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ABSTRACT Aiming at the lack of large public single molten salt battery data sets, to reduce the labour-
consuming, to improve the insufficient learning ability of traditional diagnostic methods in the production
of single molten salt battery, an image recognition model for molten salt battery defects based on transfer
learning is proposed. First, some pre-processing operations and image enhancement on the single molten salt
battery image are performed. Second, the backbone of recognition model is built based on VGG16 network,
and the selective kernel (SK) convolution module is adopted after the bottleneck layer, convolution kernel
with an appropriate size can be selected adaptively through input feature map; Third, the FC is taken the
place of a GAP layer, a dropout layer, and other fine-tuning operations are added, a simplified model called
V-VGGNet is got; Finally, the weight parameters obtained from the pre-training on the ImageNet data set
are transferred to the single molten salt battery image recognition model V-VGGNet. For different network
structures and different training strategies, comparative experiments of performance tests are conducted.
The test data manifest that the accuracy rates of V-VGGNet network for three categories of defective
images (Missing Negative Electrode, Broken Tab, and Missing Current Collector) and Assembly Normal
images can reach 95.14%, 98.79%, 98.21%, and 99.41%, the average accuracy can achieve 97.91%, good
performance improvement of the single molten salt battery is improved, it is about 3% higher compared to
other well-knows networks, which verified the feasibility of V-VGGNet model and the effectiveness of the
improvement.

INDEX TERMS Single molten salt battery, VGG network, SK convolution, deep learning.

I. INTRODUCTION

Amolten salt battery is a primary reserve battery, molten
salt is used as its electrolyte, and it is activated by melting
the molten salt. Thermal batteries have many advantages,
including high specific energy and specific power, wide oper-
ating environment temperature, long storage time, rapid and
reliable activation, compact structure, simple process, low
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cost, and no maintenance [1]. As soon as it came out, it is
favoured by the military and gradually developed into an
ideal power source for advanced weapons such as anti-aircraft
missiles, small nuclear devices, and shield ships. It has an
extremely important position in the military field. To meet
the strictly requirements of modern weapons, the LiMx/FeS2
molten salt battery (LiMx is a lithium alloy) developed in
the 1970s not only overcame the long-term electrical noise
but also greatly improved the specific energy [2], [3], [4].
High specific energy, high specific power, and high reliability
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FIGURE 1. X-ray image.

are major technological breakthroughs in the development of
thermal batteries, and they became the current development
trend of thermal batteries.

The molten salt battery is generally welded and composed
of several electric stacks, activation mechanisms, combined
shells, combined covers, etc. The electric stack is composed
of several single cells and heaters connected in series and
parallel [5], [6]. The electric stack is placed in a combined
shell, and it is connected with the terminal on the battery
cover through the drain bar, a complete molten salt battery
is formed. The X-ray image is shown in Figure 1.

The vital part is electric stack, which consists of a negative
electrode (0.2 mm), an electrolyte (0.3 mm), a positive elec-
trode (0.2 mm), a heating agent (0.5 mm), and a current col-
lector (0.1 mm), and every electric stack is cyclically placed.
A negative electrode, an electrolyte, a positive electrode, and
a heating agent are composed of a single battery [7]. During
the assembly process of thermal batteries, there may be some
assembly errors, such as Missing Current Collector, Miss-
ing Negative Electrode, Broken Tab, etc. due to operational
eITors.

Traditional molten salt battery assembly defect detec-
tion methods are often manual detection; this detection
method has the following shortcomings: (1) Subjective and
non-standardized test results are influenced by subjective
factors and objective factors; (2) Due to the inevitable men-
tal exhaustion and fatigue of operators, test results such as
missed detection and false detection are prone to occur; (3) It
is difficult to manually detect small defects such as Broken
Tabs; (4) During molten salt battery production and testing,
improper operation may cause secondary damage to the sin-
gle molten salt battery; (5) The traditional manual detection
method is inefficient and time-consuming. Therefore, after
the production of the molten salt battery is completed, the
X-ray image of the molten salt battery needs to be tested to
improve the efficiency and accuracy of manual detection.

In the past forty years, many defect detection algorithms
are emerged, which consist of traditional image processing
algorithms, machine learning algorithms based on manual
features or shallow trajectory networks, and neural network-
centric methods.

Traditional image processing algorithms mainly use the
original image features for detection and segmentation [8],
the features are presented on the surface of the defect, and
the methods of structural, threshold, spectral, model-based,
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etc. are included. Structural methods include edges [9], skele-
tons, template matching, and morphological operations [10];
Thresholding methods include iterative optimal thresholding
[11], [12], Otsu thresholding algorithm, etc. [13], [14], [15].
Spectral methods typically include wavelets transform, etc.
[16],[17], [18]. The methods based on handcrafted features or
shallow neural networks usually involve the feature extraction
stage and pattern recognition stage. The extracted features
include the Local Binary Pattern (LBP) feature, GLCM,
HOQG, etc. [19], [20]. Most of the experimental results show
that these detection algorithms have low detection accuracy
in the application of defect detection.

Moreover, a great number of hyper parameters are needed
to manually set in traditional image processing algorithms,
and multiple thresholds are usually needed to manually set for
defect features in actual scenes; the size of these thresholds
is directly related to the background. When an algorithm is
applied to a new task, hyper parameters are fine-tuned again,
or even the algorithm needs to be redesigned.

In literature [21], Alasnanda conducted a morphology-
based algorithm. Reasonable threshold processing is intro-
duced to the canny operator for defect boundary extraction.
To obtain continuous target boundary points, a mathematical
morphological theory is used for corrosion operations, but the
experimental results used in this method have much room for
improvement. Felisberto in the literature [22] used empirical
threshold to determine reasonable parameter values based
on genetic algorithm, and two sets of different radiographic
images are used to extract the weld. This method can extract
the position of the weld in the radiographic image very well,
but the effect of the extraction of the curved weld is not good.

In 2016, various common surface defects in the friction
stir welding are classified into holes, grooves, cracks, key-
holes, and flashes by Ranjan et al. [23], image pyramids and
image reconstruction algorithms are used to identify defects
based on the characteristics of defects, and machine learning
methods are used to locate the defect area and analyse the
degree of defect damage. So the efficient identification of
holes, grooves, cracks, keyholes, and flash defects is real-
ized. In 2018, traditional networks are used to classify and
recognize ultrasonic signals of stainless steel weld defects by
Florence et al. [24] at SSN College of Engineering in India,
the classification of four types of defects including poros-
ity, cracks, incomplete penetration and incomplete fusion is
realized through the Back Propagation Network. Ultrasonic
phased array technology is used by Murta [25] in the United
States for defect analysis, and it is found that the classification
of defects by this method relies heavily on experiences. The
propagation in a two-dimensional medium is simulated, the
k-nearest neighbour algorithm is used to link ultrasonic signal
with modelling defect, and a good result is achieved.

Aiming at the problem of automatic defect detection, the
study [10] used mathematical morphological filters to detect
defects. Important texture features are got by the Gabor
Wavelet Network (GWN), and an optimal morphological
filter is constructed. The defect characteristics is described
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well and the detection accuracy is high, but the visualization
effect is poor, the interpretability is low, and it is not easy to
understand. Jung et al. [26] used a lock-in amplifier-based EC
instrument and a cup-core transceiver probe to detect crack
defects. The edge line is generated by the percolation process,
the panel crack detection and location are realized through
the edge line evaluation. Kieselbach et al. [27] proposed
a visual inspection system physically for detecting the car
body paint surface defects, and an image retrieval system
is built, which includes image SIFT features, textures, etc.
The image retrieval system performs matching similarity on
the image data for surface quality detection, and a better
detection effect is realized. The multilayer perceptron method
is used by Yahia in the study [28], the method is based on
two types of texture features for defect detection, possible
defects are segmented and extracted by an edge detector, and
the extracted feature information is classified successfully.

The above methods can achieve the ultimate detection
function to a certain extent, but such algorithms often com-
bine shallow features such as shape, texture, or colour to
identify a specific category, and simultaneous detection of
multiple defects cannot be achieved. In practical applications,
it is affected by objective factors such as environmental influ-
ences, lighting conditions, equipment motion blur, as well as
the imaging quality recognition, effectiveness and reliability
of target detection are not ideal, and such methods are not
scalable.

Compared with the traditional methods in the above-
mentioned literature, deep learning methods have unique
potential and advantages in object recognition and scene
classification, feature extraction is simple, classification is
accurate. And deep learning methods have the ability to
increase the accuracy as the number of samples increases.

As image processing technology has become an indispens-
able means in scientific research and technical application,
especially the in-depth use of hardware such as graphics
processing unit (GPU) with powerful computing capabilities,
deep learning techniques is performed well in image recog-
nition and target detection. Excellent network models such as
YOLOV3, VGG16, GoogLeNet, and ResNet have appeared
successively. The advantage of CNN is that it does not require
complex operations such as manual image pre-processing and
additional features design, and feature learning is performed
by deep networks.

In 2019, a weld defect dataset is created by TWI Company
Bacioiu [29], the recognition of two types of weld defects
are realized by constructing a CNN with Fully Convolutional
Networks (FCN), the classification accuracy of two types
of weld defects reached 89% and 95% on this dataset. The
research uses X-ray photos for classification and identifi-
cation, and the accuracy of multi-category defect detection
needs to be improved. Chen et al. [30] introduced a new end-
to-end network model to detect surface defects. The improved
model can effectively suppress the background and high-
light defective areas. However, in the attention mechanism
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of the improved model, only spatial attention is adopted,
and the weight generated by channel attention is not com-
bined.VGG16 and Xception models are used by Westphal and
Seitz [31] combined with transfer learning methods, a new
recognition model is constructed for LCD panel defects.
This model can distinguish between defects and indicators
of background regions. After many times training and good
results are achieved, among which the CNN with stacked
integration technology played an important role.

For the feature parameter extraction of welding defects,
a defect feature database is built by Kasban [32], Mel
Cestrum parameters and polynomial coefficients are used
according to the size and shape of different defects.
An artificially designed model is used for matching.
This method abandons the traditional method of geomet-
ric features, and it is a relatively new feature extraction
method.

Gibert et al. [33] introduced an innovative fastener detec-
tion algorithm combined with CNN and SVM, experimental
results show that the anomaly detector’s performance can be
optimized and adjusted under a multi-task Bayesian frame-
work. ResNet [34] network model is proposed by Kaiming H
et al., which solved the problem of the difficulty of deep
network training through Shortcut Connection fitting residual
items. By increasing the network depth the gradient dis-
appearance problem is alleviated, and the model error rate
is greatly reduced. The weld defect data set established in
the document [35] has complex types and different shapes.
There are long-shaped streaks and cracks, as well as small-
shaped point-shaped defects and rounds. Aiming at slag
inclusion, porosity, lack of fusion, roundness, and other
defects, the experimental results of the two models show
that the ResNet network has the lowest error rate and better
recognition.

The document [36] introduced a region proposal network
(RPN). Some useful and high-quality region suggestions are
used in Fast R-CNN for defection. By sharing their con-
volutional features, the two networks are further combined
into one structure. Aiming at the low efficiency in manual
inspection of automobile body welding appearance quality,
the literature [37] proposed a multi-scale convolution block
and designed an attention block to calibrate the solder joint
feature map. Combined with multiple multi-scale blocks and
a feature fusion strategy the backbone network of CNN
can enhance computational efficiency. The classification data
indicate that the detection accuracy of ACMNet can reach
95.2%. Literature [38] in view of the bearing performance
fault detection and identification based on bearing sensor
data, which overcame the shortcomings of massive training
data, a recognition network combined Dense Convolutional
block and attention mechanism is proposed, this method
has the advantage of obtaining higher accuracy with fewer
unknown learning parameters.

In response to the requirements for rapid and accurate
state detection of rails, fasteners, sleepers, etc. on railway
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tracks, this paper proposed an intelligent method [39] for
detecting multi-target defects based on the BOVW model,
and this method uses spatial pyramid decomposition and
an improved YOLOv3 model. The detection accuracy rate
can reach 96.26%. The complexity is reduced; the detection
speed is further improved. Study [40] aiming at the cases
of multiple types of defects in the actual situation, a two-
step crack detection strategy is proposed, and the YOLOv4
network model is used to discard images without cracks.
In the newly generated coarse area, the hybrid expanded con-
volutional block network is used, and the detection accuracy
of cracks can reach 97.8%. Literature [41] proposed a method
for identifying defects in wafer images which includes nine
types of defects. The parameters learned from ImageNet
are transferred to Dense Net, and classifier is redesigned.
The actual experimental verification on the production line
shows that the recognition efficiency is improved, thereby the
feature learning ability is improved, and category imbalance
in wafer defect recognition is also solved. In the study [42],
aiming at the lack of a large number of marked wafer defect
images, a GAN model combined with transfer learning is
proposed. The learning features are introduced into the tag
learning block, which effectively reduced the difference in
feature distribution, the weight parameters in the offline wafer
image are transferred to GAN network, the accuracy of wafer
defect-recognition reached 97%. A loss function that can
adapt to multiple scales is proposed in literature [43], which
solved the problem of poor detection effect caused by sample
imbalance. Reference [44] used void convolution instead of
traditional convolution in the CSPDarknet-53 backbone net-
work to improve the detection of defects at different scales.
In study [45], lightweight network model MobileNetV2 is
adopted to replace the original backbone feature extraction
network of YOLOv4, and 3 x 3 convolution is replaced
by depth separable convolution, which greatly reduced the
parameter scale of the model and improved the detection
speed of the model.

In this paper, the idea of transfer learning and improved
SK module are draw into the V-VGGNet recognition model.
Training a model often requires numerous samples, without
enough training samples, the network can’t fully extract fea-
tures during the training process or the trained model has poor
generalization ability. The main advantage of transfer learn-
ing over traditional neural networks is that it does not require
plenty of training samples, to find the defective molten salt
battery in the production process more quickly and accu-
rately, a public molten salt battery dataset is established, and
the defect recognition model is proposed and convergence
ability is further improved.

The novelty contribution of this paper is highlighted:

(1) A diverse data set of molten salt battery is established
by preprocessing and image enhancement, which exceeded
most of the defect data sets. It is helpful to reduce the influ-
ence of external environmental factors such as exposure rate
during image collection, and improve the learning ability of
V-VGGNet with the increase of the number of data sets.
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(2) The transfer learning method is introduced to build the
basic model of V-VGGNet, through different transfer strate-
gies a large number of weight parameters can be transferred
to the model, and the representation with strong classification
ability can be learned from a lot of weak features, which
is beneficial to improve the recognition rate of the three
categories of assembly defect images.

(3)The improved SK convolution module is introduced to
the V-VGGNet, which is can adaptively select a convolution
kernel with an appropriate size according to input feature
map. The recognition accuracy and speed are improved by
the molten salt battery assembly detection model V-VGGNet,
which is nearly 3% higher than proposed by Zhao et al.
[46]. Compared with five traditional detection methods, the
V-VGGNet network model has a better recognition effect.

The structural components of this paper are as follows:

Section II represents the acquisition, pre-processing, and
enhancement of molten salt battery defect images. Section III
demonstrates the network architecture establishment and
principle introduction of the molten salt battery identification
model in detail. Section IV represents four groups of compar-
ative experimental analysis, visualization of the feature map,
analysis of recognition rates, and confusion matrix. Some
concluding remarks are drawn in Section V.

Il. EXPERIMENTAL DATA

A. ACQUISITION OF DEFECT IMAGE DATASET

In this paper, the defect samples of the dataset used in the
V-VGGNet model are mainly derived from the laboratory and
the inspection in the assembly production line.

The 3 categories of defect images and Assembly Normal
images included in the dataset are all caused by the single
molten salt battery assembly process. In order to make the
samples as diverse and extensive as possible, defect samples
with different damages in different environments are also
made. The dataset includes 4 categories of image samples.
The 3 categories of defects images include: Missing Nega-
tive Electrode, Broken Tab, and Missing Current Collector.
Assembly Normal image and an X-ray machine for image
acquisition are shown in Figure 2. The 3 categories of defect
images of single molten salt battery assembly error are shown
in Figure 3.

B. IMAGE PREPROCESSING AND ENHANCEMENT
Convolutional neural networks may have over-fitting prob-
lems due to insufficient data. Over-fitting will make the
generalization ability worse. For preventing its occurrence,
the method of data enhancement is adopted to enrich single
molten salt battery dataset.

(1) Horizontal or vertical translation: Randomly trans-
late the image of single molten salt battery by 10 pixels
horizontally or vertically, and blank spaces are filled most
nearly.

(2) Horizontal or vertical flip: randomly flip in the horizon-
tal or vertical direction.
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(a) X-ray machine.
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(b) Single molten salt battery.
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FIGURE 2. Assemble normal images and X-ray machine for image
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(c) Missing Current Collector.

FIGURE 3. Three categories of assembly error defect images of a single
molten salt battery.

(3) Zoom: The ratio is 0.85-1.15; blank spaces are filled
most nearly.

(4) Rotation: Randomly rotate 0°-90°, blank spaces are
filled most nearly.

(5) Attificial noise: adding Gaussian noise.
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(d)

(e) (f) (9)
(a) vertical flip; (b) horizontal flip; (c) bright regulation; (d) contrast

ratio; (e) rotate counterclockwise; (f) noise; (g) zoom;

FIGURE 4. Data enhancement.

(6) Adjust the brightness: increasing or decreasing the light
according to the actual situation of the X-ray machine.

(7) Delete heavily polluted or useless images.

The data enhancement operation is used to expand the sam-
ple of the single molten salt battery. The goal of these trans-
formations is to generate more samples for creating a larger
dataset and expand the amount of training data associated
with the learning object. This not only increases the amount
of data but also improves the quality, and learn features better
and more, and play a certain role in alleviating model over-
fitting. At the same time, learning other irrelevant features
is avoided, and faster model convergence is promoted. The
data enhancement is shown in Figure 4. 2149 original single
molten salt battery images are expanded to 9085 images,
which are proportionally separated into training, validation,
and test, they account for 60%, 20%, and 20% respectively.
The distribution of Assembly Normal (Nor) images and
three categories of defect images (Missing Negative Elec-
trode, M-N-E; Broken Tab, B-T; Missing Current Collector,
M-C-C) in the single molten salt battery data set are shown
in Figure 5. After a series of operations such as cropping,
removing redundancy, and data enhancement, as the input of
the network, the single molten salt battery images are resized
to 224 x 224 and batch normalized.

Ill. IDENTIFICATION MODEL FOR DEFECT IMAGE OF
SINGLE MOLTEN SALT BATTERY

A. STRUCTURE ANALYSIS OF VGG16

VGG16 is regarded as an outstanding image recognition
model. As a classic model, VGG16 has the advantages of
concise structure and easy implementation and still has high
research value.

In V-VGGNet model, the classic VGG16 is the pre-training
backbone, and combined with feature transfer some improve-
ments are made on the basis of the VGG16 network model.
A simplified description of the VGG16 network structure is
shown in Figure 6.

The VGG16 has 16 layers, consisting of 13 CON layers,
5 down-sampling layers, and 3 FC layers. The Relu function
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FIGURE 5. Distribution of single molten salt battery dataset.
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FIGURE 6. The VGG16 network.

is after the convolution layer, and the sampling strategy
of the down-sampling layer is Max Pooling. The numbers
of neurons in three FC layers are 4096, 4096, and 1000.
1000 represents the number of categories in the image data
set. The VGG16 has 138,357,544 parameters. The network
before the FC can be divided into 5 blocks. The number of
convolutional layers and pooling layers included in bolckl,
bolck2, bolck3, bolck4, and bolck5 are 2,2,3,3,3,and 1,1, 1,
1, 1, respectively, and Block5 is also known as the bottleneck
layer.

B. ESTABLISHMENT OF IDENTIFICATION MODEL FOR
SINGLE MOLTEN SALT BATTERY
The learned knowledge is recognized and processed by tans-
fer learning through FC layer to complete the learning task
under the new data set. The flow chart of migration learning
is shown in Figure 7. In the VGG16 network model, on the
one hand, the size of the receptive field cannot be adjusted
adaptively; On the other hand, the complex parameter opti-
mization operation of FC layer will lead to overfitting and
increase training time.

The proposed network is improved based on the VGG16
model. First, an SK convolution module is connected to the
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Validation

M-C-C Nor

bottleneck layer. The network can automatically choose a
convolution kernel of suitable size according to input fea-
tures, the level of multi-scale network and the ability to iden-
tify small defects in single molten salt battery are improved;
Secondly, the GAP is used to replace the fully connected
layer of VGG16 model, and fine-tuning operations such as the
dropout layer are added, so a simplified deep neural network
model V-VGGNet is obtained; Finally, the weight parameters
obtained from the pre-training learning on ImageNet are
transferred to single molten salt battery image recognition
model V-VGGNet, and network parameters are initialized
and retrained. Replacing the FC layer with GAP is useful to
speed up network convergence, reduce model parameters, and
prevent overfitting caused by the optimization of considerable
parameters in FC layer. The improved V-VGGNet is shown
in Figure 8.

C. ADAPTIVE SELECTION OF CONVOLUTION KERNEL IN
SK CONVOLUTION MODULE
Mostly the same size convolution kernel is set on each feature
layer of traditional CNN. For example, multiple convolution
kernels are set in GoogLeNet, but the convolution kernel can-
not be adjusted adaptively according to the size of the input
features, which affects the efficiency of feature extraction.
In V-VGGNet network, the SK convolution module from
the SKNET network [47] is added after the bottleneck layer
of V-VGGNet, which allows the V-VGGNet network to
adaptively select a convolution kernel with an appropriate
size through input features, thereby the efficiency of feature
extraction is improved. The SK convolution module consists
of three parts: separation, fuse, and selection.

1) SEPARATION

In the separation operation, multiple convolution kernels and
input feature vector X perform convolution operations to form
multiple branches, then perform convolution operations of
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FIGURE 8. The improved network model structure V-VGGNet.

sizes 3 x 3 and 5 x 5 on the vector X, and two feature vectors
U’ € RE>WXCy” ¢ RHE*WXC gre obtained.

The schematic diagram of the SK convolution module is
shown in Figure 9.

2) FUSION
A gating mechanism is designed to distribute the information
flow into the next convolutional layer. In the fusion process,
the U’ and U” are obtained by the previous convolution
operation, they are fused as shown in equation (1).

Uu=U+U" (1)
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For the fused U, the global information is compressed
through GAP. As shown in Figure 9, s. is obtained after
GAP of U,, s, represents the c-th dimension feature of s,
U represents the c-th dimension feature of U. As shown in
equation (2).

H W

1
Sc =fgp(Uc) = HxW Z

U.(i,)) 2
i=1 j=I

After global average pooling, features are processed by the
FC layer, and which are further compressed, the extraction
efficiency is improved.
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FIGURE 9. Schematic diagram of SK convolution model.

Compressed features are expressed as Equation (3).
z = 3(B(wy)) 3)

In equation (3): § represents the function ReLU; B repre-
sents batch normalization; z € RY*!, w;, € R?*¢, the size
of the parameter d is determined by setting the attenuation
ratio r, and its expression is expressed as Equation (4).

d = max(C/r,L) @

In equation (4): the size of L is set to 32.

(3) Choose. After the softmax operation, the soft atten-
tion vectors of a and b is obtained through the attention
mechanism.

eAz:Z eB(,-Z

ar — ———— e —
€T Az 4+ eBez €T eAcz 4+ eBez

&)
Inequation (5):A, B € RC Xd,AC represents the c-th row of A,
a. represents the c-th element of @; The meanings of B, and
b. are consistent with the meanings of A and a. respectively.

Through the weighted summation of the corresponding
weight matrix and the convolution kernel, the output feature
V is obtained.

V=[V1’V27"'7VC] (6)

In equation (6): V. € RV v, = a.U' + b.U",a. +
b. = 1.

D. AVERAGE POOLING LAYER
After feature extraction, numerous parameters are generated
from the FC layer. The optimization of these parameters will
generate lots of computation, prolong the convergence time of
the model, and lead to overfitting. By adopting global aver-
age pooling, not only the slow model convergence problem
caused by the optimization of excessive parameters is solved,
but also the anti-overfitting ability of the network can be
enhanced. The one-dimensional feature vector is calculated
by averaging pixel values, and parameters optimization is not
performed in this process, so overfitting is prevented.
Adding a global average pooling layer after the SK module
in V-VGGNet can directly achieve dimensionality reduction
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and massive reduction of network parameters (Actually, a FC
layer has the largest proportion of parameters in CNN), clas-
sification performance of the V-VGGNet network is guaran-
teed, and training speed is also accelerated.

E. FULLY CONNECTED LAYER

The last part of a complete CNN often connects several FC
layers, because the FC layers can map extracted features to
the label space of the sample by the network. FC1 and FC2 are
set before the GAP layer. Due to limited experimental sam-
ples, Dropout layer is added after FC2 for avoiding the occur-
rence of over-fitting, and the Dropout rate is 0.5. Meanwhile,
function Relu is put on to process the problem of the gradient
dispersion after each FC layer. Finally, the Softmax classifier
containing 1000 neurons in the original VGG16 model is
replaced by a Softmax classifier containing 4 neurons. Based
on the improvement of transfer learning and the VGG16
network structure, the V-VGGNet image recognition model
for assembly errors of single molten salt battery is obtained.
Then, the VGG16 is pre-trained on ImageNet, learned param-
eters are migrated to V-VGGNet network model.

IV. EXPERIMENT AND DISCUSSION

A. EXPERIMENTAL ENVIRONMENT

All experiments are carried out 64bit Microsoft Winl10 OS,
Intel Core 17-9800T CPU @ 3.20 GHz, 32GB RAM, 3T hard
drive, and 8G NVIDIA GeForce GTX 1080Ti GPU. Python
version is 3.7. The deep learning framework is Tensorflow.

B. TRAINING STAGE
In the training process, a part of training network parameters
are carried out by the SGD algorithm; the Momentum term is
introduced to suppress the oscillation of SGD.
The iterative formulas are equations (7) (8).
W =W —adW @)
b=>b—adb )

The Momentum is imported:
vaw = Bvaw + (1 — B)dW

48339



IEEE Access

W. Xu et al.: Study on Improved VGGNet and SK Convolution Identification Model

Vdo = Bvdp + (1 — B)db
W=W-—avqgw, b=b—av ©)]

After the introduction of Momentum, the last updated
value is taken into account on each update of the parameters.
The learning rate is 0.001 and adjusted by exponential decay
algorithm, the Momentum is 0.9, the parameter value of
weight decay is 1 x 107*, and each batch uses 32 images
for training.

The expression of the learning rate update in the exponen-
tial decay algorithm is equation (10).

Ir=1Irg- (dr)(l—%p (10)

As shown in equation (10), Ir represents the attenuated
learning rate, dr represents the attenuation coefficient, ds
represents the attenuation step size, and || represents round-
ing down. In the training process, the cost function adopts
the cross-entropy loss function; the loss is calculated by
the Softmax function. The L2 regularization term is added
to the loss function, and the final expression is shown in
equation (9).

Jo :_ZP(x,Q)lnq(x,9)+)»||9||2 (11

As shown in equation (11), 6 represents the weight,
x represents the batch of training samples, A represents the
regularization term coefficient, P represents the expected
category probability, and g represents the predicted category
probability.

In the training process, when the loss value becomes stable,
Ir is adjusted down again, until the optimal recognition model
is obtained when the minimum value is reached, the final Ir is
0.0005. The learning rate is initially set a little larger and then
gradually reduced, to avoid the model failing to converge due
to too large learning rate.

In the SK convolution module, the final set of SK con-
volution is determined by three important hyper parameters.
n represents the number of paths that determine the choice
of different convolution kernels aggregate, L represents the
number of groups that control the cardinality of each path,
and r represents the reduction ratio. The typical setting of the
SK convolution module is expressed as SK [n, L, r], and its
value is set to SK [n =2, L =32, r = 16].

C. DESIGN OF EXPERIMENTAL COMPARISON

To compare the impact of the effectiveness of transfer learn-
ing on classification accuracy, the impact of different net-
works on classification accuracy of defect recognition, the
impact of improved the SK convolution module and migra-
tion learning on the time complexity of the V-VGGNet net-
work structure, four groups of comparative experiments are
designed in this paper.

The first group of comparative experiments: To test
the effect of transfer learning, the parameters learned by
V-VGGNet are discarded in this group of experiments, and
the following two networks are compared experimentally
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to verify the effect of defect recognition: V-VGGNet with
parameter transferring and V-VGGNet without parameter
transferring.

The second group experiments: To measure defect recogni-
tion rate on V-VGGNet network with parameter transferring,
this experiment uses the following six network structures for
experimental comparison: V-VGGNet, VGG16, Res-Net50,
InceptionV3, MobileNetV2, and Xception.

The third group experiments: To verify the effect of
improved SK convolution on defect recognition rate, this
group of experiments uses the following two structures for
experimental comparison: (1) The V-VGGNet network struc-
ture with the improved SK convolution module and weight
parameter transferring. (2) VGG16 network with weight
parameter transferring.

The fourth group experiments: To test the influence of
network structure with weight parameter transferring and
SK convolution module on time complexity, this group of
experiments uses the following four network structures for
experimental comparison: (1) The V-VGGNet network model
proposed in this paper with SK convolution module and
weight parameter transferring. (2) VGG16 network model
with weight parameter transferring. (3) VGGI16 network
model without weight parameter transferring. (4) V-VGGNet
network model without weight parameter transferring.

D. ANALYSIS OF RECOGNITION RATE
Precision, Recall, and the harmonic mean (F1-score) of
Precision and Recall are used as one of the evaluating
indicators. They are used to evaluate the performance of
experimental networks (V-VGGNet, VGG16, Res-Net50,
InceptionV3, MobileNetV2, and Xception). The Precision
reflects the accuracy of the model. The Recall reflects the
sensitivity of the model. The F1-score value range is between
0 and 1, which is used to measure the overall performance.
First, make the following settings, the TP, FP, and FN
calculation methods of three parameters are shown in equa-
tions (12-14).

.. ig
Pecision = ——— (12)
TP + FP
P
Recall = —— (13)
TP + FN
Precision - Recall
F1 — score =2 (14)

Precision + Recall

Table 1 is the evaluation indicators of six network models
under the test set. 4 categories of single molten salt battery
images include Missing Negative Electrode (M-N-E), Broken
Tab (B-T), Missing Current Collector (M-C-C), and Assem-
bly Normal (Nor) image. The recognition accuracy of 4 cat-
egories of images is 95.14% (Missing Negative Electrode),
98.79% (Broken Tab), 98.21% (Missing Current Collector),
and 99.41% (Assembly Normal) respectively, the overall
recognition rate reached 97.91%, the V-VGGNet network’s
recognition accuracy is the most effective of six network
models, which is nearly 3% higher than molten salt battery
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TABLE 1. Accuracy, recall, and F1-score of six models.

Precision(%) Recall(%) F1-score(%)
Model

or M-C-C B-T M-N-E Nor M-C-C B-T M-N-E Nor M-C-C B-T M-N-E
V-VGGNet 994 982 988 951 99.6 946 992 981 995 98.6 986 96.6
ResNet50 99.6 960 983 94.0 992 942 985 96.1 994 954 984 95.0
InceptionV3  98.8 951 97.8 935 99.0 924 987 952 989 93.8 983 943
VGG16 982 945 975 904 984 89.6 980 948 981 92.0 97.8 925
Xception 972 94.0 964 888 98.0 87.5 973 93.6 97.6 90.6 96.8 O9I.1
MobileNetV2 97.5 935 96.1 878 98.0 864 973 932 977 89.8 96.7 904

defect recognition method proposed by Zhao et al. From
the experimental data, the recognition rate of the V-VGGNet
network is higher.

E. COMPARISION OF FOUR GROUPS OF EXPERIMENTAL
RESULTS WITH DIFFERENT NETWORK MODELS
The first group of experimental analysis:

As shown in Figure 10, the accuracy of the V-VGGNet
network with weight parameter transferring (P-T) reached
97.91%. The accuracy rate of the V-VGGNet network model
on the test set without weight parameter transferring reached
83%. Figure 10 shows the loss curve of V-VGGNet after
40 iterations, in which the loss value of the V-VGGNet net-
work model with weight parameter transferring is about 0.15.
It shows that the model has learned the defect features on the
ImageNet data set, and these features can help to identify the
defect images of single molten salt battery assembly errors.

1.0

0.8
2
o
=
> 0.6 —&— V-VGGNet(P-T)
g —— V-VGGNet(without P-T)
=
Q
Q 0.4
<

0.2

0 10 20 30 40
epoch

FIGURE 10. The comparative experiment of model transfer learning.

The second group of experimental analysis:

Figure 11 shows the experimental results about defect
recognition rate of six different network structures. These
six networks include V-VGGNet, VGG16, ResNet50, Incep-
tionV3, MobileNetV2, and Xception. According to the accu-
racy curves of the training set and the validation set, the
recognition effect of the V-VGGNet is the highest, the
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TABLE 2. Experimental comparison of adding SK modules to six
networks.

Accuracy FPS
Model Training Validation (Frame/s)
set set

V-VGGNet 97.91 97.50 44
VGG16+SK 96.67 96.31 51
ResNet50+SK 96.89 96.08 18
InceptionV3+SK  95.64 95.12 13
Xception+SK 94.73 94.17 14
MobileNetV2+SK  94.26 93.65 6

MobileNetV2 is the lowest, and the V-VGGNet is close to
entirely convergence on the 15th epoch.

From Figure 11 (a), the recognition accuracy of V-VGGNet
is nearly 1% higher than that of ResNet50, and nearly 4.2%
higher than that of the lowest MobileNetV2. Compared with
Figure 11 (b) and (d) in contrast, V-VGGNet’s loss is about
0.06, which is the smallest and the first to achieve a stable
state. Average recognition rate of V-VGGNet network is
97.91%, InceptionV3 network is 96.40%, ResNet50 network
is 97.06%, MobileNetV2 network is 93.73%, Xception net-
work is 94.11%, and VGG16 network is 95.21%. In addition,
the V-VGGNet network model starts to converge on the 4th
epoch and completely converges on the 10th epoch, which is
faster than other networks and has a better overall effect.

The third group of experimental analysis:

The experimental results in Figure 12 illustrate the effect
of the improved SK convolution module on the defect recog-
nition rate, and the comparative experimental results of the
V-VGGNet network model and the VGG16 network model
with weight parameter transferring. The data in Figure 12
shows the improved SK convolution module is increased by
about 4.5% compared with the VGG16 network with weight
parameter transferring.

A series of experiments are also carried out compared
with other five networks that added SK modules respectively.
From Table 2, the proposed method is outperformed other
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FIGURE 11. The comparative experiment of six network models.
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FIGURE 12. The comparative experiment of SK convolution module.

advanced methods. Although the frame rate of the V-VGGNet
is not the highest, the main purpose of the network is to
improve the recognition accuracy, it is worth slow speed.
The fourth group of experimental analysis:
Figure 13 shows the time complexity results of four dif-
ferent networks for 40 epochs. These four networks include
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FIGURE 13. The comparative experiment of time complexity of network
model.

(1) The V-VGGNet network model with SK convolution
module and weight parameter transferring (P-T) proposed in
this paper. (2) VGG16 network model with weight parame-
ter transferring. (3) VGG16 network model without weight
parameter transferring. (4)V-VGGNet network model with-
out weight parameter transferring.
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(d) Conv4 (e) ConvS5
FIGURE 14. Feature maps visualization of molten salt battery image.
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FIGURE 15. Comparison of confusion matrix of six network models.

Figure 13 shows the V-VGGNet’s training time is 18 min-
utes, which is 74 minutes faster than the training of the
VGG16 network with weight parameter transferring, the
recognition speed is the fastest, and the effect is significant.
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F. ANALYSIS OF MODEL FEATURE VISUALIZATION

The feature map can be regarded as the feature space of input
image. Visualizing the feature map is conducive to understand
internal feature representation of CNN, and it is a means to
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probe the neural network black box, corresponding feature
maps can be extracted and output. Through the CNN to
visualize the feature map of single molten salt battery, it can
be observed intuitively how the CNN transforms the image
data of the single molten salt battery, so it is useful for better
understanding the working principle of CNN and adjusting
V-VGGNet parameters.

The V-VGGNet convolutional layer is shown in Figure 14.
Convl and Conv2 extract the shallow layer features of single
molten salt battery, the features are actually some edges and
colours information. From Figure 14(c) Conv3, visual content
is become less and less, more detailed contour and texture
of single molten salt battery is reserved. Finally, the output
feature maps of Conv4 and Conv5 become very abstract and
sparse.

In the process of feature maps extraction, regis-
ter_forward_pre_hook () function is used to obtain the feature
graph. The parameter is a function name that needed to
be implemented by itself. The parameters module, input
and output are the module name, a tensor tuple input and
a tensor output. Then torchvision.utils.make_grid () and
torchvision.utils.save_image () are used to save the tensor
containing the feature map as an image file for visualization
and other operations.

There are two functions about feature map visualization:
One is to improve the structure of the training network, the
other is to delete redundant nodes to achieve model com-
pression. The dead feature map location of fixed convolution
layer is the same under different input data. These dead
feature maps cannot provide effective information, and due
to their fixed positions, corresponding convolution kernels
can be removed from the network to play a role of model
compression.

G. ANALYSIS OF CONFUSION MATRIX

The visualization confusion matrix of six models including
V-VGGNet, Xception and so on model on validation set are
illustrated in Figure 15. Accuracy of classification can be
calculated, recognition results can be seen intuitively in image
classification. It is composed of a matrix of n rows and n
columns. The value on the diagonal represents the number
of images correctly recognized by V-VGGNet. The value on
off-diagonal line represents the number of images that the
network recognizes incorrectly.

From Figure 15, each model has the ability to recog-
nize three kinds of assembly error defects and Assembly
Normal (Nor) images of single molten salt battery. The
V-VGGNet model has the highest recognition rate for Bro-
ken Tab (B-T), and has a high misrecognition rate for
the Missing Negative Electrode (M-N-E) and the Missing
Current Collector(M-C-C), mainly because of these two
situations: Missing Negative Electrode is misidentified as
Missing Current Collector, and Missing Current Collector is
misidentified as Missing Negative Electrode. Among them,
the MobileNetV2 network has the highest false recognition
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rate for Missing Current Collector and Missing Negative
Electrode.

It is also illustrated V-VGGNet network model has the
best performance, which is able to correctly identify 506 of
the 508 Assembly Normal images of single molten salt bat-
tery images, and which Ipiece of image is misidentified as
Missing Current Collector and 1 as Missing Negative Elec-
trode. A convenient method for the recognition of Missing
Current Collector, Broken Tab, and Missing Negative Elec-
trode assembly error defect images of single molten salt
battery is constructed.

The reasons for the recognition error may be an error in
the image acquisition, or it may be that the texture difference
between the Missing Current Collector and the Missing Neg-
ative Electrode of single molten salt battery is not obvious,
which makes the network more difficult to recognize the
images. It can be seen that the wrongly identified images
mostly occur between images with similar features, and the
error is lower, the stability of the V-VGGNet network is
further explained.

V. CONCLUSION

During inspection process of molten salt battery production
line, there are problems such as time-consuming and labour-
intensive manual defect detection, the insufficient ability of
traditional diagnosis methods, and low classification accu-
racy. The deep learning method can improve the recognition
rate with the increase in the number of molten salt battery
samples, and the main advantage over traditional structure is
that it does not require massive training data; it can funda-
mentally solve the current lack of large-scale public single
molten salt battery datasets.

In this paper, the V-VGGNet recognition network of single
molten salt battery defects is constructed; the innovations are
as follows:

(1)Transfer learning and CNN are introduced in the
V-VGGNet defect-recognition network, the representation
with strong classification ability can be learned from a lot of
weak features, which is beneficial to improve the recognition
rate of the three categories of assembly defect images, the
three defects of molten salt battery assembly error include
Missing Negative Electrode, Broken Tab and Missing Current
Collector.

(2) A diverse data set of molten salt battery is built by
preprocessing and image enhancement, which is helpful to
reduce the interference of environmental factors, and the
learning ability of V-VGGNet is improved with the increase
of the number of data sets.The VGG16 network structure is
redesigned, the SK convolution module is used, it is achieved
the purpose of reducing training parameters and shortening
training time.

(3) For different network structures and different training
strategies, performance tests and comparative experiments of
different classification methods are carried out. The recog-
nition accuracy of the V-VGGNet network is improved; it
can reach 97.91%, which is nearly 3% higher than proposed
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by Zhao et al. It provides a good solution for the manual
detection of defects of single molten salt battery.

In the next step of research work, to further improve the
recognition rate and wide applicability of the model, the
image pre-processing will be further optimized, and it is
necessary to construct novelty structure and improvement of
activation functions and classifiers based on previous work
[48]. At the same time, this model can also be applied to other
types of molten salt batteries for preliminary defect detection.

ABBREVIATIONS
CNN Convolutional Neural Network.
SIFT Scale-Invariant Feature Transform.
FC Fully Connected Layer.
GAP Global Average Pooling.
VGG Visual Geometry Group.
SK Selective Kernel.
GPU Graphics Processing Unit.
YOLO  You Only Look Once.
GAN Generative Adversarial Network.
P-T parameter transferring.
M-N-E Missing Negative Electrode.
B-T Broken Tab.
M-C-C  Missing Current Collector.
Nor Assembly Normal.

REFERENCES

[1]

[2]

[3]

[4]

[5]

[6]

[71

[8]

[9]

[10]

[11]

B. Liu, Y. Huang, H. Cao, A. Song, Y. Lin, M. Wang, and X. Li, “A high-
performance and environment-friendly gel polymer electrolyte for lithium
ion battery based on composited lignin membrane,” J. Solid State Electro-
chemistry, vol. 22, no. 3, pp. 807-816, Mar. 2018.

S. Narayanan, X. Li, S. Yang, H. Kim, A. Umans, I. S. McKay, and
E. N. Wang, “Thermal battery for portable climate control,” Appl. Energy,
vol. 149, pp. 104116, Jul. 2015.

P. Butler, C. Wagner, R. Guidotti, and I. Francis, “‘Long-life, multi-tap ther-
mal battery development,” J. Power Sources, vol. 136, no. 2, pp. 240-245,
Oct. 2004.

Y. Han, “Thermodynamic performance evaluation on a molten hydroxide
direct carbon fuel cell with asymmetric anode and cathode,” Int. J. Elec-
trochemical Sci., vol. 15, pp. 8849-8872, Sep. 2020.

M. S. Ding, C. Krieger, and J. A. Swank, “Developing nanofoil-heated
thin-film thermal battery,” U.S. Army Res. Lab., ARL-TR-6664, 2013.
Y. Niu, Z. Wu, J. Du, and W. Duan, “A new thermal battery for
powering borehole equipment: The discharge performance of Li-Mg-B
alloy/LiNO3—KNO3/MnO; cells at high temperatures,” J. Power Sources,
vol. 245, pp. 537-542, Jan. 2014.

H. Ye, C. Strock, T. D. Xiao, P. R. Strutt, D. E. Reisner, R. A. Guidotti, and
F. W. Reinhardt, “Novel design and fabrication of thermal battery cathodes
using thermal spray,” MRS Proc., vol. 548, p. 701, Feb. 1998.

R. Ren, T. Hung, and K. C. Tan, “A generic deep-learning-based approach
for automated surface inspection,” IEEE Trans. Cybern., vol. 99, no. 2,
pp. 1-12, Mar. 2017.

J. A. Tsanakas, D. Chrysostomou, P. N. Botsaris, and A. Gasteratos, ‘‘Fault
diagnosis of photovoltaic modules through image processing and Canny
edge detection on field thermographic measurements,” Int. J. Sustain.
Energy, vol. 34, no. 6, pp. 351-372, Jul. 2015.

K. L. Mak, P. Peng, and K. F. C. Yiu, “Fabric defect detection using mor-
phological filters,” Image Vis. Comput., vol. 27, no. 10, pp. 1585-1592,
Sep. 2009.

Z.Tong, S. Xie, H. Liu, W. Zhang, C. Pei, Y. Li, Z. Chen, T. Uchimoto, and
T. Takagi, “An efficient electromagnetic and thermal modelling of eddy
current pulsed thermography for quantitative evaluation of blade fatigue
cracks in heavy-duty gas turbines,” Mech. Syst. Signal Process., vol. 142,
Aug. 2020, Art. no. 106781.

VOLUME 11, 2023

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

(21]

(22]

(23]

(24]

[25]

[26]

(27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]

M. Malarvel, G. Sethumadhavan, P. C. R. Bhagi, S. Kar, and S. Thangavel,
“An improved version of Otsu’s method for segmentation of weld defects
on X-radiography images,” Optik, vol. 34, pp. 109-118, Aug. 2017.

M. Win, A. R. Bushroa, M. A. Hassan, N. M. Hilman, and A. Ide-
Ektessabi, “A contrast adjustment thresholding method for surface defect
detection based on mesoscopy,” IEEE Trans. Ind. Informat., vol. 11, no. 3,
pp. 642-649, Jun. 2015.

T. Kalaiselvi and P. Nagaraja, ““A rapid automatic brain tumor detection
method for MRI images using modified minimum error thresholding tech-
nique,” Int. J. Imag. Syst. Technol., vol. 25, no. 1, pp. 77-85, Mar. 2015.
L. Wang, Y. Zhao, Y. Zhou, and J. Hao, “Calculation of flexible printed
circuit boards (FPC) global and local defect detection based on computer
vision,” Circuit World, vol. 42, no. 2, pp. 49-54, May 2016.

X. Bai, Y. Fang, W. Lin, L. Wang, and B.-F. Ju, “Saliency-based defect
detection in industrial images by using phase spectrum,” IEEE Trans. Ind.
Informat., vol. 10, no. 4, pp. 2135-2145, Nov. 2014.

M. Vejdannik and A. Sadr, “Automatic microstructural characterization
and classification using dual tree complex wavelet-based features and bees
algorithm,” Neural Comput. Appl., vol. 28, pp. 1-13, Jan. 2017.

Y. Li, Y. Li, H. Luo, M. Yu, G. Jiang and H. Cong, “Fabric defect
detection algorithm using RDPSO-based optimal Gabor filter,” J. Textile
Inst., vol. 126, no. 4, pp. 1-9, 2018.

S. Susan and M. Sharma, ‘‘Automatic texture defect detection using Gaus-
sian mixture entropy modeling,” Neurocomputing, vol. 239, pp. 232-237,
May 2017.

Y.-G. Cen, R.-Z. Zhao, L.-H. Cen, L.-H. Cui, Z.-J. Miao, and Z. Weli,
“Defect inspection for TFT-LCD images based on the low-rank matrix
reconstruction,” Neurocomputing, vol. 149, pp. 1206—1215, Feb. 2015.
Alaknanda, R. S. Anand, and P. Kumar, “Flaw detection in radiographic
weld images using morphological approach,” NDT E Int., vol. 39, no. 1,
pp. 29-33, Jan. 2006.

M. K. Felisberto, H. S. Lopes, T. M. Centeno, and L. V. R. de Arruda,
“An object detection and recognition system for weld bead extraction from
digital radiographs,” Comput. Vis. Image Understand., vol. 102, no. 3,
pp. 238-249, Jun. 2006.

R. Ranjan, A. R. Khan, C. Parikh, R. Jain, R. P. Mahto, S. Pal, S. K. Pal,
and D. Chakravarty, ‘““Classification and identification of surface defects in
friction stir welding: An image processing approach,” J. Manuf. Processes,
vol. 22, pp. 237-253, Apr. 2016.

S. E. Florence, R. V. Samsingh, and V. Babureddy, “Artificial intelligence-
based defect classification for weld joints,” IOP Conf. Mater. Sci. Eng.,
vol. 402, no. 1, pp. 1-13, 2018.

R. H. F. Murta, F. D. A. Vieira, V. O. Santos, and E. P. de Moura, “Welding
defect classification from simulated ultrasonic signals,” J. Nondestruct.
Eval., vol. 37, no. 3, pp. 1-10, Sep. 2018.

H. K. Jung and G. Park, “Rapid and non-invasive surface crack detection
for pressed-panel products based on online image processing,” Structural
Health Monitor., vol. 18, nos. 5-6, pp. 1928-1942, Nov. 2019.

K. K. Kieselbach, M. Nothen, and H. Heuer, “Development of a visual
inspection system and the corresponding algorithm for the detection and
subsequent classification of paint defects on car bodies in the automo-
tive industry,” J. Coatings Technol. Res., vol. 16, no. 4, pp. 1033-1042,
Jul. 2019.

N. B. Yahia, T. Belhadj, S. Brag, and A. Zghal, “Automatic detection of
welding defects using radiography with a neural approach,” Proc. Eng.,
vol. 10, pp. 671-679, 2011.

D. Bacioiu, G. Melton, M. Papaelias, and R. Shaw, “Automated defect
classification of aluminium 5083 TIG welding using HDR camera and
neural networks,” J. Manuf. Processes, vol. 45, pp. 603-613, Sep. 2019.
H. Chen, Q. Hu, B. Zhai, H. Chen, and K. Liu, ““A robust weakly supervised
learning of deep conv-nets for surface defect inspection,” Neural Comput.
Appl., vol. 32, no. 15, pp. 11229-11244, Aug. 2020.

M. Kim, M. Lee, M. An, and H. Lee, “Effective automatic defect classifi-
cation process based on CNN with stacking ensemble model for TFT-LCD
panel,” J. Intell. Manuf., vol. 31, no. 5, pp. 1165-1174, Jun. 2020.

H. Kasban, O. Zahran, H. Arafa, M. El-Kordy, S. M. S. Elaraby, and F. E.
Abd El-Samie, “Welding defect detection from radiography images with
a cepstral approach,” NDT E Int., vol. 44, no. 2, pp. 226-231, Mar. 2011.
X. Gibert, V. M. Patel, and R. Chellappa, “Deep multitask learning for
railway track inspection,” IEEE Trans. Intell. Transp. Syst., vol. 18, no. 1,
pp. 153-164, Jan. 2017.

K. He, “Deep residual learning for image recognition,” in Proc. IEEE
Conf. Comput. Vision Pattern Recognit. (CVPR), Jun. 2016, pp. 770-778.

48345



IEEE Access

W. Xu et al.: Study on Improved VGGNet and SK Convolution Identification Model

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Region-based convo-
lutional networks for accurate object detection and segmentation,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 38, no. 1, pp. 142-158, Jan. 2016.

S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards real-
time object detection with region proposal networks,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 39, no. 6, pp. 1137-1149, Jun. 2017.

M. Xiao, B. Yang, S. Wang, Z. Zhang, X. Tang, and L. Kang, “A fea-
ture fusion enhanced multiscale CNN with attention mechanism for
spot-welding surface appearance recognition,” Comput. Ind., vol. 135,
Feb. 2022, Art. no. 103583.

S. Plakias and Y. S. Boutalis, “Fault detection and identification of rolling
element bearings with attentive dense CNN,” Neurocomputing, vol. 405,
pp. 208-217, Sep. 2020.

X. Wei, D. Wei, D. Suo, L. Jia, and Y. Li, ““Multi-target defect identification
for railway track line based on image processing and improved YOLOv3
model,” IEEE Access, vol. 8, pp. 61973-61988, 2020.

W. Jiang, W. Jiang, L. Wu, S. Liu, and M. Liu, “CNN-based two-stage
cell segmentation improves plant cell tracking,” Pattern Recognit. Lett.,
vol. 128, pp. 311-317, Dec. 2019.

J. Yu, Z. Shen, and S. Wang, *“Wafer map defect recognition based on deep
transfer learning-based densely connected convolutional network and deep
forest,” Eng. Appl. Artif. Intell., vol. 105, Oct. 2021, Art. no. 104387.

J. Yu, Z. Shen, and X. Zheng, ““Joint feature and label adversarial network
for wafer map defect recognition,” IEEE Trans. Autom. Sci. Eng., vol. 18,
no. 3, pp. 1341-1353, Jul. 2021.

L. Yj et al., “Real-time defect detection of hot rolling steel bar based
on convolution neural network,” Chin. J. Sci. Instrum., vol. 42, no. 12,
pp. 211-219, 2021.

G.JQ et al., “Lithium battery defect detection method based on improved
YOLOvV4,” Electron. Meas. Technol., vol. 45, no. 15, pp. 144-150, 2022.

D. F. Chen, K. Yan, and J. X. Xiong, “Detection method of workpiece
surface defects based on improved YOLOv4,” J. Comput. Appl., vol. 42,
no. 1, pp. 94-99, 2022.

T. Zhao, “Research on defects detecting method in thermal battery based
on local contrast enhancement algorithm,” Laser J., vol. 43, no. 1,
pp. 24-28, 2022.

X.Li, W. Wang, X. Hu, and J. Yang, “Selective kernel networks,” in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Long Beach,
CA, USA, Jun. 2019, pp. 510-519.

W. Xu, S. Zhang, F. Bai, and T. Zhao, “Research on improved residual
network classification method for defect recognition of thermal battery,”
IEEE Access, vol. 10, pp. 113234-113248, 2022.

WENCHAO XU received the M.LS. degree
from the Hebei University of Technology, China,
in 2009. He is currently an Associate Profes-
sor with the College of Information Engineer-
ing, Tianjin University of Commerce, China.
His research interests include pattern recognition,
intelligent control, and deep learning.

WENBO XU received the MLLS. degree from
the Tianjin University of Technology and Educa-
tion, China, in 2017. He is currently a Lecturer
with the College of Higher Vocational Education,
Tianjin University of Technology and Education.
His research interests include pattern recognition,
intelligent control, and reducer design.

48346

SIXIANG ZHANG received the B.Sc. degree from
Tianjin University, in 1982, the M.Sc. degree from
Zhejiang University, in 1993, and the Ph.D. degree
from Tianjin University, in 1996. He is currently a
Professor and a Ph.D. Supervisor with the Hebei
University of Technology. His main research inter-
ests include the theory and technology of mechan-
ical geometric measurement and computer image
processing technology.

YITAO HAN is currently pursuing the bachelor’s
degree with the Tianjin University of Commerce,
China. His main research interests include pattern
recognition and deep learning.

YIN JIANG is currently pursuing the bachelor’s
degree with the Tianjin University of Commerce,
China. Her main research interests include pattern
recognition and deep learning.

HENGYI ZHAO is currently pursuing the bache-
lor’s degree with the Tianjin University of Com-
merce, China. Her main research interests include
pattern recognition and deep learning.

VOLUME 11, 2023



