
Received 16 April 2023, accepted 30 April 2023, date of publication 5 May 2023, date of current version 22 May 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3273219

MSI-A: An Energy Efficient Approximated
Cache Coherence Protocol
ANANT SARASWAT1, KUMAR ABHISHEK 1, HITESHWAR KUMAR AZAD 2, AND
S. SHITHARTH 3
1Department of Computer Science and Engineering, National Institute of Technology Patna, Patna, Bihar 800005, India
2School of Computer Science and Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India
3Department of Computer Science, Kebri Dehar University, Kebri Dehar 250, Ethiopia

Corresponding author: S. Shitharth (shitharths@kdu.edu.et)

ABSTRACT Energy consumption has become an essential factor in designing modern computer system
architecture. Because of physical limits, the termination of Moore’s law and Dennard’s scaling has forced
the computer design community to investigate new approaches to meet the requirements for computing
resources. Approximate computing has emerged as a promising method for reducing energy consumption
while trading a controllable quality loss. This paper asserts that an approximated cache coherence protocol
preserves overall energy for computation. We can approximate the cache coherence protocol by adding
approximated cache lines to a certain level without hindering the output. This paper introduces an enhanced
approximated version of the MSI (Modified Shared Invalid) cache coherence protocol MSI-A (Modified
Shared Invalid-Approx). We have verified MSI-A and MSI by employing LTL specifications in the NuSMV
model checker. To illustrate the benefits of MSI-A, we have added DTMC (Discrete-Time Markov Chain)
with PCTL (Probabilistic Computational Tree Logic). Although the PCTL proves the theory of approxima-
tion, we have also simulated the MSI-A in the TEJAS hardware simulator on PARSEC 3.0 to investigate
the energy gains and cycle gains of MSI-A in varied applications. The cache lines considered to be approx
are between 10 and 30 percent. Each application benefited from approximation according to its nature, and
VIPS has indicated a total energy gain of 30.18 percent.

INDEX TERMS Approximation, cache coherence, NuSMV, formal verification, temporal logic,
computation.

I. INTRODUCTION
Designing modern computing systems inducts a high prior-
ity on reducing energy consumption. Now, there is a need
to design a new paradigm of computation. The motivation
behind these are two famous concepts, the first of which is
the breakdown of Dennard scaling [1]. The second one is the
end of Moore's law [2]. So, Dennard's scaling refers to the
observation made by Robert Dennard, an IBM researcher,
in 1974 that as the dimensions of transistors are scaled
down, their power density remains constant, allowing for
a proportional increase in the number of transistors that
can be placed on a chip while keeping power consumption
constant, and this allowed for a significant increase in the
performance of computer processors over several decades,

The associate editor coordinating the review of this manuscript and
approving it for publication was Khursheed Aurangzeb.

known as Moore’s Law. However, as transistor dimensions
continue to shrink, they are approaching the physical limits
of materials and device physics. Dennard's scaling is no
longer applicable. Reducing transistor size no longer leads
to a proportional reduction in power consumption and heat
dissipation. Instead, smaller transistors suffer from leakage
current and other physical effects that increase power con-
sumption and generate more heat, limiting the performance
and scalability of future processors. The end of Dennard's
scaling has significant implications for the future of computer
architecture and design. The focus is shifting towards more
efficient use of resources, such as energy and memory, and
exploring new technologies, such as quantum computing,
neuromorphic computing, and photonics. Additionally, there
is an increased emphasis on developing algorithms and soft-
ware to optimize performance on existing hardware platforms
rather than relying on hardware improvements alone to drive

VOLUME 11, 2023
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 48123

https://orcid.org/0000-0001-6825-2392
https://orcid.org/0000-0002-4121-8941
https://orcid.org/0000-0002-4931-724X

A. Saraswat et al.: MSI-A: An Energy Efficient Approximated Cache Coherence Protocol

performance gains.The Moore Law is reasonably related to
Dennard's scaling.

Moore’s law is a term coined by Gordon Moore, co-
founder of Intel, in 1965. The law states that the number of
transistors on a microchip doubles every two years, signif-
icantly increasing processing power and decreasing the cost
per transistor. This trend has held for several decades, leading
to a rapid increase in computing power and technological
advancement. The origins of Moore's law can be traced back
to the development of the first microchip by Intel in 1971.
At that time, the microchip had 2,300 transistors. However,
by the mid-1970s, the number of transistors on a microchip
had already increased to over 5,000. The trend continued to
accelerate throughout the following decades. The doubling
of transistors on a microchip every two years has led to a
tremendous increase in computing power, resulting in faster
and more efficient computers, smartphones, and other elec-
tronic devices. It has also driven the development of new tech-
nologies, such as cloud computing, artificial intelligence, and
the Internet of Things, which rely heavily on the processing
power of microchips. One of the most significant effects of
Moore'slaw has been decreased cost per transistor. As the
number of transistors on a microchip has increased, the cost
per transistor has decreased, making it more affordable to pro-
duce increasingly powerful devices, leading to a democratiza-
tion of technology, and allowing people worldwide to access
and benefit from the latest technological advances. However,
the rapid increase in computing power and decreased cost per
transistor have also presented challenges. As the number of
transistors on a microchip has increased, so has the amount of
heat generated by the microchip. It has made it more difficult
to dissipate heat and increased the overheating risk, which can
cause system failures and reduced performance.

As Moore's law and Dennard's scaling come to an end,
computing paradigms are shifting in other directions, and
approximate computing is one of those new paradigms.
Cache-coherence protocol is a safety-critical system, and as
the number of cores increases, so does the energy required
to maintain coherence. We can use approximate computing
with cache coherence, and the idea is to arrange cache lines
into approximate and precise ones [3]. The overall output
will not suffer if we ignore the approximated cache lines and
give the processor any approximated value for computation,
and this will save the computation cycles and save energy.
A new MSI protocol that reduces power consumption and
improves overall performance is presented in this research.
This advanced protocol is MSI-A (MSI with approximation),
and to prove its correctness, we have verified it using LTL
(Linear Temporal Logic) [4] specifications.

Developing a modern processing architecture will con-
tinue to benefit from cache coherence because it enables
accessible shared-memory programming models that make it
easier to create efficient parallel applications. After growing
these processors’ cores to hundreds, energy consumption [5]
becomes a significant design restriction. Methods to increase
the efficiency of coherent multi-cores concerning energy

consumption are essential for designing a modern com-
puter architecture with advanced cache coherence. We have
designed an advanced approximate cache-coherence proto-
col MSI-A emanated from MSI. Furthermore, to prove the
correctness of the noble MSI-A protocol, we have incorpo-
rated Formal Methods [6], a unique mechanism for verifying
safety-critical systems.

In this paper, we have developed an advanced approx-
imated version of the MSI cache coherence protocol and
infused approximation for saving energy. Now, to prove the
correctness of the new protocol (MSI-A), we have to verify
all the corners. Verification is an essential part of the soft-
ware development life-cycle, and verification is necessary
for safety-critical systems. Many techniques are available for
verification, but Formal Methods are best suited for safety-
critical systems. We need a glimpse of safety-critical systems
to understand the need for Formal Methods. Safety-critical
systems can be defined as [7]:

‘Software modules and subsystems whose malfunction
imperils the user or could lead to unintended consequences

are known as safety-critical systems.’

Formal Methods are among the best practices standards
of the International Electrotechnical Commission (IEC) [8]
and the European Space Agency (ESA) [9] standards. Both
standards list formal methods as ‘‘strongly recommended’’
verification strategies for the software development of safety-
critical systems. NASA1 not only applies Formal Methods as
a validation strategy but also recommends that every aspiring
computer scientist be accustomed to formal methods and has
their research program for Formal Methods. Formal Methods
are helpful even in verifying machine-learning approaches
and self-driving cars [10]. Many authors [11], [12]
have considered the verification of the cache-coherence
protocol by Formal Methods necessary because the com-
putation of a parallel processing system is related to the
cache-coherence protocol, and we can label cache-coherence
protocols as safety-critical systems. In addition, researchers
have used many techniques and tools to verify cache coher-
ence protocols or new computer architectures. For example,
Pang et al. [13] provide an overview of formal verification
techniques for cache coherence protocols, including model
checking and theorem proving. Burenkov et al. [14] present
a framework for modelling and verifying cache coherence
protocols using the Promela language and the Spin model
checker. Joshi et al. [15] describe a formal model of the
Intel cache coherence protocol using the TLA+ specification
language and the TLC model checker. Xupeng et al. [16]
describe the design and verification of the Arm Confidential
Compute Architecture (CCA), a security extension for Arm
processors that enables hardware-based confidential comput-
ing. Chen et al. [17] propose a new approach to verify the
equivalence of two quantum circuits using partial equivalence
checking (PEC) techniques. Quantum circuits are a collection

1https://shemesh.larc.nasa.gov/fm/

48124 VOLUME 11, 2023

A. Saraswat et al.: MSI-A: An Energy Efficient Approximated Cache Coherence Protocol

of quantum gates that operate on qubits, and verifying the
equivalence of two such circuits is essential in ensuring the
correctness of quantum algorithms and quantum hardware
designs. Our proposal also requires a hardware simulator
simulation, and we have simulated MSI-A to demonstrate the
energy and cycle gain. We have discussed the simulation in
the Proposed Work section of this paper.

The following contributions are made in this paper:

• A state-space system for MSI has been described, which
focuses on approximate computing applications.

• To accommodate the approximate data at the cache lines,
we implemented amodifiedMSI protocolMSI-A (a lazy
cache coherence protocol [18]).

• We have designed a working model for the simulation
of MSI-A for a hardware simulator with a data spectrum
ranging from 10% to 30% approximation.

• We used NuSMV [19] to establish LTL specifications
for verifying the MSI-A.

• We evaluated the limiting distribution of MSI-A and
calculated its probabilities by PCTL.

• We have evaluated the energy gain and cycle gain of
MSI-A over MSI using TEJAS simulator [20].

The remainder of this paper is structured as follows.
Section II discusses related work, and Section III describes
the proposed approach, which includes protocol verification,
formal verification, and the structure of MSI-A. This sec-
tion also covers the theoretical aspects of MSI as well as
the detailed analysis using Discrete Time Markov Chains.
Section IV discusses the result and discussion, which includes
the outcome of hardware simulation. The conclusion is cov-
ered in the last section V.

II. RELATED WORK
Approximate computing has a long history of being used to
gain energy and cycles in the signal and information process-
ing communities. Recent work in approximate computing
has focused on the development of new paradigms that can
ignore a small number of functions while still producing an
output that conserves energy and computation cycles. Our
previous work [21] focused on MESI-A, and we had good
results with it. These findings motivate us to look for other
cache coherence protocols that we can tweak for approx-
imable cache lines. The majority of the researchers suggested
storing exact and approximation data in two distinct formats:
Quaternary and binary format. Quaternary format data can
be used for storing approximated data [22], while accurate
data is collected in binary format. Quaternary storage permits
the keeping of more data but is less dependable. Researchers
proposed partitioning approximation and exact data per cache
line in the paper Directory-based cache coherence in large-
scale multiprocessors [23]. The system requires an extra bit
to distinguish between the two. Researchers enforced approx-
imation in DRAM by decreasing the amount of energy used
to refresh cells, known as Flikker [24]. Banks et al. [18]
suggest lowering synchronisation and data movement for

little value, as work onmulti-core processors has drawnmuch
attention through snooping [25]. Alur et al. [26] proposes
to use hybrid automata for verifying complex systems, and
they also suggest that verification using formal methods is
essential for safety-critical systems. Chatterjee et al. [22]
proposed using stale data for estimated loads and introduc-
ing a rudimentary Stale Victim Cache (SVC) to store an
approximate cache line following d-L1 eviction. Verifica-
tion and proof of cache coherence protocols are essential
because these protocols are critical for the computation of
the system, and therefore these protocols are safety-critical
systems. As formal verification is necessary for a safety-
critical system, many investigators have validated important
cache coherence algorithms [27]. Modelling the approxi-
mated cache-coherence protocol conceptually and formally
validating it ensures the protocol is error-free. Although
experimenters have validated the MESI protocol [28], our
work MESI-A has also shown energy gains and cycle gains
with approximation. Researchers also illustrated energy gain
in the protocol, known as Doppelganger [3], although proto-
col verification is still lacking. Employing Markov’s chains,
researchers [29] solved infinite-state problems. Lyu et al. [30]
endorse the verification process in the cache-coherence pro-
tocol, proposing scalable on-the-fly test-generating methods
utilising quotient state space to consider all feasible states.
Developing a cache coherence protocol can save computation
energy with new paradigms [3]. Verification is a prerequisite
for safety-critical systems. Bingham and Lyu [30] have taken
scalability into account. However, simulation is required for
ourmethod to give a result, whichwas absent inmany articles.
Bankes et al. [18] proposed a weak memory cache-coherence
strategy, and Chatterjee et al. [22] have not discussed the
influence on computation in their work. However, we have
taken motivation from that work.

III. PRELIMINARIES
Before proceeding with the MSI-A algorithm, this section
illustrated the baselines for this article, which are the MSI
cache coherence algorithm, Formal Methods for verification
and Kripke structure used in model checking.

1) THE MSI ALGORITHM
The Requests in MSI algorithm are

• PrRd: It is the request from the processor for reading a
cache line.

• PrWr: It is the request from the processor for writing a
cache line.

• BusRd: When there is a read miss in a processor's cache
line.

• BusRdX: When there is a write miss in a processor's
cache line.

• BusUpgr: When a write hit occurs in any of the pro-
cessor's cache line, it responds a ‘BusUpgr’ command
into the bus, which invalidates the status of the particular
cache line.

VOLUME 11, 2023 48125

A. Saraswat et al.: MSI-A: An Energy Efficient Approximated Cache Coherence Protocol

• Flush: The entire cache is written back into the memory.

There are three states in the MSI algorithm, and from these
states, the transaction is described as follows:

1) Invalid:

• On command PrRd, BusRd instruction executed
and state changes to Shared.

• On command PrWr, BusRdX instruction is exe-
cuted, and state changes to Modified.

• On command BusRd, BusRdX or a BusUpgr, the
state remains Invalid.

2) Shared:

• On command PrRd, the state of cache-line remains
in the Shared state.

• On command PrWr, BusUpgr is executed, and state
changes to Modified.

• On command BusRd, the state of the cache line
remains in the Shared state.

• On command BusRd, BusRdX or a BusUpgr, the
state remains Invalid.

3) Modified:

• On command PrRd or PrWr, the cache-line state
remains in the Modified state.

• On command BusRd, the cache state is flushed
on the bus and the state of cache-line changes to
Shared.

• On command BusRdX, the cache line state is
flushed on the bus and the state of the cahe-line
changes to the Invalid state.

• ABusUpgr is not going to execute if the cache line
is in a modified state

Figure 1 is the illustration of the MSI algorithm. We have
verified this algorithm with LTL specifications in NuSMV.
The figure resembles the model we have created using the
NuSMV model checker. The blue connectors are the request
initiated by the processor, and the yellow ones are the requests
initiated by the bus on cache lines.

FIGURE 1. MSI algorithm.

2) FORMAL METHODS
Formal Methods are a combination of Finite State Machines
and mathematical formulas. The Finite State Machine (FSM)
is an early paradigm of computation. The great success of
machine learning is also linked to FSM. Thus, the urged sys-
tem achieves accuracy, consistency, and correctness through
formal methods, which are necessary when dealing with
safety-critical systems. Mathematical designs for any partic-
ular specification are both precise and free of ambiguity, and
these specifications are coded in a tool using temporal logic.

3) KRIPKE STRUCTURE IN MODEL CHECKING
Kripke structure is the initial illustration of model checking
where we give labels to an FSM. There are four components
to a Kripke structure: the set of states (S), the transition
relation between states (R), the initial state set (I), and a
state labelling function (L : S H⇒ 2AP). Researchers have
developed many theories in automaton for verifying real-time
systems using formal methods [31]. The Formal Method
combines formal specification, formal verification and tem-
poral logic. Formal specification is mathematical formulae
that define the system, and the formal verification verifies the
correctness of the system using temporal logic.

Temporal logic proves the correctness of any expression
throughout the execution; for example, Consider the state-
ment ‘‘I am in NIT Patna’’. Though its meaning is constant
in time, the statement's truth value can vary. There are many
approaches by which temporal logic can be coded in a com-
puter. Examples of temporal logic are Linear Temporal Logic,
Computational Tree Logic and many others. We can use
Probabilistic Computational Tree Logic to create and analyse
Discrete-Time Markov Chains.

This article used the NuSMV tool for model checking.
In NuSMV, we can encode LTL, but for PCTL, we cre-
ated DTMC and evaluated it manually. We validated the
proposed MSI- A algorithm by employing LTL specifica-
tions in the NuSMV model checker. As cache coherence
is being considered by researchers as a safety-critical sys-
tem by researchers [32], [33], [34]. We ensure the correct-
ness of safety-critical systems by encoding LTL formulae
with PCTL.

During the experimental analysis, we assumed that 30% of
the cache lines are approximated, and the processor knows
which cache lines are approximated prior to execution. This
article demonstrates that the hardware’s strict action for
coherency is inefficient for approximate cache lines. The
MSI protocol and the new relaxed MSI-A protocol have
been formally validated to ensure their safety and liveliness.
We basically created a miniature cache coherence protocol
with two processors and three cache lines for each processor.

IV. PROPOSED WORK
This article proposed an energy efficient approximated ver-
sion of the MSI cache coherence protocol known as MSI-A
(Modified Shared Invalid-Approx). The proposed MSI-A

48126 VOLUME 11, 2023

A. Saraswat et al.: MSI-A: An Energy Efficient Approximated Cache Coherence Protocol

FIGURE 2. MSI-A algorithm.

protocol conserves overall computational energy. The cache
coherence protocol can be approximated by adding approx-
imated cache lines to a certain level without affecting the
output. The proposed MSI-A cache coherence protocol is
depicted in Figure 2. We tested this algorithm in NuSMV
using LTL specifications. The figure is similar to the model
we createdwith theNuSMVmodel checker. The blue connec-
tors represent processor-initiated requests, while the yellow
connectors represent bus-initiated requests on cache lines.
The following assumptions are made for this protocol:

• Approximate data accumulates at the cache-line dis-
tributed only for the approx data. The processor sepa-
rates the approximate data and creates a memory layout.

• Approximated data must be pre-defined; otherwise, the
system will pay some bytes to separate approx data. The
processor executes a special move instruction (mova),
and the cache-line, which can be approximated, is placed
in Approx state.

• All other states are similar to MSI.

We’ve assumed that a lightweight handheld device is linked
to the system via a Local Area Network. For the execution of
a specific programme, that device can send data to the pro-
cessor, informing it how much execution in that programme
can be approximatedwithout significantly altering the output.
Data that can be approximated will never be fetched from
the processors, and the cache line state for that data will
be ‘APPROX’. In addition, the processor will assign cache
lines that are approximable with approximate data, and the
status of that cache line will not change during execution.
This ‘APPROX’ state differs from the INVALID state because
once a cache lines have been assigned with the approx state,
the processor will not modify the state any further.

The handheld device will now be referred to as a ‘hand
device.’ The hand device will assign a probability of approx

data, i.e., how much data we can ignore, and will store a
random value in the cache line for that data. To analyze the
probability of being in the state of ‘APPROX’ and vice versa,
we have created a probabilistic interpretation and designed
Discrete-Time Markov Chains (DTMC). For DTMC repre-
sentation, the future execution depends on the present sce-
nario and not the past execution. The behavior of MSI-A also
depends on the current execution because the requests are
not dependable on any past executions. If we want to execute
this into hardware, we need special instructions executed by
the operating system. We have introduced a special appr()
function, whichwill execute when program execution is mod-
erately approximable, and this function takes the cache lines.
A ‘MOVA’ hardware execution is needed to place cache lines
in the appr() function.

The appr() function will take a parameter which is the
address of approx data present in the program. For example,
appr(1) represents a program that can give output without
cache-line ‘1’. Figure 3 depicts the abstract concept as a
Petri net. For the sake of illustration, we have only consid-
ered four cache lines. If a token is triggered by a handheld
device, that cache line will have approx state throughout the
program. We assumed that the programmer or user knows
which programs respond well to approximate data and which
are error-prone when dealing with approximate data. Theo-
retically, if less data is being fetched, a system will perform
faster, and we will gain energy accordingly. Our assumption
will consider cycle and energy gain. A cycle involves bringing
data from the main memory into the cache, and fewer cycles
are referred to as cycle gain. In contrast, energy gain is the
total energy saved in executing an approximable program.
We have mapped both aspects of the TEJAS simulator using
the PARSEC benchmark suite.

A. PROTOCOL VERIFICATION
The MSI algorithm’s compliance with the LTL measures
has been successfully validated. The semantics of LTL are
represented by the states and pathways, respectively. There
is no specific reachability condition to consider in the MSI
or MSI-A models, but all safety, liveliness, and fairness [35]
criteria are taken into account. This article introduced the
following lemmas as part of the validation process for the
cache coherence protocol:

1) Every cache line will go to the modify state if a write
operation is executed on it. This LTL ensures liveness
of ‘Write’ state, i.e. write state, stay live throughout the
algorithm. Here’s a pseudo-code example of LTL:
WrtCmd (Cachestatus = State(Invalid ∥ Invalid ∥

Shared)) H⇒ State(Write)
2) If cache lines of any processor have data, and from the

bus, the BusRd request executed on other processors
for the same data, the cache line state will be ‘Shared’.
This LTL is for the safety and fairness of ‘Shared’ state.

3) No two or more processor cache lines will store the
same data. This LTL is for the safety and fairness of

VOLUME 11, 2023 48127

A. Saraswat et al.: MSI-A: An Energy Efficient Approximated Cache Coherence Protocol

FIGURE 3. MSI-A approximation illustration.

cache lines. This LTL also verifies the memory subsys-
tem of the cache.

4) If two or more processors have the same data in their
cache lines and one processor has changed it, then the
other processor’s state of the cache line will go invalid.

Figure 4 depicts the NuSmv model’s blueprint.

B. LTL WITH NuSMV
We have used LTL specifications within NuSMV for mod-
elling and Verification. Linear Temporal Logic (LTL) and
Computation Tree Logic (CTL) are popular formalisms for
specifying and verifying systems’ temporal properties. Both
have strengths and weaknesses; the choice of which one to
use depends on the application and the properties to verify.

There are some situations where LTL is preferable over
CTL. Here are some reasons:

1) Simplicity: LTL is a more straightforward logic than
CTL, with fewer operators and fewer types of temporal
modalities. This simplicity makes it easier to use and
understand, especially for beginners.

2) Expressiveness: LTL is more expressive than CTL
when specifying temporal properties. It allows for spec-
ifying complex temporal relationships between events
and can express properties that CTL cannot. For exam-
ple, LTL can express properties like ‘‘eventually holds,
infinitely often,’’ while CTL cannot.

3) Automata-based model checking: Model checking is a
popular technique for verifying the properties of sys-
tems, and it is often used with LTL and CTL. One
advantage of LTL is that it can be checked using a
simple type of automaton called a Buchi automaton,
which is easier to construct and use than the automata
used for CTL.

4) Natural language specifications: LTL can specify tem-
poral properties in natural language-like syntax, mak-
ing it easier for non-experts to understand and use.

Conversely, CTL has a more complex syntax that can
be harder to read and write.

However, it is worth noting that CTL also has its advan-
tages over LTL. For example, it is better suited to verify
the properties of systems with branching behaviour, which is
common in concurrent and distributed systems. Additionally,
some properties are more accessible to express in CTL than in
LTL. Therefore, the choice between LTL and CTL ultimately
depends on the application’s specific needs and properties
being verified.

Our model has not been incorporated by branching, so we
have used LTL specifications. NuSMV and LTL also work
efficiently together. While many tools are available for model
checking, we have used NuSMV. NuSMV is a powerful
model-checking tool widely used to verify hardware and
software systems. Here are some reasons why NuSMV is
considered better:

1) Expressive modelling language: NuSMV provides a
rich modelling language that easily describes complex
systems. It supports both temporal and modal logic,
which are commonly used in the formal verification of
systems.

2) Scalability: NuSMV can handle large models effi-
ciently, making it suitable for verifying complex sys-
tems. It uses sophisticated algorithms to performmodel
checking, which allows it to scale to large systems.

3) Modular design: NuSMV has a modular design that
simplifies adding new features or extending its func-
tionality. It provides a plug-in architecture that allows
us to add new verification algorithms or interfaces.

4) Open-source: NuSMV is open-source software, mean-
ing anyone can download and use it for free. It is also
actively maintained by a community of developers who
provide support and fix bugs.

5) Widely used: NuSMV is widely used in industry and
academia. It has been successfully applied to various
systems, including hardware and software.

48128 VOLUME 11, 2023

A. Saraswat et al.: MSI-A: An Energy Efficient Approximated Cache Coherence Protocol

FIGURE 4. NuSMV blueprint of MSI and MSI-A.

Overall, NuSMV is a powerful and flexible tool that can
help us verify the correctness of the system. Its expressive
modelling language, scalability, modular design, open-source
nature and wide adoption make it a better option for many
verification tasks.

C. STRUCTURE OF MSI-A
In our simulation of the protocol, we did not take into account
any modifications to the local caches. If certain cache lines
can be approximated, they are not retrieved for processing,
and instead, the processor is given a random number to work
with. After calculating, the processor ignores changes into
approximable cache lines; this is the reason why we are able
to conserve energy and cycles using the MSI-A architecture.
It is presumed here that the processor is aware of which cache
lines can be approximately reconstructed. When such lines
reach the front of the execution queue, the processors realign
themselves and begin computing using random values based
on a scale that has been previously determined.

The status of more than one cache state in the MSI
may change because of the same data. Therefore, we have
explained this model using a program graph, an advanced
transition system version.We have shown the structure of this
program graph in figure 5

Figure 5 illustrates the system for this approximation, and
the blue boxes represent the approximable cache lines. The
computation can use random values, and the overall outcome
is never hampered through this approximation. The blue
boxes will not command the processor to fetch the data from
the main memory or write it back into the main memory,
and the processor will place a random value. As per our
assumption, these cache lines will not derail the overall output
of the program.

With local writing, we save many cycles, such as
a command from the processor that will fetch the data from

memory. After the execution, the processor will place the new
values in the main memory. Hence eventually, the execution
will have cycle gains and energy gains.

D. FORMAL VERIFICATION OF MSI-A
The labelling transition system contains a notation of atomic
proposition (AP) to label the system. Generally, AP is the sub-
set of all the states in the model. At an abstract level, we have
assumed two atomic propositions, ‘approx’ and ‘non-approx’
MESI-A. The AP ‘non-approx’ is for typical MSI protocol,
and ‘approx’ is for MSI-A where only approximable cache
lines are present. There must be no effects on MSI's essential
properties, and the MSI-A model must sum up the stipulation
of MSI protocol. We have added these two specifications
for MSI-A:

1) We have verified that if the state of the cache is not
approx, then it must change the state to modify state if
there is any write operation performed on it.

2) We have verified that if the status of any cache line
is ‘approx,’ then during the execution, it will stay on
‘approx,’ and no instruction will change it.

E. THEORETICAL ASPECTS OF MSI FOR PROVING ITS
CORRECTNESS
The Atomic Propositions in Labels in Label Transition sys-
tems are defined with (L : S H⇒ 2AP). We have defined two
atomic propositions, which are APPROX andNONAPPROX.
The label function inMSI-A for NONAPPRX are L(Modify),
L(SHARE) and L(INVALID); furthermore, for APPROX,
we have L(APPROX) as the label function. The working
of MSI-A and MSI is similar for all the label functions,
excluding L(APPROX).

We have used another notation of predecessors and suc-
cessors in the model to validate the termination of any com-
putation for the APPROX cache-lines. The predecessors in a
Transition System TS (S,Act, −→ I ,AP,L) where e ∈ S and
β ∈ Act is defined as:

Post(e, β) =

{
e′ ∈ S|e

β
−→ e′

}
Post(e) =

⋃
β∈Act

Post(e, β)

the successors is defined as:

Pre(e, β) =

{
e′ ∈ S|e′

β
−→ e

}
Pre(e) =

⋃
β∈Act

Pre(e, β)

We defined Post(APPROX) as null using the aforemen-
tioned factors. As a result, the cache line in consideration
cannot change its status further for that particular execution.
The Pre(APPROX) state is invalid becausewe anticipated that
cache lines that have been classified as approximable became
invalid before the execution commenced. We have antici-
pated that the cache line may not be approximable for other
executions. The bus will therefore invalidate all instances of

VOLUME 11, 2023 48129

A. Saraswat et al.: MSI-A: An Energy Efficient Approximated Cache Coherence Protocol

FIGURE 5. MSI-A structure for saving energy and cycle.

that cache line, and its status has been set to APPROX for
executions where it is approximable. This assumptionwill not
affect the other cache’s existence.

The approximation is non-deterministic because it is possi-
ble for us to have an approximable cache line for any distinct
execution while at the same time having the same cache line
as typical (not approximable) for another execution.

We experienced challenges with state exploration in
MSI-A as a result of the increased number of states generated
by the number of cache lines. This problem is addressed
using the sum operator in the MCRL2 environment, and
it is assumed that eight cache lines (two for each CPU)
are approximable. We investigated the sum operator using
MCRL2 and used the sum operator to demonstrate MSI-A
correctness. In this instance, the sum operator is applied to
the full MSI-A model, and a correctness proof is necessary
to explain the effect of the sum operator on the model, which
handles ordinary cache lines.

Axiom-1: ∑
d :D

X = X

So if we apply the sum operation on the whole model,
but because of Axiom 1, the expected performance of the
protocol, which accepts standard cache lines, will not hinder.

Axiom-2: ∑
d :D

X (d) = X (e) +

∑
d :D

X (d)

Axiom 2 explains that if there is a choice over many
processes over X(d) for concrete d, we can take one of its
choices generalized by the sum operator and put it separately.
The model will behave as usual if we take out X(e). This
Axiom proves that LTL applied to themodel always functions
with the sum operator or even on a finite part of it.

F. ANALYSIS USING DISCRETE TIME MARKOV CHAINS
The Discrete-Time Markov Chain (DTMC) is compati-
ble with the Probabilistic Computation Tree Logic (PCTL)
approach, which determines the probabilities of any discrete
run. In order to facilitate a deeper level of comprehension,
we have associated our assumption with a stochastic matrix.
We considered the read requests in the caches based on our
findings. We determined that each cache in the APPROX

48130 VOLUME 11, 2023

A. Saraswat et al.: MSI-A: An Energy Efficient Approximated Cache Coherence Protocol

FIGURE 6. The DTMC model for MSI-A.

state ought to be given an equal likelihood of being retrieved
once more by the processor during the subsequent execu-
tion. A picture of a stochastic matrix is the given Matrix 1.
Here, the likelihood of reaching an APPROX state from a
non-APPROX state is 0.3, while the probability of accom-
plishing a loop from a non-APPROX state to itself is 0.7.
In the subsequent execution, if the APPROX state was the
initial state, then there is a fair likelihood of remaining in the
APPROX state, which is equal to 0.5, and there is also an
equal probability of obtaining a non-APPROX state, which
is also equal to 0.5. Figure 6 illustrates the model where we
have described the assumptions for creating DTMC. Markov
Chains [29] have been utilised by researchers in order to
gain an understanding of the probabilistic performance of
verification.

Matrix 1: Stochastic matrix for MSI-A

P =

NonApprox Approx()
0.7 0.3 NonApprox
0.5 0.5 Approx

Matrix 2 is an illustration of the limiting distribution.
This distribution will not change after the limiting dis-
tribution. The model is aperiodic, irreducible and posi-
tive recurrent; therefore, we can calculate the steady-state
probabilities.

Matrix 2: Limiting Distribution for MSI-A

V =

NonApprox Approx()
0.63 0.37 NonApprox
0.62 0.38 Approx

The steady-state probabilities are the final probabilities
of the system. Here it conveys that over the long run, the
probability of achieving approx state from the non approx
state is 0.37 and staying in approx state after the cache-line is
in the approx state is 0.38. In equation 2, ‘V’ is limiting distri-
bution,The initial state probabilities are defined by matrix 1 it
isP(0) andPn is the probability distribution after n commands
on Matrix 1. The normalization part of the equation 3 is the

TABLE 1. Architecture of the system used for simulation.

right part and the left part of the equation becomes linear
system of equations and it is linearly independent.

V = lim
n→∞

P(0) ∗ Pn (1)

V (P− I) = 0, and
∑
j

Vj = 1 (2)

V. RESULT AND DISCUSSION
We have used the Princeton Application Repository for
Shared-Memory Computers (PARSEC) [36], a benchmark
suite comprised of multi-threaded programs. This benchmark
suite is employed within the TEJAS simulator to measure var-
ious applications’ gain in energy and cycles. The applications
we have used are of different kinds. These applications are
shown in table 2.
The energy gain and cycle gain are dependent on the nature

of applications. The applications requiring frequent read and
write operations on approx cache lines are showing better
results than others. The energy gain of various applications
is shown in figures 7a and 7b. The cycle gain is shown in
figures 7c and 7d.

The analysis phase is hard-coded for a certain percent-
age of cache lines which do not need any write command

VOLUME 11, 2023 48131

A. Saraswat et al.: MSI-A: An Energy Efficient Approximated Cache Coherence Protocol

FIGURE 7. Energy and cycle gain in various applications using approximation and MSI-A.

TABLE 2. Various applications for simulations.

from the processor. Also, the cache lines are not fetched
by the processor, and these approximated cache lines are
identified by a bit. Approximate cache lines generally do
not change the desired output. We have analysed the results
with 10 to 30 percent cache lines as approx. We have anal-
ysed another cache coherence protocol, MESI, and created

an approximable MESI version, MESI-A. We have noted
the benefits of the MESI-A protocol (in terms of cycle and
energy gain) with 5 to 20 percent of the approximated cache
lines. In the following subsection, we have compared MSI-A
and MESI-A.

The architecture we have used for simulation is discussed
in the table 1, which is the same architecture of our previous
work MESI-A, and by using the same structure, we can
compare the outcome of approximation on both MSI-A and
MESI-A Different applications show different results with
approximated cache lines. Our analysis shows ‘Vips,’ an
application for media processing, has shown tremendous
energy gain and cycle gain. The energy gain of this
application is 16.16, 18.95 and 30.18, for 10, 20 and
30 percent, respectively. The second one to follow is
‘Blackscholes’ (used for financial analysis), which has an

48132 VOLUME 11, 2023

A. Saraswat et al.: MSI-A: An Energy Efficient Approximated Cache Coherence Protocol

FIGURE 8. Energy gain representation of all applications after MSI-A.

energy gain of 18.15 for the 30 percent approx cache lines,
while the cycle gain is 8.51, 11.23, 18.15 for 10, 20 and
30 percent respectively. In our analysis ‘X264,’ an encoder
used for rendering has less energy and cycle gain as compared
to other applications. The ‘X264’ has 3.72, 5.74, 9.36 energy
gain for 10, 20 and 30. percent approx cache lines, the cycle
gain for ‘X264’ is 4.55, 8.79, 11.35 for 10, 20 and 30 percent
approx cache lines, respectively.

In sections II and III, we have discussed the importance
of formal methods in verifying MSI-A and MSI. We have
also analyzed the role of the Discrete-Time Markov Chain
in establishing the proof of effectiveness for approximated
MSI-A. All the LTL specifications are verified. The MSI-A
should encapsulate all the LTL specifications of MSI, and we
have verified all the LTL specifications ofMSIwithinMSI-A.
In addition, we have used a few LTL specifications to ensure
the correctness of MSI-A.

We have examined the results of all the applications shown
in table 2. By plotting the energy gain of all those applica-
tions, we have found that all applications perform better with
approximable cache lines and with MSI-A cache coherence
protocol. The regression line shown in figure 8 suggest all
these applications, on average, are performing 23 percent bet-
ter, with 30 percent of cache lines. The results will improve if
the processor regularly requests the same approximate cache
lines. Few applications that get regular updates are far better
than the average.

A. MSI-A VS MESI-A
In our prior study with MESI-A [21], we discovered that
‘Vips’ performed better with 29.58 percent for 20 percent of
approximate cache lines. In contrast, MSI-A performed sig-
nificantly better, with 30.18 percent for the same application.
MSI-A is effective, being considerably superior to MESI-A,
and therefore, obviously, with MSI-A, the system will save
more energy and cycles with approximation infused in it.
We have shown the comparison of MESI-A and MSI-A on
20 percent of the cache lines in the table 3.
The fact that theMSI protocol loads all data into the shared

state by convention, irrespective of whether the data is not
intended to be shared, is the foundation of the MSI protocol’s
most significant flaw. When we transition the cache block
from the shared to the modified state, we are required to send
a signal to the other caches, instructing them to invalidate any
copies of block X that they may have stored; if these other
caches do not store a copy of block X, then we are wasting
bus bandwidth and cycles for no reason.

The most likely situation for a program is to read data
that is not shared with any other threads and modify that
data. We now have a method for differentiating this non-
shared (exclusive) data, appreciating the introduction of an
exclusive state inMESI.When wemodify the vast bulk of our
data, we do not need to send out any unnecessary invalidate
messages. MESI is basically identical to MSI. However, it is
better tuned for the most prevalent scenario.

VOLUME 11, 2023 48133

A. Saraswat et al.: MSI-A: An Energy Efficient Approximated Cache Coherence Protocol

TABLE 3. Various applications after MESI-A and MSI-A with 20 percent of
approximate cache-lines.

On the other hand, when it comes to approximation, the
MSI-A performs significantly better than the MESI-A. The
most significant disadvantage associated with this situation
is the fact that MESI-A has an extra state that requires a
cache line to make more state changes, and this increases the
computations. After analyzing both protocols, we determined
that the MSI-A protocol offers more potential for energy
and cycle savings as compared to MESI-A because energy
and cycle gain has increased with the introduction of more
approximate cache lines.

VI. CONCLUSION AND FUTURE WORK
One of the modern paradigms of the design of current com-
puting systems is approximate computing. We have devel-
oped MSI-A, an approximated version of the MSI protocol.
This work illustrates the benefits of using an approximation
in the MSI cache-coherence protocol and describes how we
have constructed MSI-A. Now considering cache-coherence
protocol as a safety-critical system, we need validation of
the MSI-A protocol to verify the working of the protocol.
We have verified both MSI-A and MSI using LTL specifi-
cations in NuSMV. MSI-A is a better protocol if the system
contains approximable cache lines. If the cache lines are not
approximable, then MSI and MSI-A have trace equivalence.
We have also proved the correctness ofMSI-A concerning the
verification of infinite states. With the assistance of PCTL
and DTMC, we have proved that MSI-A is a theoretically
enhanced cache coherence protocol, and 0.38 is the steady
state probability of achieving the approx state, which will not
change any further.

We have employed the TEJAS hardware simulator to
examine the cycle gain and the energy gain on various
applications that MSI-A offers compared to MSI. With
approx cache lines executed in MSI-A ‘Vips ’have shown an
energy gain of 30.18 percent, and ‘Blackscholes’have shown
19.23 percent of energy gain. Furthermore, the performance
of MSI-A is superior to that of our previous work MESI-A
on the cycle gain and energy gain scales. The theoretical
and practical applications of MSI-A have shown impressive
results. However, it is presumed that the processor is aware
of which cache lines may be approximated and which cannot
be approximated. We are currently working on coding an
approximable and generalised version of the cache coher-
ence protocol on the hardware. Also, we are developing an

algorithm to predict the approximable cache lines so we don’t
need to hardcode them before the execution. Furthermore,
we are working on an approx version write invalidated of
cache-coherence protocol.

REFERENCES
[1] R. H. Dennard, F. H. Gaensslen, V. L. Rideout, E. Bassous, and

A. R. LeBlanc, ‘‘Design of ion-implanted MOSFET’s with very small
physical dimensions,’’ IEEE J. Solid-State Circuits, vol. SSC-9, no. 5,
pp. 256–268, Oct. 1974.

[2] G. Moore, ‘‘Cramming more components onto integrated circuits,’’ Elec-
tron. Mag., vol. 38, no. 8, pp. 114–117, Apr. 1965.

[3] J. S. Miguel, J. Albericio, A. Moshovos, and N. E. Jerger, ‘‘Doppelgänger:
A cache for approximate computing,’’ in Proc. 48th Int. Symp. Microar-
chitecture, 2015, pp. 50–61.

[4] G. De Giacomo, A. D. Stasio, F. Fuggitti, and S. Rubin, ‘‘Pure-past linear
temporal and dynamic logic on finite traces,’’ in Proc. 29th Int. Joint Conf.
Artif. Intell., Jul. 2020, pp. 4959–4965.

[5] O. Mutlu, S. Ghose, J. Gomez-Luna, and R. Ausavarungnirun, ‘‘A modern
primer on processing in memory,’’ in Emerging Computing: From Devices
to Systems. Berlin, Germany: Springer, 2022, pp. 171–243.

[6] A. E. K. Sobel and M. R. Clarkson, ‘‘Formal methods application:
An empirical tale of software development,’’ IEEE Trans. Softw. Eng.,
vol. 28, no. 3, pp. 308–320, Mar. 2002.

[7] S. Liu, V. Stavridou, and B. Dutertre, ‘‘The practice of formal meth-
ods in safety-critical systems,’’ J. Syst. Softw., vol. 28, no. 1, pp. 77–87,
Jan. 1995.

[8] Marine Energy-Wave, Tidal and Other Water Current Converters—Part
101: Wave Energy Resource Assessment and Characterization, Stan-
dard 62600-101, 2015.

[9] R. F. V. Preuschen, ‘‘The European space agency,’’ Int. Comparative Law
Quart., vol. 27, no. 1, pp. 46–60, 1978.

[10] N. Mehdipour, M. Althoff, R. D. Tebbens, and C. Belta, ‘‘Formal meth-
ods to comply with rules of the road in autonomous driving: State
of the art and grand challenges,’’ Automatica, vol. 152, Jun. 2023,
Art. no. 110692.

[11] J. Choi and A. Chlipala, ‘‘Hemiola: A DSL and verification tools to guide
design and proof of hierarchical cache-coherence protocols,’’ in Proc. 34th
Int. Conf. Haifa, Israel: Springer, 2022, pp. 317–339.

[12] M. Graf, G. A. G. Andrade, and L. C. V. dos Santos, ‘‘EveCheck: An event-
driven, scalable algorithm for coherent shared memory verification,’’
IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 42, no. 2,
pp. 683–696, Feb. 2023.

[13] J. Pang, W. Fokkink, R. Hofman, and R. Veldema, ‘‘Model checking a
cache coherence protocol of a Java DSM implementation,’’ J. Log. Algebr.
Program., vol. 71, no. 1, pp. 1–43, Mar. 2007.

[14] V. Burenkov and A. Kamkin, ‘‘Applying parameterized model checking to
real-life cache coherence protocols,’’ in Proc. IEEE East-West Design Test
Symp. (EWDTS), Oct. 2016, pp. 1–4.

[15] R. Joshi, L. Lamport, J. Matthews, S. Tasiran, M. Tuttle, and Y. Yu,
‘‘Checking cache-coherence protocols with TLA+,’’ Formal Methods Syst.
Design, vol. 22, no. 2, pp. 125–131, Mar. 2003.

[16] X. Li, X. Li, C. Dall, R. Gu, J. Nieh, Y. Sait, and G. Stockwell, ‘‘Design and
verification of the arm confidential compute architecture,’’ in Proc. 16th
USENIX Symp. Operating Syst. Design Implement. (OSDI), Carlsbad, CA,
USA, Jul. 2022, pp. 465–484.

[17] T.-F. Chen, J.-H.-R. Jiang, andM.-H. Hsieh, ‘‘Partial equivalence checking
of quantum circuits,’’ in Proc. IEEE Int. Conf. Quantum Comput. Eng.
(QCE), Sep. 2022, pp. 594–604.

[18] C. J. Banks, M. Elver, R. Hoffmann, S. Sarkar, P. Jackson, and
V. Nagarajan, ‘‘Verification of a lazy cache coherence protocol against a
weak memory model,’’ in Proc. Formal Methods Comput. Aided Design
(FMCAD), Oct. 2017, pp. 60–67.

[19] A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore,
M. Roveri, R. Sebastiani, and A. Tacchella, ‘‘NuSMV 2: An opensource
tool for symbolic model checking,’’ in Proc. Int. Conf. Comput. Aided
Verification. Cham, Switzerland: Springer, 2002, pp. 359–364.

[20] S. R. Sarangi, R. Kalayappan, P. Kallurkar, S. Goel, and E. Peter, ‘‘Tejas:
A Java based versatile micro-architectural simulator,’’ in Proc. 25th Int.
Workshop Power Timing Model., Optim. Simul. (PATMOS), Sep. 2015,
pp. 47–54.

48134 VOLUME 11, 2023

A. Saraswat et al.: MSI-A: An Energy Efficient Approximated Cache Coherence Protocol

[21] A. Saraswat, K. Abhishek, M. R. Ghalib, A. Shankar, M. Alazab, and
B. Nongpoh, ‘‘Towards energy efficient approx cache-coherence protocol
verified using model checker,’’ Comput. Electr. Eng., vol. 97, Jan. 2022,
Art. no. 107482.

[22] P. Chatterjee, H. Sivaraj, and G. Gopalakrishnan, ‘‘Shared memory consis-
tency protocol verification against weak memory models: Refinement via
model-checking,’’ in Proc. Int. Conf. Comput. Aided Verification. Cham,
Switzerland: Springer, 2002, pp. 123–136.

[23] D. Chaiken, C. Fields, K. Kurihara, and A. Agarwal, ‘‘Directory-based
cache coherence in large-scale multiprocessors,’’ Computer, vol. 23, no. 6,
pp. 49–58, Jun. 1990.

[24] S. Liu, K. Pattabiraman, T. Moscibroda, and B. G. Zorn, ‘‘Flikker: Sav-
ing dram refresh-power through critical data partitioning,’’ in Proc. 16th
Int. Conf. Architectural Support Program. Lang. Operating Syst., 2011,
pp. 213–224.

[25] E. E. Bilir, R. M. Dickson, Y. Hu, M. Plakal, D. J. Sorin, M. D. Hill,
and D. A. Wood, ‘‘Multicast snooping: A new coherence method using
a multicast address network,’’ in Proc. 26th Int. Symp. Comput. Archit.,
1999, pp. 294–304.

[26] R. Alur, C. Courcoubetis, T. A. Henzinger, and P.-H. Ho, ‘‘Hybrid
automata: An algorithmic approach to the specification and verification
of hybrid systems,’’ in Hybrid Systems. Berlin, Germany: Springer, 1992,
pp. 209–229.

[27] K. L. McMillan, ‘‘Parameterized verification of the flash cache coherence
protocol by compositional model checking,’’ in Proc. Adv. Res. Work.
Conf. Correct Hardw. Design Verification Methods. Cham, Switzerland:
Springer, 2001, pp. 179–195.

[28] L. Ivanov and R. Nunna, ‘‘Modeling and verification of cache coher-
ence protocols,’’ in Proc. IEEE Int. Symp. Circuits Syst., May 2001,
pp. 129–132.

[29] A. Remke, B. R. Haverkort, and L. Cloth, ‘‘Model checking
infinite-state Markov chains,’’ in Proc. Int. Conf. Tools Algorithms
Construction Anal. Syst. Cham, Switzerland: Springer, 2005,
pp. 237–252.

[30] Y. Lyu, X. Qin, M. Chen, and P. Mishra, ‘‘Directed test generation
for validation of cache coherence protocols,’’ IEEE Trans. Comput.-
Aided Design Integr. Circuits Syst., vol. 38, no. 1, pp. 163–176,
Jan. 2019.

[31] R. Alur and D. Dill, ‘‘Automata for modeling real-time systems,’’ in Proc.
Int. Colloq. Automata, Lang., Program. Cham, Switzerland: Springer,
1990, pp. 322–335.

[32] A. Felty and F. Stomp, ‘‘A correctness proof of a cache coher-
ence protocol,’’ in Proc. 11th Annu. Conf. Comput. Assurance, 1996,
pp. 128–141.

[33] F. Pong and M. Dubois, ‘‘Formal verification of complex coherence pro-
tocols using symbolic state models,’’ J. ACM, vol. 45, no. 4, pp. 557–587,
Jul. 1998.

[34] S. Burckhardt, R. Alur, and M. M. Martin, ‘‘Verifying safety of a token
coherence implementation by parametric compositional refinement,’’ in
Proc. Int. Workshop Verification, Model Checking, Abstract Interpretation.
Cham, Switzerland: Springer, 2005, pp. 130–145.

[35] T. Wahl, ‘‘Fairness and liveness,’’ Tech. Rep., 2010. [Online]. Available:
http://www.ccs.neu.edu/home/wahl/Publications/fairness.pdf

[36] Princeton. (2011). Parsec 3.0 Benchmark Suite. [Online]. Available:
https://parsec.cs.princeton.edu/parsec3-doc.htm

[37] N. P. Carter, Schaum’s Outline of Computer Architecture. New York, NY,
USA: McGraw-Hill, 2001.

ANANT SARASWAT received the M.Tech.
degree from the National Institute of Technology
Meghalaya, and theM.Sc. degree fromPondicherry
University. He is currently a Ph.D. Research
Scholar with the Department of Computer Science
and Engineering, National Institute of Technology
Patna. His research interests include theoretical
computer science, and formal verification and
approximation.

KUMAR ABHISHEK received the Ph.D. degree
in computer science and engineering from the
National Institute of Technology Patna, India.
He is currently an Assistant Professor with the
Department of Computer Science and Engineer-
ing, National Institute of Technology Patna. He has
published more than 100 research papers in vari-
ous renowned international conferences and SCI
indexed journals. His research interests include
RDF, semantic web, ontology, semantic sensor
web, ontology mapping, and approximation.

HITESHWAR KUMAR AZAD received the Ph.D.
degree in computer science and engineering from
the National Institute of Technology Patna, India.
He is currently a Senior Assistant Professor with
the School of Computer Science and Engineer-
ing, Vellore Institute of Technology, Vellore, India.
He has published several research papers in presti-
gious international conferences and SCI indexed
journals. His research interests include informa-
tion retrieval, query expansion, data mining, NLP,
semantic web, and linked open data.

S. SHITHARTH received the Ph.D. degree from
the Department of Computers Science and Engi-
neering, Anna University. He is currently pursuing
the Ph.D. (Visiting) degree with The University of
Essex. He has worked in various institutions with
a teaching experience of seven years. He is also an
Associate Professor with Kebri Dehar University,
Ethiopia. He has published in more than 51 inter-
national journals and 20 international and national
conferences. He has even published four patents

in IPR. His current research interests include cyber security, blockchain,
critical infrastructure and systems, and network security and ethical hacking.
He is also an Active Member of IEEE Computer Society and five more
professional bodies. He is also a member of the International Blockchain
Organization. He is a certified hyperledger expert and a certified blockchain
developer. He is an active researcher, a reviewer, and an editor for many
international journals.

VOLUME 11, 2023 48135

