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ABSTRACT Real-time visual-aided navigation and path strategy for pneumonoconiosis and efficient
3D visualization of pulmonary vessels are of great research and clinical significance in the treatment of
lung diseases. The complex structure of lung tissue limits the application of deep learning in pulmonary
vascular visualization due to the lack of vascular labeling datasets. Also, the existing methods have large
computational complexity and are low efficiency. This study proposes a method for high-quality 3D
visualization of pulmonary vessels based on low-cost segmentation and fast reconstruction, consisting of
three steps: 1) Pulmonary vessel feature extraction from lung CT images using self-supervised learning,
2) Segmentation of pulmonary sparse vessels in lung CT images using self-supervised transfer learning, and
3) 3D reconstruction of pulmonary vessels based on segmentation results of step (2) using interpolation. The
accuracy of pulmonary vascular contour segmentation was improved from 91.31% using the sparse coding
to 98.65% using our proposed method (27,270 test sample points); the classifier evaluation accuracy was
improved from 95.33% to 98.26%, and the average running time of the model with the test set data was
44 ms per slice. the segmentation results can automatically generate a complete vascular tree model with
an average time of 10.8s ± 1 1.6s. The results demonstrate that the proposed method provides fast and
accurate 3D visualization of pulmonary vessels, and is promising for more precise and reliable information
for pneumonoconiosis patients.

INDEX TERMS CT image, pulmonary vessel, reconstruction, segmentation, 3D visualization.

I. INTRODUCTION
T lungs play a major role in the human respiratory and car-
diovessel systems, and an important role in immune protec-
tion and endocrine metabolism. Lung cancer has the highest
incidence and mortality of all cancers, 11.6% and 18.4%,
respectively [1]. Research and development for lung cancer
treatment methods are extremely important. With the rapid
development of medical imaging, information technology,
and machinery, pneumonoconiosis, characterized by small
wounds and little pain and bleeding, has become one of the
main treatments for lung diseases [2]. A doctor or robot
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penetrates the epidermis and targets the tumor according to
the preoperative planning path. However, the physiological
structure of the lung is particularly complex; it contains
many blood vessels, air-filled alveoli, and other tissues, and
is continuously retracting and expanding. Thus, pneumono-
coniosis requires greater visual-aided navigation and path
strategies. Especially during surgery, the main blood vessels
must be avoided by the puncture needle to prevent serious
pulmonary bleeding and other complications [3]. The large
scale of multisource medical image data for the lung, diffi-
culty in extracting specific targets, and non-intuitive imaging
results produce preoperative difficulties and risks such as
puncture needle path planning. A fast and accurate 3D visu-
alization method for pulmonary vessels is required for image
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assistance in puncture surgery to quantitatively reflect the cor-
relation between tissue image features and the corresponding
disease diagnosis, reduce the risk of internal bleeding, and
improve the surgical success rate. The main components of
3D visualization are segmentation and 3D reconstruction of
pulmonary vessels.

The difficulty of pulmonary vessel segmentation lies in
the complex and diverse structure, the multiscale, high-noise,
fuzzy boundaries, and low contrast with surrounding tissues.
Mainstream vessel segmentation schemes can be divided into
rule-based and machine-learning-based methods [4]. Rule-
based methods utilize the photometric and structural charac-
teristics of tubular structures. They rely on prior anatomical
knowledge and require user participation during the opera-
tion. In machine-learning-based methods, transform segmen-
tation tasks into pixel-classification problems. The feature
of each pixel is considered to related to its neighborhood
in traditional machine-learning methods. With the limited
size of image blocks and the high overlap between them,
traditional machine-learning methods lead to global feature
loss and many redundant calculations, limiting segmentation
performance. In contrast, deep-learning methods can auto-
matically extract image features through a large number of
training samples and efficient convolution combinations to
predict the category of each pixel in the image in an end-to-
end manner [5], [6]. However, with a lack of labeled datasets
for training, application of deep-learning methods in pul-
monary vessel segmentation has progressed slowly. Transfer
learning provides an option for solving these problems [7],
[8], [9]. A self-supervised transfer-learning method that can
effectively overcome the lack of labeled data is proposed in
this study, conducting model pre-training using a large-scale
unlabeled lung CT image dataset and transferring the learned
features to the sparse vessel segmentation task.

The 3D reconstruction of lung tissue can be divided into
two types according to the processed data unit, pixels or
voxels. Pixel-based 3D reconstruction methods are mainly
used for 2D image sequences, such as x-ray sequences,
in multiviews. Depth information is obtained through image
correction, feature matching, cost aggregation and other oper-
ations to complete 3D reconstruction. Technical difficulties
arise as the internal and external parameters of the acqui-
sition device are unknown and the geometric information
of the scene is unknown. The key step is obtaining the
required geometric information through feature extraction
and matching by searching for image pairs with overlapping
scenes in 2D image sequences obtained from different views.
Methods such as orthogonal polynomials (OPs) [10], [11],
Krawtchouk moments [12], discrete tchebichef polynomi-
als [13], [14] and Hahn polynomials [15], [16], [17] can
extract image features. According to the obtained geometric
information and environmental parameters, the disparity (tar-
get depth) is obtained for the 3D reconstruction [18], [19].
The 2D image sequences have hardware requirements for
medical image acquisition, such as C-arm and U-arm x-ray

machines. Regular x-ray machines cannot obtain clear ves-
sel images; machines that meet the imaging needs are not
widely available. 3D reconstruction methods that process
voxels are aimed at obtaining volume element sets, such as
CT image sequences, by downsampling the 3D space, and
can be divided into volume- and surface-rendering methods.
Volume-rendering reconstructs the entire 3Dmodel including
its internal structure. Although volume-rendering is relatively
slow, the results contain comprehensive information that is
helpful for doctors in diagnosis. In comparison, surface-
rendering only reconstructs the surface of the target model,
which is relatively fast but does not provide 3D information
for the internal structure [20], [21]. The medical problems
addressed in this study do not require imaging of the internal
vessel structure, but do require fast reconstruction speed;
thus, we chose surface-rendering. Surface-rendering methods
generate mesh patches based on spatial point-cloud data.
To optimize details such as fusion, splicing, and texture map-
ping, scattered point sets must be searched and reconstructed.
The complexity of this method is high; several minutes to
tens of minutes are generally required to process the data, not
suitable for providing quickly reconstructed intraoperative
images for assistance in pneumonoconiosis [22], [23], [24].
To meet the requirements for reconstruction efficiency in
pneumonoconiosis, segmentation-based surface 3D recon-
struction is proposed for rapid 3D reconstruction of pul-
monary vessels. It interpolates the ordered sequence of the
segmented vessel contour to make the point-cloud denser,
reducing the time for reconstruction of unordered point sets.

In summary, an efficient visualization method for pul-
monary vessels is proposed to avoid surgical failure caused
by accidental contact of the puncture needle with vessels
during pneumonoconiosis. First, a lung vessel segmenta-
tion method based on self-supervised transfer learning is
proposed. This method does not require a large number of
labeled samples. A small number of discrete labeled points
are used as supervision information, and a strategy of feature
extraction and classification training in stages is proposed.
The self-supervised pre-training model was used as the fea-
ture extractor to determine the best model combination for
completing fine segmentation of pulmonary vessels. Sec-
ond, a segmentation-based pulmonary vessel reconstruction
method is proposed. This method does not require a large
number of reconstruction calculations for disordered point
sets. Based on the segmentation results of the pulmonary ves-
sels, the ordered point-clouds were densified using different
interpolation strategies to complete surface reconstruction.
The vessel segmentation and 3D reconstruction time were
shortened.

The contributions and innovations of this study include:
1. We designed the pre-training model as an image restora-

tion task which can reduce the cost of labeling. The original
image is transformed and input into the model. The training
model restores the original image through two stages: feature
extraction and image reconstruction.We selected five types of
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FIGURE 1. Summary of the related works.

transformations, such as nonlinear transformation and local
pixel reorganization, to make the model have better feature
extraction performance.

2. We proposed a pulmonary vessel segmentation frame-
work based on self-supervised transfer learning. The vessel
pixel classification model was trained based on pre-training
model and image label information. The problem of dense
vessel segmentation is transformed into discrete vessel point
classification, which further reduces the labeling cost.

3. We proposed a fast 3D vascular reconstruction method
based interpolation, which mainly considers the shape, size,
and change ratio of inter-layer contours of vessel. After
interpolating to obtain sufficient inter-layer vessel contours,
we sequentially connect these contours, and the pixels on
these contours are dense 3D point sets that can be used to
complete surface reconstruction.

The remainder of this paper is organized as follows.
In Section II, current pulmonary vessel segmentation and 3D
reconstruction methods are reviewed. The method proposed
in this study is described in detail in Section III. Section IV
presents the experimental results using the methods proposed
in this study on public and private datasets. A summary is
provided in Section V.

II. RELATED WORKS
A. PULMONARY VESSEL SEGMENTATION
In recent years, various automatic segmentation algorithms
for pulmonary vessels have been proposed [24]. Using Hes-
sian matrix eigenvalues, Sato and Frangi et al. [25], [26]
constructed discriminant functions and successfully distin-
guished tubular, planar, and spherical structures in images
for the first time, and they proposed take vascular enhance-
ment as a filtering process to find tubular geometric struc-
tures. In VESSEL12 vascular segmentation challenge, most
methods based on Hessian matrix enhancement also showed
good performance [27]. However, Hessian matrix meth-
ods have poor enhancement effects on irregular tubular
vessels. The intensity-based method distinguishes vascular
and non-vascular elements directly according to pixel val-
ues, mainly including threshold method and region growing
method. Lassen et al. [28] converted the original CT image

into a binary image using a single threshold in their work.
Voxels higher than the threshold are considered as blood
vessels, otherwise as non-vascular vessels. Due to the large
difference in gray values of pulmonary vessels, the accu-
racy of this method is low. The region growing algorithm
was proposed by Adams and Bischof [29]. In this algo-
rithm, similar pixels are combined into regions based on their
attributes, such as intensity. The segmentation result of this
method depends entirely on the setting of seed points and
growth rules. Due to image noise and local volume effect,
the intensity-based segmentation often gives false recogni-
tion [30]. For this reason, Kaftan et al. [31], proposed the
concept of fuzzy segmentation which combines threshold
information and fuzzy connectivity method to segment pul-
monary vessels. The eigenvalue of Hessian matrix was used
to constrain the region growth [32]. Other approaches include
graph cut method and other graph-based model based vessel
segmentation methods, which rely on prior knowledge and
parameter adjustment. Such methods cannot extract small
blood vessels with low contrast, involve a lot of iterative
calculations, and suffer from slow segmentation speed [32],
[33], [34], [35]. Among traditional machine learning meth-
ods, Zhao et al. [36] extracted features by designing a sparse
automatic encoder and then used a random forest classifier to
segment pulmonary vessels. Hessian features and Adaboost
classifier were used to segment pulmonary vessels [37].

The method based on deep learning can automatically
learn without manually designing feature extraction methods.
Various convolutional neural network framework were uesd
to extract pulmonary vessels and combined it with the region
growth method to solve the problems of discontinuity and
false positive in vessel segmentation results. Such as the
cascaded [38], the stacked [39]. Wang et al. [40] combined
convolutional neural network, principal component analysis,
probability tracking framework and other methods to extract
the entire vascular tree.

B. PULMONARY VESSEL 3D RECONSTRUCTION
The information needed for 3D vascular reconstruction
mainly comes from volume data represented by medical
images such as CT. Voxel-based 3d reconstruction meth-
ods can be divided into surface rendering and volume
rendering. Surface rendering mainly includes surface recon-
struction algorithm based on isosurface extraction, trian-
gular patches, local growth and contour lines and so on.
For surface reconstruction based on distance field isosurface
extraction, representative algorithms include Poisson surface
reconstruction algorithm [41], Hoppe’s surface reconstruc-
tion algorithm based on unordered points [42], Chen Shen’s
surface estimation algorithm based on unordered polygon
elements [43], etc. Based on the 3D Deloitte triangula-
tion reconstruction algorithm, the representative algorithms
include the weight shell of Ament and the 3D of Edelsrun-
ner α Model algorithm [44], etc. Reconstruction algorithms
based on local region growth algorithm. include Bernardini’s
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FIGURE 2. Self-supervised feature extraction model framework.

rolling ball algorithm [45] and Kuo’s region growth algo-
rithm based on deloitte triangulation [46]. Based on target
contour reconstruction algorithms, typical algorithms include
Keppel’s complex surface estimation based on contour tri-
angulation [47] Kedem’s optimal surface estimation based
on contour [48] and virtual shell technology. In volume ren-
dering, there are Monte Carlo volume rendering algorithm,
fractal volume rendering algorithm, volume rendering algo-
rithm based on wavelet domain, etc. If the image space is
taken as the order, the most typical method is ray casting [49].
When the order is object space, the most typical methods are
snowball throwing [50], stagger cutting deformation, etc.

3D reconstruction of clinical medical images has been
widely used in various parts of the human organs and
blood vessels. Guggenberger et al. [51] located vessels in
Magnetic Resolution Imaging (MRI) images, and directly
reconstructed intracranial vessel trees using regional growth
method with existing software; Centerline prediction method
was used to extract intracranial vessels for MRI images [52];
Kigka et al. [53] conducted semi-automatic vessel visualiza-
tion for computed tomography angiography (CTA) images of
coronary arteries; region growth and marching cube method
was used to reconstruct carotid artery CTA images [54];
the end-to-end 3D convolution network was used to real-
ize the vessel reconstruction based on the intracranial CTA
image [55], and shortened the time to 4.94 ± 1 0.36 minutes;
The model proposed by Li [56] and others focuses on extract-
ing lung information from complete human body informa-
tion. In terms of reconstruction, the research on lung tissue
reconstruction is less than that of other organs, and even less
is the method with outstanding performance in reconstruction
speed, accuracy and automaticity. Among them, timeliness is
still the primary focus of intraoperative imaging guidance and
academic research.

In general, compared with traditional algorithms in image
processing, methods based on machine, especially deep neu-
ral networks, can significantly improve the accuracy and
robustness of pulmonary vessel segmentation, though they
usually require a large number of training data. In the field
of medical images, can be reduced by combining the applica-
tion of self-supervised learning and transfer learning. In this

paper, we propose an efficient method for visualizing pul-
monary vessels that aims at quick and accurate segmen-
tation and reconstruction of pulmonary vessels from more
commonly used images in pulmonary disease treatment, i.e.
CT image sequence, not needing angiography.

III. PROPOSED METHOD
The method for 3D visualization of pulmonary vessels pro-
posed in this paper includes three steps: feature extraction
of the pulmonary vessels based on self-supervised learning;
sparse vessel segmentation based on transfer learning; 3D
reconstruction of the vessels based on segmentation. Details
of each step are described below.

A. FEATURE EXTRACTION OF THE PULMONARY VESSELS
BASED ON SELF-SUPERVISED LEARNING
The extraction of pulmonary vessel features using the
self-supervised learning model was designed as an image
restoration task. As shown in Fig. 2, the original image
was fed to the model after cropping and transformation.
The training model was able to recover the original image
through feature extraction and image reconstruction. The
self-supervised learning pre-training model in this paper has
53 layers, including 27 layers for the upsampling path and
26 layers for the downsampling path. The end of the model
is composed of a 1 × 1 × 1 convolution layer and a sigmoid
activation function. The stride of the above operation on the
three dimensions of the image is set to 2. In this way, the
original 512 × 1512 image itself became label to supervise
the model training. To complete this task, the model needs
to learn to recognize universal low-level visual features and
high-level semantic features from the image, so that themodel
can be generalized to a variety of downstream tasks.

3D U-Net [57] was selected as the backbone network
for self-supervised learning since the downsampling and the
upsampling parts of it comprehensively contain the feature
extraction and image reconstruction functions, respectively.
It differs from the standard U- Net in that batch normaliza-
tion (BN) is introduced before each ReLU, which is used
to normalize the mean and the standard deviation of each
batch in the training process to accelerate the convergence
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FIGURE 3. Original Data Cropping. panels (a), (b), and (c) show the
cropping windows corresponding to the transverse, sagittal, and coronal
planes of the same local vascular region. Panel (d) shows the combined
views of the three cropping windows, panel (e) shows the original
volume data in 3D space, and (d) shows the schematic diagrams of
cropping windows in 3D space.

of the model. In addition, 3D U-Net introduces a weighted
softmax loss function. The weight of the background in the
loss expression is decreased and the weight of the target is
increased so that the model can obtain a good feature repre-
sentation from sparse annotation data, which is then extended
to the entire 3D image. By setting the weight of the unlabeled
pixels to zero, learning can be restricted to occur only from
the marked pixels. Image cropping in the framework of the
self-supervised feature extraction model is shown in Fig. 3.
In the downsampling path, each layer contains two con-

volution operations of 3 × 3 × 3. After each convolution,
a linear correction unit (ReLU) is added. After every two
convolutions, a maximum pooling of 2 × 2 × 2 is per-
formed. In the upsampling path, each layer first performs
a 2× 2× 2 deconvolution operation then performs two 3× 3
convolutions and corresponding ReLU operations. In the last
layer, a convolution operation of 1 × 1 × 1 reduces the
number of output to the number of labels, and finally obtains
the probability segmentation image of the same size as the
original image. In the downsampling path, the lung image
block is extracted from low-level to high-level features, such
as color, edge to region, and category, through a layer-by-
layer convolution network. In the upsampling process, the
pixel position and resolution of the output image are gradually
reconstructed according to the training task. At the same time,
the characteristic image of the encoder part is directly trans-
ferred to the decoder part through cross-level connection,
which improves the model accuracy and solves the problem
of gradient disappearance.

Considering the characteristics of the lung CT images after
cropping, five image transformation methods [58], nonlin-
ear transformation, pixel shuffle, random window, inpaint-
ing, and denoising were selected to transform the cropped
images while comprehensively taking into account the image

intensity, shape and appearance, local texture, spatial context,
and other aspects to generate pseudo tags.

Let us assume the input set of the model to be χ =

{x1, x2, · · · , xn}, which includes n CT image blocks.On
applying the transformation function f (·) to these image
blocks to generate:

χ̃ = f (χ) (1)

where χ̃ = {x̃1, x̃2, · · · , x̃n} denotes image blocks after
transformation. Taking χ̃ as the input to the learning function
g (·) through the 3D U-Net network with encoder decoder
structure to map the transformed image block χ̃ back to the
original χ :

g (χ̃) = χ = f −1 (χ̃) (2)

The five image transformation methods were used inde-
pendently and combined randomly to facilitate the model to
learn more comprehensive feature representation. The results
obtained after these transformations are shown in Fig. 4.

B. PULMONARY VESSEL SEGMENTATION BASED ON
SELF-SUPERVISED TRANSFER LEARNING
In this study, we proposed a strategy for feature extraction
and classifier training in stages, and designed a framework
for the pulmonary vessel segmentation algorithm based on
self-supervised transfer learning. As shown in Fig. 5, the self-
supervised pre-training model of module I was transferred to
module II as a feature extractor to obtain the feature vector
of each vessel or non-vessel label point. In module II, these
feature vectors and labels of the labeled points were used as
the input data, and the classifier was trained to correctly rec-
ognize pulmonary vessel pixels corresponding to pulmonary
vessels.

Logistic Regression(LR) was selected as the classifier
for the baseline model. The labeled point labels and cor-
responding feature vectors were used as the input for the
LR classifier. After the classifier training, pulmonary vascu-
lar prediction could be performed on the entire image. For
the binary classification task, the data was given as D =

(x1, y1) , (x2, y2) , · · · , (xN , yN ) , xi ⊆ Rn, yi ∈ 0, 1, i =

1, 2, · · · ,N Assuming that there is a straight line that makes
the data linearly separable, the decision boundary could be
expressed as z = XW = w0 + w1x1 + w2x2 + · · · + wN xN .
LR was performed using the logarithmic probability function
g (z) =

1
1+e−z , and the predictive value z of linear regres-

sion was mapped, so that the value space of the objective
function is mapped from (−∞, +∞) to (0,1). For a sample
point, if z = xW > 0 after mapping and the value of the
logarithmic probability function h > 0.5, it is considered to
be 1, otherwise it is considered to be 0.

First connect the vessel points obtained from the model
related to the minimum linear distance, and local binary
fitting was performed on the contour of the closed area thus
formed. It was necessary to integrate all the minimized
single-pixel energy functions. In the corresponding experi-
ments in this section, the experimental results were evaluated
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FIGURE 4. Output of image transformation. fN (·) represents the image transformation function,
a represents nonlinear transformation, b represents pixel shuffle, c represents random window,
d represents image inpainting, and e represents image denoising( Gaussian noise was added to the image
in this study). (a) represents using nonlinear transformation on image V, i.e.. fa(V ). Similarly, (b) represents
fa,b(V ), (c) represents fa,b,c (V ), (d) represents fa,b,c,d ,e(V ), (e) represents fb(V ), (f) represents fb,c (V ),
(g) represents fb,c,d (V ), (h) represents fe(V ), (i) represents fc (V ), (j) represents fa,c (V ), (k) represents
fa,b,c,d (V ), (l) represents fd (V ).

FIGURE 5. Pulmonary vessel segmentation framework based on
self-supervised transfer learning.

FIGURE 6. Schematic diagram of logistic regression.

using ACC and ROC indicators as given below.

Accuracy(ACC) = (TP+ TN )/(TP+ TN + FP+ FN )
(3)

If the instance is positive (vascular point) and predicted to
be positive, it is true positive (TP). If the instance is positive
but predicted to be negative (non-vascular point), it is false
negative (FN). If the instance is negative but predicted to be
positive, it is false positive (FP). If the instance is negative
and predicted to be negative, it is true negative (TN). The area
under the curve (AUC) under the receiver operator character-
istics(ROC) represents the performance of the classification
model, reflecting the proportion of the model ranking the
positive examples before the negative examples.

C. 3D RECONSTRUCTION OF THE PULMONARY VESSELS
BASED ON SEGMENTATION
For the segmentation results of the vessel contours obtained
in steps A and B, such as the local contour C in a layer of
CT image, it was necessary to find the corresponding local
contours C1 and C2 in the two adjacent CT images before
interpolation reconstruction. In this paper, the multi-scale
indices of curve shape error, closed contour area, and lateral
distance from the center point were selected to match the
local contours between adjacent CT images. for the pixel
points on the CT image sequence defined as (x, y, z), let c
be the contour curve f (x) of a certain vessel on the z − th
CT image, and let the curve set on the adjacent z − th + 1
CT image be C . From a selection of any n points on curve c,
any 3 of these n points can be form a triangle by connecting
each of them. The center of gravity of each triangle can be
calculated to obtain P1,P2, . . . ,Pn. Using the concept of
K-nearest neighbors, the mean value of the three coordinate
dimensions was calculated to obtain the approximate center
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Algorithm 1 Patch Generation and Interpolation
Require:
Input1: VoxelData cn
Input2: float isoLevel

Require:
Output1: Pcn
Output2: Cross− sectionn

1: while Patch bounding spans generated between every
two slices exceed 270 degrees do

2: for c, c′inrange(cn) do
3: for Pinrange(c) do
4: for P′,P′′inrange(c′) do
5: Pnappend(generate(P,P′,P′′))
6: end for
7: end for
8: end for
9: Cross− sectionn = Cross− section(Pn)

10: Pcn = centre− extract(Cross− sectionn)
11: end while

P1 of the graph enclosed by curve C . Approximations to the
center of all the other contours were calculated in a same
manner. The lateral distance error errC of the center point
is defined as:

errC =
∣∣P1 − P′

n

∣∣ (4)

The closed contour area S can be obtained by definite inte-
gration of the curve equation:

S =

∫ b

a
(C (x)max − C (x)min) dx (5)

The area error errS of the closed contour is defined as:

errS =
∣∣S1 − S ′

n

∣∣ (6)

The curve shape error errL is defined as:

errL =

∫ b

a
MAX (|C(x)max − C ′(x)max |,

|C(x)min − C ′(x)min|)dx (7)

The vessel contours between adjacent CT images can
be matched based on the minimum value of the contour
curve-matching cost function. One set of m points, P1, and
another set of n points, P2, were reandomly selected from
the two matching contour curves c1 and c2, respectively.
A triangular patch can be formed by taking 1 point from point
set P1 and 2 points from point set P2, or 2 points from P1 and
1 point from P2. Fig. 7 shows a locally enlarged view of the
interpolation patch along the direction of the cross-section.

The triangular patch mesh generated was actually the
reconstructed surface between the contour curves of adjacent
CT images. The precision of the reconstruction is directly
related to the number of the generated triangles. Increasing

FIGURE 7. Interpolation patch in the cross-section direction.

the number of triangles gives a denser mesh and makes the
restored details more accurate, while more reconstruction
time is needed.

At the same time, the contours of vessels were connected
head to tail to obtain the interpolated contours between the
adjacent CT images. The contours that were very close to
each other were surfaces. Therefore, the generation of trian-
gular patches for these was essentially the process of surface
reconstruction. The triangular mesh thus generated needed
further processing, including fusion, smooth denoising, splic-
ing, texture mapping, etc.

IV. EXPERIMENTS AND RESULTS
This section describes the preparation of the experimental
data and results of the three steps described in the previous
section. This experiment was based on the large LUNA16
public dataset of lung CT images for self-supervised model
pre-training. LUNA16 is a pulmonary nodule detection
dataset released in 2016 with data derived from LIDC-IDRI,
the largest currently available pulmonary nodule dataset. The
LIDC-IDRI includes 1,018 cases from seven academic insti-
tutions. Consequently, there is significant diversity in the
scanning instruments used and their related parameters. Each
case consisted of chest CT scan images and corresponding
XML tag files. The LUNA16 dataset excludes low-definition
CT scans with slice thicknesses greater than 2.5 mm, and
CT scans with inconsistent slice spacing or missing sections,
including 888 low-dose lung CT scans. Each CT scan is a
three-dimensional image in the.mhd format, with different
numbers of slices that vary with different scanning instru-
ments, scanning slice thickness, and patients.

A. FEATURE EXTRACTION OF PULMONARY VESSELS
First, 700 CT sequences were selected from the LUNA16
dataset, and 20 64 × 64 × 32 image blocks at different
positions were randomly cropped in each CT sequence as an
unlabeled image training set. To learn image features more
specifically in the training process, it was necessary to prepro-
cess the image blocks, which included clipping the intensity
of all CT images to be within the range of [−1000, 1000]
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FIGURE 8. Learning curve of model training.

FIGURE 9. Comparison of the input and output images. (a) represents the
original image, (b) represents five image transformation effects,
(c) represents the output image of the self-supervised feature extract
model.

HU, normalizing them on a scale of [0, 1], and removing any
image blocks that were either all 0 or all 1 after normalization.
This provided 12,600 3D image blocks suitable for use as the
training set. Following these steps, 3,400 3D image blocks
were selected from 188 CT scans as the test set.

The Python package Keras was used for model training,
and Adam was used as the optimizer, set to 0.93 and 0.99,
respectively. The initial learning rate was set to 0.0001, and
the batch size was set to 64. To prevent overfitting, an early
stopping mechanism was proposed. If the loss value did
not decrease for 40 consecutive epochs, model training was
automatically stopped.

The training curve of the self-supervised learning model
for the LUNA16 dataset is shown in Fig. 8. The errors in the
training set and verification sets both decreased steadily; after
approximately 1,500 iterations, they converged to 0.25 and
0.5, respectively. Clearly, this model is effective for training.
Absence of overfitting reflects the strong learning ability of
the self-supervised learning model.

As shown in Fig. 9, the output image of the model after
the five image transformations is similar to the original

FIGURE 10. Comparison of output and input of self-supervised feature
extraction model. (a) represents tow different original CT image,
(b) represents their output respective, (c) represents the difference
between the original and output image.

image; the difference between them is small. This shows that
the model has good image reconstruction ability, indirectly
reflecting that the model has comprehensive and universal
feature representation and can provide a strong feature extrac-
tion capability for downstream tasks.

As shown in Fig. 10, by subtracting the reconstructed
output image from the learning model from the original CT
image, it is observed that the image output from the model is
similar to the original image; the difference between them is
small. This shows that the model has good image restoration
capability, indirectly reflecting that the model has compre-
hensive and universal feature representation and can provide
a strong feature extraction capability for downstream tasks.

B. PULMONARY VESSEL SEGMENTATION
The pulmonary blood vessel segmentation dataset used in this
experiment consisted of labeled data provided by VESSEL12
and hospital experts. VESSEL12 provides 23 CT sequences
from diverse sources with different scanning parameters and
is stored in the meta (.mhd/raw) format. Each CT had 400 to
500 sections, with a section spacing of 0.59 mm and 0.89 mm
and a resolution of 512 × 512. In this study, we used the
capital letter V and CT serial number to distinguish between
the 23 CT sequences. While none of the CT sequences
from V1 to V20 provided annotation data, CT sequences
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TABLE 1. Summary of pulmonary vascular labeling data.

TABLE 2. Input 16 × 16 × 16 training images, and output the
corresponding accuracy of each encoder layer for vascular pixel
classification.

labeled V21-23 provided .csv files containing 277, 290, and
315 annotation points, respectively, to illustrate the annota-
tion process. The storage format of the labeled points was
(x, y, z, label), where (x, y, z) is the three-dimensional coor-
dinate of the labeled points. The label for the points of the
blood vessels was 1, and the label for non-blood was 0.

V21, V22, and V23 in Table 1 represent CT scans with
serial numbers 21, 22, and 23, respectively, in the VESSEL12
dataset. S1 represents V22 with expanded annotation data; S2
and S3 are CT sequences obtained from the hospital site.

In total, 592 labeled data points from V21 and V23 were
used for model training; the remaining data in Table 1 were
used as the test dataset. During the test, each label point of S1,
S2, and S3 was checked to see if it was correctly assigned a
label of 1 or 0 corresponding to vessel and non-vessel regions,
respectively, in the segmentation result. As areas containing
blood vessels can be ambiguous in thick-slice CT scans,
accurate blood vessel segmentation requires thin-slice data.
The CT scan slice thickness for V21-23 was 0.7 mm, which
is suitable for blood vessel segmentation tasks. However,
S2 and S3 were limited by suboptimal hospital equipment
settings with a slice thickness of 2 mm, which challenged the
generalization of the model.

When the output feature dimension is fixed, the classifi-
cation accuracy of the model increases with a decrease in
the size of the input image. With an increase in the number
of layers, the accuracy of classification first increased and
then gradually decreased from the fourth layer onward. This
is because pulmonary vessel segmentation is based on local
basic features such as edge and intensity. Thus, use of shallow
features to classify vessel pixels can yield superior results.
By entering a 16 × 16 × 16 training image, the output char-
acteristics of eight encoder convolution layers from Conv0 to
Conv7 were extracted to train and evaluate the LR model.

TABLE 3. Classification performance corresponding to different
dimensions of feature vector.

FIGURE 11. Feature extraction visualization of each layer of encoder.

TABLE 4. Performance comparison of different classifiers.

The feature vector outputs from the first six layers of the
encoder were clipped, and feature vectors from the 4 × 4 ×

4 neighborhood and 2 × 2 × 2 neighborhood of the central
pixel were extracted under each channel. The classifier was
retrained and its accuracy was evaluated. The experimental
results are presented in Table 3. The 128 × 4 × 4 ×

4 feature vector obtained by trimming the output features
of encoder Conv4 achieved the best classification on the
V22 test data, with ACC and AUC indicators of 0.9887 and
0.9833, respectively.

Feature extraction visualization is shown in Fig. 11.
After obtaining reliable vessel features, segmentation and

classifier experiments were conducted. For all labeled data
in the training set, 16 points considered as the center ×

16 × 16 neighborhood image blocks were input into the
self-supervised pre-training model; the output of the fourth
convolution layer was used as the feature vector for the central
annotation point. The LR, Support Vector Machine (SVM),
Random Forest (RF), and Deep Neural Network (DNN) were
used as classifiers; the labels and feature vectors of the anno-
tation points were used for supervised learning. Subsequently,
27,270 labeled vessel point/non-vessel point data on the S1
test CTwere classified and assessed. The results are presented
in Table 4; the time indicator represents the average time
required by the corresponding model to classify the test set.
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TABLE 5. Classification accuracy of marked points in test dataSet.

TABLE 6. Classification accuracy of sparse coding.

From the perspective of prediction accuracy, although the
ACC and AUC of LR are slightly higher than those of the
other three classification algorithms, the difference in classi-
fication accuracy between the four algorithms is very small,
indicating that the feature extractor is effective in extracting
the discriminant features of pulmonary vessels sufficient for
accurate classification.

For the labeled point data of the test set, the neighborhood
16 × 16 × 16 image was input into the feature extractor, and
the feature vector was input into the trained LR classifier to
obtain the classification results of the labeled points. Real tags
were used for evaluation. For complete vessel tree segmenta-
tion, it was necessary to cut the original CT image into an
image block of size 16 × 16 × 16 according to the sliding
window, and input the feature extractor. The feature vectors
of all non-edge voxel points were obtained simultaneously,
and the LR model was used to predict the probability that
each voxel point was a blood vessel. The complete vessel-tree
segmentation result was obtained by setting a probability
threshold.

The segmentation results for the vessel pixel points
obtained by the classifier are presented in Table 5. For S1
labeled data, the classification effect was similar to that of
V22, which shows that although V22 labeled data are few,
they represent the vessel features of the CT image well. For
S2 and S3, although the classification accuracy was lower
than that of V22 and S1, considering that the former was from
actual hospital data and that the 2-mm slice thickness signif-
icantly increased the difficulty of blood vessel segmentation,
we believe that the classification can achieve the expected
efficacy and accuracy, and that the model has some level of
generalization ability.

Konopczynski [59] extracted features through 3D sparse
coding and used a logistic regression classifier to detect vas-
cular and nonvascular voxels, obtaining the highest score in
the VESSEL12 Challenge. From the experimental results, the
sparse coding algorithm achieved good results in pulmonary
vascular segmentation on S1, but the effect was poor for S2
and S3. The self-supervised transfer-learning method in this
study was based on pre-training of large lung CT images; the
acquired features were more comprehensive and extensive.

FIGURE 12. Visualization results of vessel segmentation. The red circle in
(a) represents the recognition of vascular points, the blue circle
represents the recognition of non-vascular points, (b) represents the
segmentation results of the vessels in 2mm thick CT images, and
(c) represents the segmentation results of vessels in 0.7mm thick CT
images.

TABLE 7. Reconstruction experiment.

FIGURE 13. The process of generating triangular patches from ordered
point sets.

The sparse coding algorithm requires unsupervised learning
of the unlabeled images based on the VESSEL12 dataset.
The extracted features have certain limitations. Although it
can achieve good classification results for the same type
of CT, the generalization ability of the model is deficient
for other sources and types of data. Visualization of vessel
segmentation is shown in Fig. 12, panels (b) and (c), showing
the generalization ability of the algorithm even for CT slices
with different thicknesses, and complete segmentation of the
vessels in the slices.

C. PULMONARY VESSEL RECONSTRUCTION
The experiment was conducted according to the previous
description of step C, based on the segmentation results
obtained in steps A and B. The experimental variables were
the density of triangular patches between adjacent vessel
contours and the time required for reconstruction. Each group
conducted five experiments. The results are shown in the
following table.

The time required for surface reconstruction is related to
the number of triangles required by the target.

As shown in Fig. 13, the corresponding colored dotted line
box represents the growth process of the reconstructed trian-
gles in the direction of the horizontal section. The correspond-
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FIGURE 14. Surface triangle patch surrounding.

FIGURE 15. Pulmonary vessel tree obtained by 3D reconstruction.

ing triangular patches were generated based on the triangle
groups; post-processing operations such as smoothing and
texture mapping were performed, as shown in Fig. 14.
After common model post-processing, we obtained the 3D

reconstruction result, shown in Fig. 15.

V. CONCLUSION
In this study, an efficient visualization method for pulmonary
vessels was demonstrated, in two major parts: vessel seg-
mentation and three-dimensional (3D) reconstruction. The
segmentation combined self-supervised and transfer learning.
The designed model was pre-trained to effectively extract
the features of the pulmonary vessels. The features were
transferred to the sparse vessel classification problem. The
pulmonary vessel segmentation results were outstanding. The
reconstruction, based on the interpolation reconstruction of
the segmentation results, saved considerable time in recon-
struction of unordered point sets in surface rendering and
significantly improved the timeliness of surface reconstruc-
tion. For the dataset used in this study, the accuracy of
pulmonary vascular contour segmentation reached 98.65%
(27,270 test sample points); the classifier evaluation index
reached 98.26%, and the average running time of the model

was 44 ms. The average time of 3D reconstruction was
10.8 s × 1 1.6 s. Thus, the method proposed in this study
has great potential for mainstream treatment of pulmonary
diseases, providing fast and accurate guidance for preopera-
tive path planning and intraoperative assistance. Finally, the
segmentation and reconstruction methods in this study may
be less in thicker CT sequences because generation of positive
samples in the self-supervised model and the precision of
point-cloud densification in surface rendering depend on the
thickness of CT images; this can be further studied in future
research.
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