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ABSTRACT The augmentation of hyperspectral images requires the design of high-density feature analysis
& band-fusion models that can generate multimodal imagery from limited information sets. The feature
analysis models use deep learning operations to maximize inter-class variance while minimizing inter-class
variance levels for efficient classification operations. When combined with intelligent band-fusion methods,
such models allow the augmentation model to enhance its classification efficiency under different use cases.
Existing band-fusion-based augmentation models for hyperspectral images do not incorporate continuous
efficiency enhancements and showcase higher complexity levels. Furthermore, these models can’t be scaled
for more varied use cases because their use is restricted to specific image types. To overcome these issues,
we designed a novel multimodal hybrid bioinspired model for the augmentation of hyperspectral imagery
via iterative learning for continuous efficiency enhancements. The proposed model initially represents input
images into Fourier, Laplacian, Cosine, multimodal Wavelet, Mellin, and Z-Transform domains, which will
assist in describing the images in multimodal domains. These transformed image sets are passed through a
convolutional filter to extract windowed feature sets. A GreyWolf Optimizer (GWO) is used to identify high
inter-class variance features from the extracted image sets, which assists in selecting transformed images that
can help improve hyperspectral classification performance. The selected hyperspectral images are fused via a
Bacterial ForagingOptimization (BFO)model, which assists in reducing intra-class variance levels. The final
set of selected images is intelligently augmented via Particle Swarm Optimization (PSO), which performs
rotation, zooming, shifting, and brightness variation operations selectively. These augmented images are
classified via a customized VGGNet-19-based Convolutional Neural Network (CNN) classifier that assists
in continuously estimating accuracy levels for different application scenarios. Based on these accuracy
levels, the model is reconfigured via hyperparameter tuning of GWO and PSO optimizers. Due to combining
these models and incremental accuracy optimizations, the proposed model has improved its hyperspectral
classification accuracy by 10.6% and precision by 10.4%, as compared to standard deep learning-based
augmentation techniques.

INDEX TERMS Bacterial foraging optimization, grey wolf optimizer, hyperspectral images, particle swarm
optimization, VGGNet-19.
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I. INTRODUCTION
The hyperspectral images (HSIs) that are acquired via the use
of remote sensing are made up of hundreds of continuous
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spectral bands that are very thin, and each pixel (vector) in the
image offers a distinct description of the objects that are being
investigated [46]. HSIs have a wide variety of applications,
some of which include object identification, segmentation,
and classification [47]. Support vector machines (SVMs),
extreme learning machines (ELMs), and single-hidden layer
feedforward networks are a few examples of machine learn-
ing approaches that have been used to extract information
from high-dimensional hidden-state images (SHLFNs) [48].
Recent advancements in Earth observation missions have
made it possible to capture HSI images of more excel-
lent quality, including the addition of spectral bands and
a higher resolution in space and spectral dimensions [49].
These improvements have been made possible due to recent
advancements in imaging technology. Because of this, there
has been a demand for an increase in both the storage
capacity and the runtime via Adversarial Encoding Network
(AEN) [4]. In this context, CNNmodels effortlessly combine
spectral characteristics with spatial-contextual information
from HSI data more effectively than prior DNN models;
they have gained increasing traction as a powerful method
for making sense of HSI data [5], [6]. As a result, deep
learning methods based on CNNs have become the current
gold standard for classifying HSI data [3]. Most of CNN’s
attempts to recognize HSI data include the problem of over-
fitting, which may be problematic. This difficulty adds to
the challenge of learning already provided by the significant
spectrum fluctuation characteristic of HSIs. According to
various authors’ understanding, the majority of the currently
available strategies for reducing the impact of the overfitting
problem [7] and enhancing CNN’s capacity for generalization
focus on amassing more training data during the phase of
the process where it is being learned by including large
geographical areas, sometimes with the help of geometric
alterations [6]. Regularization methods are used in a variety
of tactics. Techniques like dropout and Max Pooling were
used in [5] work as a regularization. By giving an abstract
representation of the convolved features, the max pooling
layer aids in reducing both their spatial size and over-fitting.
A regularization method called dropout is used to minimize
over-fitting in neural networks. Deep learning models often
employ dropout on the fully connected layers; however, it is
also feasible to use dropout following themax-pooling layers,
which augments image noise.

Recent attempts have also been made to improve the
model architecture by increasing residual designs AEN [4]
to offer each layer more data or expanding the connec-
tions between levels [8]. Both of these improvements were
made very recently. There are just two examples included
in this list. These strategies have been improved upon using
a variety of methods, some of which include fully linked
architectures [12], active learning [11], and pixel-pairs fea-
tures (PPFs) [10]. These methods place a significant amount
of emphasis on the performance of the output (Soft Max)
layer to achieve their goals, contributing to the computation’s
complexity. The principal component analysis is a technique

that is used by several scholars, including Chen et al. [12],
to augment this level of analysis (PCA).

In comparison, the research in [11] enhances the model’s
generality by integrating data with greater levels of uncer-
tainty. PPFs are used in the data pertinent to pixel neighbor-
hoods in work presented in [10], which is an attempt very
similar to those done to solve the problem of inconsistencies
in the data. Data occlusion, also known as the inability of a
remote sensor to view a portion of the Earth’s surface due to
factors such as the presence of an obstacle between the sensor
and the two-dimensional target surface or adjacent three-
dimensional objects, is a significant challenge that arises
in the field of remote sensing. This may take place if, for
instance, a three-dimensional object is positioned between the
sensor and the two-dimensional surface that is being scanned.
Since they cause a reduction in the amount of information in
an image, blocking elements such as clouds, shadows, and
others are to blame for this problem. The removal of data
occlusions may be accomplished by many different strategies
that have been established. These techniques were conceptu-
alized after observing the human brain, which can operate
most effectively in a three-dimensional environment [13],
[14]. This concept may enhance the process of instructing
machine learning strategies. From this brief review and the
comprehensive review in the next section, it can also be
observed that existing band-fusion-based augmentation mod-
els for hyperspectral images do not incorporate continuous
efficiency enhancements and showcase higher complexity
levels.

Moreover, the application of these models is limited to
certain image types and thus cannot be scaled for broader
use cases. To overcome these issues, section 3 of this text
proposes designing a novel multimodal hybrid bioinspired
model for the augmentation of hyperspectral imagery via
iterative learning for continuous efficiency enhancements.
The model was validated on multiple datasets, and its perfor-
mance was compared for different datasets in section 4 of this
text. Finally, this text is concluded with some context-specific
observations about the proposed model and recommends
various methods to further improve its performance
levels.

The following is a summary of the study’s key contribu-
tions:

• Proposed a novel bio-inspired augmentation methodol-
ogy based on Fourier, Laplacian, Cosine, multimodal
Wavelet, Mellin, and Z-Transform domains.

• PSO is used to optimize the geometric transformation
parameters.

• It is possible to create a larger volume of images in less
time that may be utilized as a remote sensing training
data set for scene classification.

• The Python source code used in the experiments
described in this article is made available to the public
without charge (available at https://github.com/dipen040
1/augmentation).
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II. BRIEF REVIEW OF IMAGE AUGMENTATION MODELS
Data augmentation broadens the pool of information used to
train a model. The key benefit is that the model becomes
more stable and resistant to overfitting [57], [58]. The authors
in [59] used flip, translation, and rotation in remote sensing
scene classification. For instance, works in [15], [16], [17],
and [18] propose the use of a Generative Adversarial Net-
work (GAN), YOLOv5s, a multi-semantic global channel,
and spatial joint attentionmodule (MsGCS) for the estimation
of augmented image sets for different application scenarios.
These scenarios are extended in [19], [20], which discuss
using Soft Augmentation-Based Siamese CNN (SAB SCNN)
and different GANs for hyperspectral image sets. These mod-
els are highly scalable but showcase higher complexity, which
limits their speed performance levels. To overcome this issue,
works in [21], [22], [23], [24], and [25] propose using Hapke
equations, Local Bias CNN, Hierarchical Amortized GAN,
Cycle GAN, and Attention Networks for the estimation of
augmented image sets. These sets are obtained via simplified
augmentation operations and can be applied to multimodal
application scenarios. Similarly, work in [26], [27], [28],
[29], and [30] proposes the use of a Convolutional Network
with Twofold Feature Augmentations, Proto-MaxUp (PM),
Conditional GAN, Hierarchical CNN with Soft Augmenta-
tion (HCNN SA), and Mask Region CNN, for estimation of
high-density image sets under different application scenarios.
These models can improve classification efficiency under
multimodal scenarios.

Models that propose the use of Low-Pass Activation
Function with DCT Augmentation [31], Spatial Feature
Enhanced Unets [32], Localization-Aware Adaptive Pairwise
Margin Loss [33], Bitplane Information Recombination [34],
improved YoLo [35], auto-updating multitemporal matrix
factorization with spatio-spectral channel augmentation
(AMMF SSCA) [36], Spectral Index Generative Adversarial
Network (SIGAN) [37], and pixel-level augmentations [38],
that assist in improving classification performance for var-
ious application sets. These models aim to optimize the
augmentations via pre-emptive analysis, enabling high accu-
racy and low complexity classification operations. Models
discussed in [39], [40], [41], and [42] further extend these
methods via integrating multimodal GAN, small target GAN,
Siamese CNN, and Global Spatial with Local Spectral Simi-
larity levels for satellite image sets. These models showcase
higher complexity but enable high-accuracy augmentations
for larger image sets. Similar models are proposed in [43],
[44], and [45] that use deformable convolutional networks
(DCNs), Generative Motion Models, and fully convolutional
neural networks (FCN) for simplified classification with
moderate accuracy levels. But these models do not incor-
porate continuous efficiency enhancements and showcase
higher complexity levels.

Moreover, the application of these models is limited to
certain image types and thus cannot be scaled for broader use
cases. To overcome these issues, the next section of this text
proposes a design of a novel multimodal hybrid bioinspired

model for the augmentation of hyperspectral imagery via iter-
ative learning for continuous efficiency enhancements. The
proposed model was validated under different application
sets, and their performance was evaluated under large-scale
scenarios.

III. DESIGN OF THE PROPOSED MODEL
Based on the review of existing hyperspectral image aug-
mentation models, these models use high-complexity fea-
ture analysis to improve classification performance under
different use cases. When combined with intelligent band-
fusion methods, such models allow the augmentation model
to enhance its classification efficiency under other use cases.
Existing band-fusion-based augmentation models for hyper-
spectral images do not incorporate continuous efficiency
enhancements and showcase higher complexity levels. More-
over, the application of these models is limited to certain
image types and thus cannot be scaled for broader use cases.
To overcome these issues, this section discusses the design
of a novel multimodal hybrid bioinspired model for aug-
mentation hyperspectral imagery via iterative learning for
continuous efficiency enhancements. The flow of the model
is depicted in Fig. 1. It can be observed that the proposed
model initially represents input images into Fourier, Lapla-
cian, Cosine, multimodal Wavelet, Mellin, and Z-Transform
domains, which will assist in representing the images in mul-
timodal domains. These transformed image sets are passed
through a convolutional filter to extract windowed feature
sets. A Grey Wolf Optimizer (GWO) [62] is used to iden-
tify high inter-class variance features from the extracted
image sets, which assists in selecting transformed images that
can improve hyperspectral classification performance. The
selected hyperspectral images are fused via a Bacterial Forag-
ingOptimization (BFO)model [50], which assists in reducing
intra-class variance levels. The final set of selected images
is intelligently augmented via Particle Swarm Optimization
(PSO) [51], which performs rotation, zooming, shifting, and
brightness variation operations selectively. These augmented
images are classified via a customized VGGNet-19-based
Convolutional Neural Network (CNN) classifier [59], [61]
that assists in continuously estimating accuracy levels for
different application scenarios.

Thus, all the collected satellite images are initially passed
through a transformation process. This process uses the fol-
lowing transforms,

• Fourier transformation is evaluated via (1) and used to
represent input pixels as frequency components, thus
assisting in identifying any frequent patterns in the
image sets. [53]

F (r, c, b) =
1

R ∗ C ∗ B

∑R

i=1

∑C

j=1

∑B

l=1
I (r, c, b)

∗ exp

(
2 ∗

√
−1 ∗ 5 ∗ i ∗ j ∗ l
R ∗ C ∗ B

)
(1)
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FIGURE 1. The flow of the proposed augmentation process.

• Laplacian transformation is evaluated via equation 2 and
used to represent input pixels as equational entities, thus
assisting in evaluating temporal feature sets [56].

L (r, c, b) =
b
5

R∑
i=1

C∑
j=1

I (r, c, b)

(r − i)2 + (c− j)2 + (b)2

(2)

• Cosine transformation is evaluated via (3) and used to
represent input pixels as entropy levels, thus assisting
in identifying maximal energy patterns in the image
sets [55].

DCT (r, c, b)

=
1

2
√
RCB

∑R

i=1

∑C

j=1

∑B

l=1
I (r, c, b)

∗ cos

(
(2i+ 1) 5

√
−1

2R

)
∗ cos

(
(2j+ 1) 5

√
−1

2C

)

∗ cos

(
(2l + 1) 5

√
−1

2B

)
(3)

• Multimodal Wavelet transformation is evaluated via (4),
(5), (6), & (7) and used to represent input pixels as
approximate, diagonal, vertical, and detail components,
thus assisting in the identification of directional patterns
in the image sets [54].

Wa (r, c, b) =

I (r, c, b) + I (r, c+ 1, b)
+ I (r + 1, c, b) + I (r + 1, c+ 1, b)

4
(4)

Wh (r, c, b) =

I (r, c, b) − I (r, c+ 1, b)
+ I (r + 1, c, b) + I (r + 1, c+ 1, b)

4
(5)

Wv (r, c, b) =

I (r, c, b) + I (r, c+ 1, b)
− I (r + 1, c, b) + I (r + 1, c+ 1, b)

4
(6)

Wd (r, c, b) =

I (r, c, b) − I (r, c+ 1, b)
+ I (r + 1, c, b) − I (r + 1, c+ 1, b)

4
(7)

where, Wa,Wh,Wv,& Wd represent approximate, hor-
izontal, vertical, and diagonal wavelet components
respectively.

• Mellin transformation is evaluated via (8) and used to
represent input pixels as variance-independent sets, thus
assisting in identifying variance levels in the image sets.

M (r, c, b) =
1

25
√

−1 ∗ R ∗ C ∗ B

∑R

i=1

∑C

j=1

×

∑B

l=1
I (r, c, b)−(ijl) (8)

• Z-Transform transformation is evaluated via (9) and
used to represent input pixels as frequency components
and assists in the identification of stability levels of pixel
sets [53].

Z (r, c, b) =

∑R
i=1

∑C
j=1

∑B
l=1 I (r, c, b) ∗ z−rcb

RCB
(9)

Based on these transforms, each band of the input image
is represented in multiple domains. These domain sets
are represented into convolutional feature sets via (10),

Convouti,j (band) =

∑m
2

a=−
m
2

∑ n
2

b=−
n
2
I

× (i− a, j− b, band)

∗ReLU
(m
2

+ a,
n
2

+ b
)

(10)
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where m, n represents window sizes, a, b represents
stride sizes, and ReLU represents a rectilinear unit which
is used to activate the feature sets via (11),

ReLU (x, y) = Max (x, y)

when x > 0 & y > 0, else x

when x > 0, else y

when y > 0, else 0 for other cases (11)

These feature sets are processed via a Grey Wolf Opti-
mizer [62] that works via the following process,

• To initialize the GWO-based feature selection process,
setup the following constants,

◦ Total GWO iterations = Ni
◦ Total GWOWolves = Nw
◦ Rate of cognitive learning between Wolves = Lw

To set up initial Wolf configurations, generate Nw
Wolves as per the following process,
Stochastically select N features via (12),

N = STOCH
(
Lw ∗ Nf ,Nf

)
(12)

STOCH represents a stochastic Markovian process used
to generate number sets, while Nf represents some
extracted feature sets.
For the selected feature sets, identify their inter-class
variance levels for each class via (13),

icv (m) =

√√√√√√∑m
a=1 (xa−

∑m
i=1

√∑n
j=1 (xj−

∑n
k=1 xk
n )2

n−1
m )2

m− 1
(13)

wherem represents total features in the current class, icv
represents their interclass variance levels, x represents
the extracted features, and n represents features in other
classes.

◦ This variance is estimated for all classes, and then
Wolf fitness is calculated via (14),

f =
1
c

c∑
i=1

icv (m)i (14)

where c represents the total number of classes
present in the image sets.

◦ This fitness is estimated for all Wolves, and then a
Wolf fitness threshold is calculated via (15),

fth =
1
Nw

Nw∑
i=1

fi ∗ Lw (15)

• Based on this evaluation, Wolves are reconfigured as per
the following conditions,

◦ Mark the current Wolf as ‘Alpha,’ if f > 2 ∗ fth
◦ Else, mark the current Wolf as ‘Beta,’ if f > fth
◦ Else, mark the current Wolf as ‘Gamma,’ if f > fth

∗ Lr

◦ Else, mark the Wolf as ‘Delta’ and use it for opti-
mization processes

• Regenerate all Wolves that are marked as ‘Delta’ as
per (12), (13), and (14)

• Reconfigure all ‘Gamma’ & ‘Beta’ Wolves by replacing
their features from ‘Beta’ & ‘Alpha’ Wolves respec-
tively, where variance levels are higher, as per (16)

f (New) = f (Old) |f>fth (16)

where f(New) represents new features for ‘Gamma’ and
‘Beta’ Wolves, while f (Old) represents highly variant
features from respective ‘Beta’ and ‘Alpha’ Wolf con-
figurations [62].

• This process is repeated for Ni iterations.
At the end of the final iteration, select unique fea-
tures from all ‘Alpha’ Wolves, and use their respective
transform images for further augmentation. The chosen
transform images from different bands are fused via a
BFO-based optimization model that works as per the
following process [50],

• To initialize the fusion optimization process, setup the
following constants,

◦ Total number of bacteria in the swarms (NB)
◦ Total iterations used for optimization (NI)
◦ Elimination constant (Ce)
◦ Regeneration constant (Cr)

• Loop through NI iterations and perform the following
process,

◦ Generate NB bacteria chemotaxis as per the follow-
ing process,

� Select N transformed images for fusion as
per (17),

N = STOCH (Cr ∗ NI,NI) (17)

where NI represents the total number of highly
variant images identified from theGWOprocess.

� Fuse these images as per Brovey fusion via (18),

Fout =
Fin∑B
i=1 Ii

∗ P (18)

where, Fin & P represents input multispectral &
panchromatic image bands, while B represents
total bands in the multispectral images.

� For each of these images, convolutional features
are extracted via (10), and then their intra-class
variance is estimated via (19),

iccv (m) =

√√√√√∑m
i=1

√∑n
j=1 (xj−

∑m
k=1 xk
m )2

m−1

m
(19)

where m represents total images in the current
class, iccv represents their intra-class variance
levels.
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� Based on these values, bacteria fitness is esti-
mated via (20),

fb =

(
Ce +

1
Cr

)
∗

c∑
i=1

iccv (m)i

c
(20)

� This fitness is estimated for each bacterium, and
then their configuration is updated via (21),

f (New)

=

∑NB

i=1
−fb ∗ exp (−Ce) ∗

(
Ce +

1
Cr

)
+

∑NB

i=1
−iccv (m)i

∗ exp (−Ce) ∗

(
Ce +

1
Cr

)
(21)

� A Bacterium with fb > f (New) is passed to the
next iteration, while others are reconfigured as
per the BFO process [50],

• After repeating this process for NI iterations, select bac-
teria configurations with maximum fitness levels.
The selected bacterium represents fused images that can
be used for efficient augmentation operations. These
operations are controlled via a Particle SwarmOptimiza-
tion (PSO) Model that selectively performs different
augmentations. This PSOModel works via the following
process [51],

• Initially set up following PSO constants for efficient
augmentations,

◦ Total optimization iterations (Ni)
◦ Total optimization particles (Np)
◦ The cognitive learning rate for these particles (Lc)
◦ The social learning rate for these particles (Ls)

• To start the PSO optimization process, generate Np par-
ticles as follows,

◦ Select N augmentation operations as per (22),

N = STOCH (Lc ∗ NA,NA ) (22)

where NA represents the total number of opera-
tions available to perform augmentations, and NA
∈ (Shift, Scale, Rotate, Zoom, Brightness) [52]

• Based on this value of N, perform the augmentation
and estimate the accuracy of augmentation via the
CNN-based classification model [59], which is depicted
in Fig. 2 as follows:

• The CNN model [59] extracts convolutional features
from the input images and then uses a series of Max
Pooling and Dropout operations.

• These operations use a Max Pooling threshold which is
estimated as per (23),

fth =

 1
Xk

∗

∑
x∈Xk

xpk

1/pk (23)

where X represents the extracted convolutional features
and p represents dropout probability levels.

TABLE 1. Parameters used in the training model.

• The selected features are classified via a fully connected
neural network (FCNN) based classification layer that
uses Soft Max activations as per (24),

cout = SoftMax

 Nf∑
i=1

fi ∗ wi + b

 (24)

where w & b represent weights and biases of the convo-
lutional layers.

• Based on these operations, particle fitness levels are
estimated as per (25),

fp =

N∑
i=1

Ci
Ti

(25)

where C & T represent correctly classified and total
images used for the classification process, respectively.

• This fitness is estimated for all particles.
• Current fitness is marked as ‘Particle Best,’ while the
highest fitness is marked as ‘Global Best’ levels.

• Now, loop throughNi iterations, and perform the follow-
ing tasks,

◦ Update the number of augmentation operations in
each particle [51] via (26),

A (New)

= A (Old) + Lc ∗ s1 ∗ |A (Old) − PBest|

+Ls ∗ s2 ∗ |A (Old) − GBest| (26)

where, A (Old) & A(New) represents old and new
augmentation operations, while s1 & s2 represents
two stochastic number sets.

• At the end of the final iteration, identify the particle
with the highest fitness levels and use its augmentation
operations to optimize classification performance for
satellite image sets.
Based on these optimization processes, the model can
identify efficient augmentation operations that can effec-
tively classify different satellite images. This perfor-
mance is estimated in terms of classification accuracy,
precision, recall, and computational delay in the next
section of this manuscript.
The parameters used in the training models have been
listed in Table 1.
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FIGURE 2. Design of the CNN model for classification operations.

IV. THE RESULT ANALYSIS & COMPARISON WITH
STANDARD AUGMENTATION TECHNIQUES
The proposed model initially uses a multimodal image
representation framework capable of extracting Wavelet
components, Fourier Components, Cosine Components,
Laplacian Components, Mellin Transformations, and Z
Transformations. These image sets are processed via a
GWO-based image selection framework that uses convolu-
tional feature sets for efficient inter-class image representa-
tions. These selected image sets are further optimized via a
BFO-based intra-class feature variance optimization process.
Due to the use of GWO and BFO, the image-chosen are
observed to have higher variance levels, which assists in
optimizing classification performance. These selected images
are augmented via a PSO-based optimization process, which
helps choose efficient augmentation operations validated by a
CNN-based classifier to maximize accuracy levels. To eval-
uate the performance of this model, it was validated on the
following datasets,

Sentinel image sets obtained from Google Earth Engine

• Copernicus image sets obtained from Kaggle
• IEEE data port sets for different areas

These sets were aggregated to form 300k images, of which
70% were used to train the model, while 15% each was used
for validation & testing purposes. Based on this evaluation,
the accuracy of the classification [60] (Ac) was estimated

TABLE 2. Classification accuracy for different satellite image sets.

via (27),

Ac =
Sc
ST

(27)

where SC & ST are the total number of correctly classified
satellite image sets and used image sets, respectively. Results
of these augmentations can be observed in Fig. 3(a), Fig. 3(b),
and Fig. 3(c), wherein different satellite images were used for
the scene classification process.

Based on similar image sets, these accuracy levels were
estimated for all validation & test images (VTI) and were
compared with AEN [4], SAB SCNN [19], and SI GAN [37]
in Table 2 as follows:

As per this analysis and Fig. 4, it can be observed that the
proposed model is capable of improving the accuracy of clas-
sification by 9.2%when compared with AEN [4], 6.1%when
compared with SAB SCNN [19], and 10.6% when compared
with SI GAN [37] under different image sets. This is possible
due to the incorporation of accuracy during the selection of
PSO-based augmentation operations. Due to this, the model
can showcase superior accuracy performance under large
image sets. Similarly, the precision of classification [60] was
evaluated via (28),

Pc =
SCI
ST

(28)

where SCI and ST represents the total number of correctly
identified images in the incorrect category and the total
number of images used for the classification process. This
precision can be observed in Table 3 as follows:

As per this analysis and Fig. 5, it can be observed that
the proposed model is capable of improving the precision
of classification by 10.4% when compared with AEN [4],
3.9% when compared with SAB SCNN [19], and 7.3% when
compared with SI GAN [37] under different image sets.

This is possible due to the incorporation of inter-class
variance levels during the selection of fusion operations and
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FIGURE 3. (a) Use of basic transformation techniques for augmentation.
(b) Some scene classifications of the augmented image sets. (c) Use of
the augmentation for different application sets.

FIGURE 4. Classification accuracy for different satellite image sets.

TABLE 3. Classification precision for different satellite image sets.

FIGURE 5. Classification precision for different satellite image sets.

the use of accuracy during the selection of PSO-based aug-
mentation operations. Due to these integrations, the model
can showcase superior precision performance under large
image sets. Similarly, the recall [60] was evaluated via (29),

Rc =
SCC
ST

(29)
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TABLE 4. Classification recall for different satellite image sets.

FIGURE 6. Classification recall for different satellite image sets.

where SCC represents the total number of satellite images
correctly identified into correct categories. The recall levels
can be observed in Table 4 as follows:

As per this analysis and Fig. 6, it can be observed that
the proposed model is capable of improving recall of clas-
sification by 30.7% when compared with AEN [4], 10.1%
when compared with SAB SCNN [19], and 24.6% when
compared with SI GAN [37] under different image sets. This
is possible due to the use of intra-class & inter-class variance
levels during the identification of multimodal sets and the
selection of fusion operations, with the help of accuracy
during the selection of PSO-based augmentation operations.
Due to these integrations, the model can showcase superior
recall performance under large image sets. Similarly, the
classification delay can be observed from Table 5 as follows:

As per this analysis and Fig. 7, it can be observed that
the proposed model is capable of decreasing the classifica-
tion delay by 32.7% when compared with AEN [4], 28.5%
when compared with SAB SCNN [19], and 17.04% when
compared with SI GAN [37] under different image sets.

TABLE 5. Classification delay for different satellite image sets.

FIGURE 7. Classification delay for different satellite image sets.

This is possible due to the identify optimum image sets
for classification under various satellite image types. Due
to these integrations, the model can showcase high-speed
performance under large image sets. This makes the model
highly useful for a wide variety of classification scenarios.

V. CONCLUSION
Our research has observed that data augmentation is a signif-
icant way to keep a model from becoming too good at what
it does and to lower the cost of labeling and cleaning the
raw dataset. This study proposed a new bio-inspired model
for improving the augmentation of hyperspectral imagery
that uses the domains of Fourier, Laplacian, Cosine, multi-
modal Wavelet, Mellin, and Z-Transform. In our findings,
we observed that Particle Swarm Optimization helps to find
the best values for the parameters of geometric transforma-
tions, such as rotation, shifting, etc. When we compared our
proposed model with existing models like AEN, SAB SCNN,
and SI GAN, we learned that it improved the classification
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accuracy by 9.2%, 6.1%, and 10.6%, respectively. With the
incorporation of inter-class variance levels during the selec-
tion of fusion operations and the use of accuracy during the
selection of PSO-based augmentation operations, we noticed
that the proposed model has improved classification preci-
sion by 10.4%, 3.9%, and 7.3% as compared to AEN, SAB
SCNN, and SI GAN, respectively, for different image sets.
Furthermore, we observed that the proposed model could
improve recall of classification by 30.75% compared with
AEN, 10.1% with SAB SCNN, and 24.6% with SI GAN due
to the use of intra-class & inter-class variance levels during
the identification of multimodal sets, and selection of fusion
operations, with use of accuracy during the selection of PSO
based augmentation operations.

The model can be further improved by combining
low-complexity and high-density feature extraction tech-
niques as a future enhancement. We can improve classifica-
tion performance using hybrid bioinspired models, autoen-
coders, gated recurrent units (GRUs), or other deep-learning
methods.
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