulate the localization of the convolutional D78 g

layer. Then it is freed from localization by adjusting the 5.0 ?z

gating parameters so that each head of the MSAs targets 2 Fi

fixed content information, giving it the ability to give extra ppr—— é e

attention to different locations. The whole process is like this:

GPSAX(X) := normalize [Ah] xwh, (15)
Ag- := (1 — o(\p)) softmax (Q?K]ﬂ)
+ o (Ap) softmax (vﬁjqr,]) . (16)

where o : x — 1/(1+¢7*) denotes the activation function, Qf’
denotes the query matrix of the iy, patches under the Ay, self-
attentive head, vg;rs denotes the trainable embedding, and r;;
denotes the relative position encoding.

CVT [59] improves the efficiency of ViT-like models
by introducing convolution into the transformer through
the CTE (Convolutional Token Embedding) layer and the
CP (Convolutional Projection) layer. The two modules are
the CTE (Convolutional Token Embedding) layer and the
CP (Convolutional Projection) layer, whose primary func-
tion is to downsample to enrich the feature map’s repre-
sentation. Replace the original position linear projection in
ViT. Specifically, the token is mapped into the 1D space
by Flatten (Conv2d(Reshape2D(x;), s)). where x;
denotes the token to be mapped, Conv2d denotes the depth-
separable convolution, i.e., Depth-wise Conv2d —
BatchNorm2d — and Point-wise Conv2d, s means
convolution kernel. As shown in figure 28 (b).

BoTNet [60] replaces the BottleNeck 3 x 3 convolutional
layer in ResNet [8] with MSAs. CMT modules consider CNN
to capture local information in images and MSAs to extract
global correlation information. It is combining the two yields
a model that is both efficient and accurate.

Mobile-Former [61] aims to improve recognition accu-
racy in lightweight applications. The model communicates
MobileNet [10] with the transformer in parallel in both
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FIGURE 28. (a): The CVT framework, (b): Detail of CTB (Convolutional
Transformer Block) [59].

directions. Due to efficiency issues, the transformer in
Mobile-Former only uses a minimal number of Tokens, which
affects the contribution of MHSA to the model’s accuracy.

MetaFormer [62] is an abstraction framework that
abstracts the transformer encoder into two components, the
mutable component responsible for attention, the token-
mixer, and the other remaining invariant components (such
as MLP and residual concatenation).

Next-ViT [72] is contributed to both academic research
and industrial deployments. Industrial deployments are very
demanding in terms of model execution time and compu-
tational resources, which requires the model to achieve a
specific scaling ratio to ensure that the model is optimal.
Next-ViT comprises four stages, P2, P3, P4, and P5, each
consisting of two core modules, the NCB (Next Convolution
Block) and the NTB (Next Transformer Block). The NCB is
used to calculate local information, and the NTB is used to
calculate global information.

NCB follows the abstract design of MetaFormer and uses
MHCA (Multi-Head Convolutional Attention) as a token-
mixer, where the convolutional attention mechanism can
learn the relationship between different tokens through the
trainable parameter W in the local perceptual field. The for-
mula is as follows:

CA(z) = O(W, (T, Ty)) where Ty py € 2. (17
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where T}, and T}, denote the adjacent token in the input feature
z, and O denotes the inner product operation.

NTB uses E-MHSA (Efficient Multi-Head Self Attention)
to capture low-frequency signals, such as background and
other global information, where the SA operator is used
to reduce the spatial attention computational complexity.
It can be expressed as equation SA(X) = Attention(X -
W2, Py(X - WK), Py(X - W), where Attention(Q, K, V) =
softmax(%)\/ and P; means average pooling (stride =
s), i.e., reducing the computational complexity of atten-
tion by downsampling. The overall framework is shown
in figure 29.

ELAN [75] consists of three modules, and in this paper,
we only discuss the core module called ELAB (Efficient
Long-range). The ELAB module is referenced from the Swin
Transformer model [54], which uses Shift-Convolution lay-
ers to extract local structural information from images and
GMSA (Group-wise Multi-scale Self-Attention) module to
extract global information. The Shift-Convolution layer con-
sists of a shift operator and a 1 x 1 convolution. The primary
function is to shift the first four groups of the input features,
which have been divided into five equal groups, in the left,
right, top, and bottom directions to ensure that the 1 x 1 con-
volution yields information about the surrounding pixels. The
GMSA deals with group window-based self-attentive mecha-
nisms, with the freedom to adjust the window size within each
group [169]. When computing SA (Self Attention), the ASA
(Accelerated Self-Attention) mechanism is used, except that
the LN (Layer Normalization) in the transformer is replaced
with Batch Normalization to ensure that the SA between
groups is computed without additional overhead. The SA is
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computed in two Gaussian spaces instead of three, thus saving
a 1 x 1 convolution in each SA. In addition, ELAN uses
tricks such as shared SA scores and circular shifts along the
diagonal to speed up the model’s computation according to
its network characteristics. It is worth mentioning that the
current backbone of YOLOv7 [27] is the basis of the ELAN
extension.

The ideas of the GC ViT [73], MaxViT [74], Con-
vMAE [165], and InternImage [166] models are borrowed
from the architectural design of the Swin Transformer [54].
The accuracy of the object detection algorithm can be
improved by generating multi-level feature maps in stages to
extract information about objects contained in images with
different resolutions in space.

Pix2seq [32] algorithm is designed to take advantage of
the transformer’s ability to process NLP sequences by serial-
izing the bbox and class of the indicated object in the image
to make predictions on the serialized bbox and class. The
Pix2seq is essentially a generative self-supervised learning
algorithm [170].

IV. X-RAY BAGGAGE DETECTION WITH DEEP LEARNING
X-Ray baggage detection is a task that, at this stage, is mainly
carried out manually. There is a massive market for deep
learning in this task. According to different detection meth-
ods, X-ray dangerous goods detection algorithms mainly
include conventional image analysis, machine learning, and
deep learning algorithms. This paper focuses on deep learn-
ing algorithms. Moreover, three types of supervised learning
algorithms, classification, detection, and segmentation, are
used for the introduction [76], [171]. Table 12 demonstrates
the application of deep learning algorithms.

A. CLASSIFICATION

Classification algorithms were one of the first algorithms to
emerge in this field. In simple terms, the need is fulfilled by
determining the prohibited items’ presence during the secu-
rity screening process. The limitation of this algorithm is that
it treats dangerous goods detection as a simple classification
problem, and the final result does not accurately detect the
type and location of hazardous materials.

Akcay et al. [77] used CNN to classify the dataset through
migration learning. Solving a binary classification problem
like the presence or absence of firearms demonstrated that
using CNN is more effective than traditional machine learn-
ing algorithms like SVM.

Rogers et al. [78] first use of dual-energy X-ray
pictures for imaging detection. High-energy and low-
energy X-ray images captured by the dual-energy X-ray
machine were used as asingle channel (H), dual chan-
nel ({H,—logH}, {—logH,—1logL}) and four-channel
({—1logL,L,H, —logH}) as different the input channels to
train the VGG-19 network for classification.

Zhao et al. [79], [80] introduces GAN [172] to the X-ray
imaging detection task by a three-stage learning method
for classification learning. The input X-ray dataset is first
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TABLE 12. Deep learning algorithms in the field of X-ray baggage detection. (If not specified, ACC, mAP, and mIOU in the last column correspond to the

performance metrics of the classification, detection, and segmentation algorithms in the first column).

Tasks Literature | Year Datasets Num. Pictures Methods ACC(%)/mAP(%)/mIOU(%)
[77] 2016 Private 6,997 AlexNet 99.0
[78] 2017 Private 120,000 VGG 99.5
[79;80] | 2018 - - GANs+KNN 91.1
SIXray10 98,219 77.9
Classification SIXray100 901,829 ResNet50+CHR 57.9
SIXray1000 1,051,302 37.0
(1] 2019 STXray10 98,219 79.6
SIXray100 901,829 DenseNet+CHR 59.9
SIXray1000 1,051,302 48.4
SW-CNN+ResNet-101 77.6
RCNN+VGG16 77.9
(34 2017 DBE2/6 11,627 Faster RCNN+VGG16 883
R-FCN+ResNet1014+ResNet-101 85.6
SSD-InceptionV2 75.2
[138] 2019 TSADatasets 13,786 Faster-RCNN-ResNet101 9L.7
Faster-RCNN-InceptionResNetV2 94.1
TSADatasets-Dataset A | 6000(HC)+35000(SOC) 94.1
Detection [85] 2020 TSADatasets-Dataset B | 19000(HC)-+70000(SOC) Faster RCNN-+MatchInstancesImages 95.8
GDXray 8,150 94.5(mAP)/96.4(mIOU)
(s8] 2019 SIXray 1,059,231 CMST 93.7(mAP),/96.9(mlIOU)
[89] 2021 PIDray 47,677 SDANet+ResNet-101-FPN 61.6
SSD+LIM 73.1
[92] 2021 HiXray 45,364 FCOS+LIM 7 77.3
YOLOv5+LIM 83.2
[90] 2022 deeib 7,022 conditional GAN 67.5
Mask R-CNN+ResNet101 97.9
(93] 2019 Private 3,534 Dual CNN+ ResNet18 66(ACC)
GDXray 8,150 96.72(mAP)
SIXray 1,059,231 95.16(mAP)
Segmentation [95] 2020 OPIXray 3,885 TST 75.32(mAP)
COMPASS-XP 11,568 58.42(mAP)
Combined Dataset 1,087,833 46.57(mAP)
[94] 2022 PIXray 5,046 DDoAS 76.3

classified and labeled by the angular information of the fore-
ground objects extracted from the input images. GAN gener-
ates new objects, and finally, a small classification network is
used to confirm whether the generated images belong to the
correct class.
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CHR [81] model performs classification detection on the
SIXray dataset [81]. Since the SIXray dataset is constructed
to simulate a realistic environment where a significant imbal-
ance in security screening data occurs, the CHR model copes
with the class imbalance by extracting image features from
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FIGURE 31. Overview of CHR architecture [81].

three consecutive layers. Specifically, the backward layer in
the CHR model is upsampled and connected to the preceding
layer, as shown in figure 31.

In the figure, the g() function is used to remove redundant
information from the feature map by feeding the advanced
features into three layers of ({h(fc,(, 71)), h(fc,gl)), h()"c,(LH]))}) for
differentiation classification. A multi-level strategy is used in
the CHR model to extract the features of the objects better.

Caldwell et al. [83] investigates the generalization abil-
ity of models trained with different datasets from various
scanners. The authors created training and test samples from
single or multiple domains to investigate the effect of migra-
tion between other models. The limitation is that migration
learning is still challenging due to the scanners’ unknown
parameters and the CNN’s ability to generalize to unseen
target datasets.

B. DETECTION

Most existing X-ray dangerous goods detection algorithms
use a CNN framework to detect the type and location of
dangerous goods in luggage. The limitation of this algorithm
is that the detection results rely heavily on the texture infor-
mation of the detected objects and do not fully use the shape
contour information of the objects. It leads to the fact that the
actual detection results do not achieve the desired results.

Akcay et al. [84] detects and identifies imaging on the
DBF2/6 using the Faster R-CNN [21] algorithm. The mAP
on the DBF6 reached 88.3%.

Sigman et al. [85] proposes a semi-supervised domain
adaptation learning algorithm, the Background Adaptive
FRCNN (Background Adaptive Faster R-CNN) algorithm.
The authors assume that, in reality, there are no dangerous
goods in the security-checked images, and this assumption
aims to obtain the dataset more quickly. The algorithm has
two domains: a manually collected domain with hazards and
areal-world domain without hazards. In addition, two domain
discriminators are trained using adversarial, one for discrim-
inating the target offer frame and the other for discriminating
the image features. Only the background area outside the tar-
get proposal region and ground truth is extracted for features
when training on a manual dataset. It allows the model to
identify the hazards better, as the background features of the
images with hazards (manual dataset) will match the features
of the images without hazards (real dataset).

Subramani et al. [86] trained on the SIXraylO dataset
using the SSD [145] and RetinaNet [148] detectors,
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with mAPs of 60.5% and 60.9%, respectively. [87] used
YOLOV?2 [24] to achieve an average accuracy of 94.5% and
arecall of 92.6% on the unpublished dataset SASC.

Hassan et al. [88] uses a cascaded multi-scale structure to
form Rol after extracting tensors from different angles of the
object. The mAP reached over 96% on both the GDXray and
SIXray.

Wang et al. [89] designed a Selective Dense Attention
Network, SDANet, which constructs a strong baseline on
the PIDray, which consists of a dense attention module and
a dependency refinement module, as shown in figure 32.
SDANet uses the attention mechanism to focus on target
objects in complex contexts in a multi-level feature pyramid
graph. The final APs on easy, medium, and hard are 71.2%,
64.2%, and 49.5%, respectively.

Tao et al. [92] proposes the LIM, Lateral Inhibition Mod-
ule, which is a module that ignores task-irrelevant informa-
tion and focuses only on recognizable features when objects
overlap each other. Specifically, LIM is a carefully designed
flexible add-on module that minimizes the flow of noisy
information through the Bidirectional Propagation module
and activates the boundaries of the most recognizable features
from four directions through the Boundary Activation mod-
ule, as shown in figure 33. LIM achieved 83.2% and 90.6%
mAP on the HiXray and OPIXray.

Isaac et al. [90] has used the conditional GAN model
as well as the FFL technique to analyze four types of
images, including high-energy, low-energy, and effective
ray-Z images, as well as pseudo-color images synthesized
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from these three types of images. The results show that
the pseudo-color maps synthesized by the conditional GAN
model achieve significant results on the private dataset deei6.

C. SEGMENTATION

Object segmentation algorithms segment images into mul-
tiple sub-regions. In X-ray images with highly overlapping
targets, segmentation algorithms often rely on additional
information to complete the segmentation, such as the con-
tour information of hazardous materials. It brings additional
computational effort while the hazardous material profile
information dominates the final segmentation result.

Gaus et al. [93] uses a dual convolutional neural net-
work architecture to detect automatic anomalies in x-ray
images. The paper uses R-CNN [18], mask R-CNN [22], and
RetinaNet-like detection networks to provide object localiza-
tion for specific target object classes. Specifically, the images
are segmented using mask R-CNN to initialize the Rol,
followed by a negative/positive bifurcation of the previous
Rol by a network such as RetinaNet, with a segmentation
accuracy of 97.6%.

Hassan et al. [95] segmented the targets on the
images by extracting the structural tensor from differ-
ent angles, and finally achieved a segmentation mAP of
96.7%/96.16%/75.32%/58.4% on GDXray/SIXray/OPIXray/
Compass-XP respectively.

Ma et al. [94] addresses the problem of inaccurate identifi-
cation of different contraband or dangerous goods due to dif-
ferences in appearance. The model named DDoAS consists
of two modules: DDoM, which accurately infers contraband
information from a dense overlapping background by means
of dense backlinks, and ADM, which aims to improve the
low learning efficiency due to differences in shape and size
between different contraband items. The limitation of the
DDoAS algorithm is that the model uses additional optical
information (object edges and vertices) to assist in verifica-
tion, which makes it challenging to detect contraband with
poor edge information, such as small folding knives.

V. EXPERIMENT
In this section, to test the accuracy of standard models
in detecting X-ray images without modifying the original
structure and to provide directions for subsequent research,
we select the four most common models among the three
types of algorithms for experimentation. Specifically, these
are: YOLOVS,> YOLOv7 [27], DINO [43], and NextViT [72].
The data sets used in this experiment are the processed
SIXray® and PIDray.” We have marked them as SIXray, and
PIDray), respectively. SIXray, contains five classes, namely
Gun, Knife, Pliers, Scissors, Wrench, and PIDray, contains
12 classes, namely Baton, Bullet, Gun, Hammer, Hand-
Cuffs, Knife, Lighter, Pliers, Powerbank, Scissors, Sprayer,

5 https://github.com/ultralytics/yolov5
6https://universe.roboflowcom/object—detection/ugku
7 https://universe.roboflow.com/object-detection/security_xray
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TABLE 13. SIXrayp and PIDrayp Dataset.

#Num. TrainingSet | #Num. TestingSet | Classes
SIXrayy 17K 840 5
PIDray, 9.4K 422 12

TABLE 14. YOLOvV5 detects basic results for the PIDrayp dataset.

Class Images | Labels | P R mAPQ@.5 | mAP@.5:.95
all 422 641 0.942 0.89 0.921 0.677
Baton 422 23 0.97 0.957 0.969 0.739
Bullet 422 23 0.95 | 0.998 0.995 0.73
Gun 422 28 0.903 | 0.964 0.985 0.735
Hammer 422 75 0.984 0.92 0.974 0.694
HandChuffs 422 12 0.946 | 0.998 0.995 0.767
Knife 422 76 0.915 | 0.846 0.887 0.686
Lighter 422 7 0.918 0.58 0.654 0.403
Pliers 422 127 0.998 | 0.942 0.982 0.755
Powerbank 422 44 0.826 | 0.773 0.804 0.557
Scissors 422 7 0.998 | 0.805 0.862 0.613
Sprayer 422 7 0.912 | 0.922 0.955 0.713
Wrench 422 72 0.986 | 0.977 0.993 0.729

Wrench, as shown in table 13 We fine-tuned the train-
ing data set directly and tested the results on the testing
data set.

As the detection process is real-time, the YOLOvVS and
YOLOvV7 models are used in preference to the detection pro-
cess, and the results are shown in table 14, table 15, table 16,
table 17 respectively. These tables show that YOLOV7 is
more accurate in recognition than YOLOVS, and v7 has a
more incredible inference speed than the other models due
to the use of techniques such as model re-parameterization.
The four models’ visual comparison results are shown in fig-
ure 34. As can be seen in subplot (c¢), the Transformer-based
and hybrid models do not work well in X-ray image
detection.

The main reason for this is that the MSAs mechanism
learns the contour information of the object. However, in the
X-ray image, the hazardous object to be detected is cov-
ered or obscured by a large number of other objects, which
leads to confusing feature information obtained by MSAs
and cannot correctly distinguish the exact location of the
object; on the contrary, the CNN learns more information
about the texture of the object from the pseudo-color image,
which helps identify the type of object. Inspired by several
models, DINO incorporates a variety of factors that facilitate
improved recognition accuracy but does not perform specific
optimizations and has a lower mAP than other models in this
area. In addition, Next-ViT, as a hybrid model, combines the
advantages of both Conv and MSAs. However, as it is not
an end-to-end detection model and its structural construc-
tion does not apply to X-ray images with many overlapping
objects, it has no particular advantages regarding the accuracy
and operational efficiency. A hybrid model more suitable for
X-ray images should be designed.
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FIGURE 34. (a) Represents the detailed identification results of the YOLOV5 versus YOLOv7 for each category on the SiXray, dataset. “@.55"
and “@.5;" denote the value of mAP 50 under YOLOV5 and YOLOv7, respectively, and so on; (b) Representation of the detailed identification
results of the YOLOv5 versus YOLOv7 models for each category on the PIDrayp dataset; (c) indicates the comparison mAP results of the four

models YOLOv5, YOLOv7, DINO, and Next-ViT.

TABLE 15. YOLOvV5 detects basic results for the SiXrayp dataset.

Class Images | Labels | P R mAPQ.5 | mAP@.5:.95
all 840 1,586 | 0.926 | 0.881 0.924 0.66
Gun 840 432 0.962 | 0.965 0.988 0.768
Knife 840 200 0.904 | 0.804 0.879 0.582
Pliers 840 562 0.937 | 0.916 0.952 0.695
Scissors 840 109 0.931 | 0.862 0.91 0.61
Wrench 840 283 0.897 | 0.859 0.888 0.646

TABLE 16. YOLOvV7 detects basic results for the PIDrayp dataset.

Class Images | Labels | P R mAP@Q.5 | mAP@.5:.95
all 422 641 0.956 | 0.899 0.937 0.778
Baton 422 23 0.998 | 0.956 0.994 0.835
Bullet 422 23 0.982 | 0.998 0.996 0.821
Gun 422 28 0.984 | 0.998 0.996 0.89
Hammer 422 75 0.998 | 0.987 0.996 0.864
HandCuffs 422 12 0.978 | 0.998 0.996 0.804
Knife 422 76 0.959 | 0.816 0.927 0.803
Lighter 422 e 0.937 | 0.584 0.68 0.472
Pliers 422 127 0.998 | 0.971 0.99 0.821
Powerbank 422 44 0.878 0.75 0.881 0.67
Scissors 422 7 0.827 | 0.857 0.835 0.706
Sprayer 422 ks 0.933 | 0.899 0.967 0.802
Wrench 422 72 0.998 | 0.965 0.99 0.847

TABLE 17. YOLOv7 detects basic results for the SiXrayp dataset.

Class Images | Labels | P R mAPQ.5 | mAP@.5:.95
all 840 1,586 | 0.947 | 0.888 0.936 0.686
Gun 840 432 0.982 | 0.97 0.994 0.776
Knife 840 200 0.929 | 0.845 0.902 0.632
Pliers 840 562 0.96 | 0.918 0.958 0.729
Scissors 840 109 0.939 | 0.85 0.912 0.629
Wrench 840 283 0.924 | 0.855 0.916 0.661

VI. CONCLUSION

This paper reviews the more popular deep learning object
detection algorithms of recent years. Also, it summarises
the application of deep learning to the field of X-ray bag-
gage dangerous goods detection. While many models have
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temporarily solved some of the problems in this area, huge
limitations remain:

1y

2)

3)

4)

The pseudo-color pictures formed by dual-energy X-ray
still do not work well with modern detection models and
must be modified in depth to obtain more reasonable
results.

The timeliness of the algorithm is a factor that must be
considered at the moment.

In reality, if prohibited goods are in luggage, they will
inevitably be wrapped in layers. The resulting X-ray
images can be extreme, with objects stacked on top of
each other over a large area. The accuracy of existing
models for identification may need to be higher.

The current X-ray baggage image dataset is still small
and of low quality, which affects the training of deep
learning models.

In response to the above challenges, we offer the follow-

ing suggestions:

1y

2)

3)

4)

5)

Using image translation or style transfer techniques to
generate corresponding natural light images from X-ray
images, expanding the X-ray baggage dataset.

The use of image pairs formed by high- and low-energy
rays, combined with images in natural light, enriches the
color of X-ray images and brings them closer to natural
light images.

Reduce the cost of 3D CT scan recognition technology
by converting 2D algorithms to 3D algorithms to recog-
nize stacked layers that are difficult to recognize in the
2D case.

Image feature extraction and synthesis using a Diffu-
sion model more advanced than GAN to generate high-
quality X-ray images containing prohibited items.
Although most prohibited items are masked, they do not
change their original shape excessively when exposed to
X-ray. They can still be identified using contour infor-
mation through a rational algorithm design. One of the
future directions in X-ray dangerous goods detection is
using hybrid algorithms that combine texture features
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6)

and contour information of prohibited items for identi-
fication.

In order to make fair comparisons, evaluation criteria
must be established on public datasets.
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