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ABSTRACT This paper proposes a novel approach for extracting deep features and classifying diseased
plant leaves. The agriculture industry is negatively impacted by plant diseases causing crop and economic
loss. Accurate and timely diagnosis is crucial for managing and controlling plant diseases, as traditional
methods can be costly and time-consuming. Deep learning-based tools effectively detect plant diseases
depending on the qualitative of extracted features. In this regard, a hybrid model for plant disease classi-
fication based on a Transfer Learning-based model followed by a vision transformer (TLMViT) is proposed.
TLMViT has four stages: 1) data acquisition, where the PlantVillage and wheat datasets are used to train
and evaluate the proposed model, 2) image augmentation to increase the number of training samples and
overcome the overfitting issue, 3) leaf feature extraction by two consecutive phases: initial features extraction
by using pre-trained based model and deep features extraction by using ViT model, and 4) classification
by using MLP classifier. TLMViT is experimented with using five pre-trained-based models followed by
ViT individually. TLMViT performs accurately in plant disease classification, obtaining 98.81% and 99.86%
validation accuracy for VGG19 followed by the ViT model on PlantVillage and wheat datasets respectively.
Moreover, TLMViT is compared with pre-trained-based architecture. The comparison result illustrates
that TLMViT achieved an enhancement of 1.11% and 1.099% in validation accuracy, 2.576% and 2.92%
in validation loss compared with the transfer learning-based model for PlantVillage and wheat datasets
respectively. Thereby proposed model proves the efficiency of using ViT for extracting deep features from
the leaf.

INDEX TERMS Plant disease, image processing, deep learning, transfer learning, vision transformer.

I. INTRODUCTION
Plant diseases have become more prevalent in recent years
due to globalization, trade, and climate change [1], [2]. These
issues have reached pandemic proportions in several nations,
which increased the likelihood of crop damage and, in turn,
created a threat to people’s access to adequate food and
nutrition [3]. Specialists should ensure to safeguard agri-
cultural plants. Parasitic organisms such as bacteria, fungi,
viruses, roundworms (nematodes), and other plants can cause
illnesses. Environmental conditions such as winter frosts or
summer dryness and lack or excess of nutrients in the soil can
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be the potential causes of plant diseases [4]. Phytopathology
is the scientific study of plant disease that focuses on ways to
treat and avoid the conditions responsible for plant illnesses.
To overcome plant illness, plants have to be diagnosed pre-
cisely. There are several methods available for diagnosing.
Local plant clinics and agricultural groups have traditionally
helped in disease detection. Still, the technique could be more
effective as there are more possibilities of human errors, and
it is difficult for humans to access plants across a wide area.
Moreover, using software using machine learning techniques
can improve the efficiency of classifying diseased plants.

Smartphones are being developed using different tools
and technology [6]. Modern plant illness classification
approaches can be adopted using smartphones due to
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their incorporation of high computational techniques,
high-resolution screens, and built-in accessories such as
HD cameras, which will be more effective for plant disease
detection. Plant diseases are effectively diagnosed using
machine learning techniques [4] as accurate diagnostic tests
can be carried out, which benefits in preserving the resource.
Farmers can upload field images recognized by smartphones,
and distinct software can be used for analyzing, diagnosing,
and developing action plans.

Recently, image processing techniques with deep neural
networks have been effectively used diversely and proven to
be highly effective approaches in constantly monitoring the
health of plants and identifying signs of diseases in their early
stages [5]. A neural network considers an image of a diseased
plant as an input and processes the image to produce a crop-
disease pair. Creating a deep network in such a manner that
the network topology, functions (nodes), and edge weights
accurately map the input to output is challenging. While
training deep neural networks, the network parameters are
adjusted in such a manner that the mapping is enhanced
better over the training period. This complex computational
process has recently seen several conceptual and practical
advancements that have dramatically increased its perfor-
mance [7], [8]. One of these approaches is Vision Trans-
former, which takes the whole image and extracts its features
by splitting the image intomulti patches, and from each patch,
the transformer encoder will extract the features. Extracting
the features from the whole image may take much more
time and extract unnecessary features, e.g., a background of
the leaf. Above all, this paper presents a novel approach to
classify plant disease using pre-trained deep learning model
followed by ViT. The pre-trained model extracts the initial
features from the base convolutional networks that are already
fine-tuned and reduces the dimensionality of the image mak-
ing the next stage less complex. Then the initialled features
are passed as input to ViT to extract the most significant fea-
tures (deep features). A simple MLP is used to classify these
deep features towhich classes belong. Themain contributions
of this paper are pointed out as follows:

1) Using a pre-trained model to reduce the dimensionality
of the image, making the next stage less complex.

2) Extract the deep feature of the leaf using a combination
of the pre-trained model and ViT making the classifier
more accurate.

3) Experiment with five different combinations of transfer
learning-based models (such as ResNet50, AlexNet,
Inception V3, VGG16, and VGG19) with ViT.

4) Comparisons between the TLMViT and five other
transfer learning-based models are made.

The rest of this paper is structured as follows. Section II
of the study offers a brief review of the relevant research.
Section IV introduces the background of the methods used.
Section V outlines the workflow and methodology used, fol-
lowed by the experimental parameters in Section VI. Exper-
iment outcomes with extensive discussion are presented in

Section VII. The summary of this research is addressed in
section VIII.

II. RELATED WORK
Plant disease diagnostics using machine learning and deep
learning have been a primary focus of recent research. The
review papers [1], [2], [9], [10] provided a summary of dif-
ferent novel approaches, developed existing algorithms used
to classify plant diseases, and sought to determine which clas-
sification method would be the most useful for this challenge.
Different datasets have been utilized to classify various plant
leaves. References [11], [12], and [13] proposed a model
to classify a tomato leaves disease. At the same time, Dey
et al. [14] concentrated on betel vines. References [15], [16],
[17], and [18] utilized Cassava disease. References [19], [20],
[21], [22], [23] focused on classifying potato leaf disease.
References [24] and [25] performed the proposed work on
a dataset of Guava leaves. Singh and Misra [26] focused
on some of the most common leaves of banana, jackfruit,
lemon, mango, potatoes, tomato, and sapota. Sharif et al. [27]
experimented with the proposed work on the oranges infested
with scale, Plant Village Dataset, Citrus Diseases Image
Gallery Dataset, and their collected citrus dataset. Hassan and
Maji [28] utilized the plant village dataset (which includes
maize, potato, and tomato crops), the rice dataset, and the
cassava dataset were all used in their experimental work for
the study. In contrast, The CropDP-181 dataset was devel-
oped by Kong et al. [29] by combining three existing datasets
totalling 123,987 images (from the AIChalle, Inaturalist, and
IP102) that together contain 47 diseases and 134 pest cate-
gories. In [30], the dataset was collected from various sources,
including (Apple plants, Wheat, Cotton, Maize, and Rice).

Machine learning models are developed to classify
plant leaf disease and achieve good performance. In this
regard, the following is a discussion of some methods.
Mokhtar et al. [11] proposed an approach that identifies
a diseased leaf without knowing the class of the dis-
ease. An essential feature of the tomato leaf is its sur-
face texture, so GLCM is used where Energy, Contrast,
Sum of Squares, Correlation, Entropy, Sum Entropy, Cluster
Shade, Cluster Prominence, and Homogeneity are extracted.
SVM is used as a classifier with different kernel functions.
Bhargava et al. [31] applied different machine learning
approaches, such as LR and SVM to classify varieties of
leaves of vegetables and fruits. The dataset is segmented
using grab-cut and fuzzy c-means clustering. Then the
features were extracted by discrete wavelet transform, the
histogram of gradients, Laws’ texture energy, textural, statis-
tical, and colorgeometrical with 114 features. PCA is used
for feature selection to reduce the dimensionality of up to
30 features. The classification results show the significance of
feature selection and the increased classification recognition
rate. Sharif et al. [27] detected the lesion on leaves using
an optimized weighted segmentation method on enhanced
images obtained in preprocessing stage. Then the features
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are extracted and fused using color (HSV, LAB, LUV,
and HSI), geometric, and texture (18 GLCM features). The
best features are selected using principal component analysis
(PCA) estimation. The multi-class support vector machine
(M-SVM) is used to classify citrus diseases. They conclude
that enhancing the contrast of the lesion part will improve
segmentation accuracy. Bhargava and Bansal [32] focused
on segmenting the lesion from the mono-colored apples
using two algorithms, e.g., ‘‘Otsu’’ strategy and k- means
clustering. Then a combination of color coherence, Gabor
wavelet, 14 geometric features, and 13 statistical & textural
features that are extracted from the segmented image are
used as features. The proposed model is trained using linear
SVM. From the result, they conclude that the proposed model
achieves a good performance compared with other kernels of
the SVM classifier. In [21], the K-means algorithm extracts
the infected regions from the leaf and then extracts the lesion
features using GLCM. They considered feature extraction
as a type of dimensionality reduction process. Pahurkar and
Deshmukh [30] propose a model that optimizes variance
by fusing GLCM, edge map, color map, and convolutional
feature sets into an ensemble of features and then using
particle swarm optimization (PSO) to choose the optimal
features. The parametric variant classification techniques are
also tuned with a Genetic algorithm (GA). Tabbakh and
Barpanda [33] proposed an approach of a machine-learning
model where wavelet transforms, GLCM methods, and sta-
tistical features are used to extract different combinations
of leaf features. Then the extracted features are utilized for
training and comparing six machine-learning models, e.g.,
SVM, AdaBoost, etc. They modified the GLCM approach to
focus on extracting the features of the leaf part only. SMOTE
method is used to handle the imbalanced dataset. The highest
result is achieved by using LGBM with 94.39% accuracy.

Deep learning has proven to be an effective tool for
image classification tasks, outperforming traditional methods
such as support vector machines and random forests. Deep
learning algorithms require large datasets to train models
effectively. In [34], cropping the lesion portion from the
original image and making them a new sample is used to
overcome the lack of dataset size.Whereas Geetharamani and
Pandian [35] augmented the dataset using various functions
such as image flipping, scaling, rotation, principal compo-
nent analysis (PCA) color augmentation, noise injection, and
gamma correction. From the result, the authors observed that
the data augmentation methods could improve the model
performance. References [14], [26], and [36] used an image
segmentation algorithm to identify damaged leaf areas to
analyze better and have little processing effort to get optimum
results. Dey et al. [14] found that using HVS color space
on their dataset, the hue component shows clearly where
a leaf has rotted. In addition, the hue component masks
the background and the rest of the leaf region. Singh and
Misra [26] segmented the lesion by masking the mostly green
pixels. Chaturvedi et al. [36] proposed a modified firefly

algorithm based on multilevel thresholding with fuzzy, Tsal-
lis, and Kapur’s entropy for various fruit leaf segmentation.
Khalifa et al. [37] augmented the dataset (from 1,722 to
9,822 images of potato leaves) using Reflection, Zoom, and
Gaussian noise functions. They proposed a simple CNNusing
two convolutional layers for feature extraction and two fully
connected layers for classification achieving 98% accuracy
as overall mean testing. Whereas, Rozaqi and Sunyoto [20]
used four convolutions and one fully connected layer on
the same dataset of potato leaf. They achieved 97% and
92% accuracy on training and validation data, respectively.
Mittal and Gupta [38] focused on studies that show how
creating a complete and unusual image of a diseased leaf and
increasing the dataset may help the classification network
perform better. A binary generator network is proposed to
address the issue of how a generative adversarial network
(GAN) generates a diseased leaf on a specific shape. Also,
using edge-smoothing and Image pyramid methods to over-
come the challenge of synthesising a complete lesion leaf
image comprised of various synthetic edge pixels and net-
work out pixels. Khamparia et al. [19] benefited the properties
of the encoding part of the autoencoders model to extract
useful features. They proposed a convolutional encoder net-
work that only combines CNN with the encoding part. More-
over, 97.50% accuracy was achieved after 100 iterations.
Liang et al. [39] presented a network-based estimate method
for disease identification using ResNet50 and residual where
Shuffle-Net-network v2’s architecture is used to reduce com-
putational complexity. Johnson et al. [22] developed an auto-
matic method for identifying blight disease patches on potato
leaves in field circumstances utilizing theMaskRegion-based
convolutional neural network (Mask R-CNN) architecture
and a residual network as the backbone network. The Mask
R-CNN model accurately distinguished between the infected
area on the potato leaf and the similar-looking background
soil patches that often affect binary classification results. The
proposed work is experimented after converting the original
dataset from RGB to YCrCb, XYZ, LAB, HSV, and HSL
color spaces, giving a separate model for each color space.
Hassan and Maji [28] have suggested a new deep-learning
model using the inception layer and residual connection. The
number of parameters in the proposed work is reduced by a
margin of 70% using depthwise separable convolution, which
directly impacts the computing cost.

Recent works [18], [40], [41], [42] applied the ViT concept
in agricultural applications. Reedha et al. [40] highlighted
how efficiently the convolutional-free ViT model, using the
self-attention mechanism, interprets an image into a sequence
of patches for processing by a standard transformer encode.
They obtained a high performance even though the dataset
is small. They justified that due to data augmentation, trans-
fer learning, and a low number of classes. Wu et al. [41]
passed the dataset into two ViT models parallelly, where a
small patch size is used in one model, and a large patch
size is used for another model. Fusion models combined
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these two models to be fed into the MLP header. Conclud-
ing that, by combining different scales of the sequence of
self-attention, the model can extract more information from
images from various granularities. Thai et al. [18] applied ViT
based on achieving a 90% F1-score. They used quantization
to make the model three times smaller before deploying it
on a Raspberry Pi 4 Model B. Yasamin et al. [42] combined a
classical convolutional neural network (CNN) with ViT. They
concluded that ViT gives good accuracy but decelerates the
prediction, and this approach can recompense for the speed.

Based on what is discussed in the related work, it can be
noted that CNN models represent the process on images as
template matching, which extracts the neighbouring features
and does not consider the relation between overall features.
In contrast, ViT can extract and relate the features by giving
the position to patches of pixels and interactions between
them.ViT drawback is the need for a vast dataset and consum-
ing much time due to its correlation between all pixels with
keeping the image scale without reduction. Moreover, pre-
trained models could be utilized significantly to extract the
features from the leaf and simultaneously reduce the dimen-
sionality of the image, which will be considered as initial
features to be passed for the next stage to extract the deep
features from them. Thus, combining both approaches could
extract comprehensive and significant features to obtain an
accurate model.

III. MOTIVATION AND OBJECTIVES
Most of the DL-based research work in the plant disease
classification field, which uses the convolution process, may
be seen as template matching, whereby the same filtering
template is applied to several parts of the same image. How-
ever, the convolution layer represents only the connections
between neighbouring pixels since convolution is a local
action and is not able to encode the orientation and position
of infected parts in the leaf. In case the new leaf has different
positions of infection from a trained set, then the classifier
would have a hard time classifying the diseased leaf.

In contrast, a transformer layer may overcome these issues
by representing the interactions between all pixels, so the
transformer is considered a global operation. In a transformer,
the attention unit is an adaptive filter, and the filter weights are
set according to howwell two pixels compose. Themodelling
capabilities of this sort of computer module are superior.
Since Vision Transformer is applied on the whole image to
initialize the patches and process the attention patches, the
time-consuming of using Vision Transformer depends on the
size of the image and the number of patches. Hence, it is better
to reduce the dimension of an image, whereas scaling down
the dimension in an ordinary way will lead to the loss of some
significant features of the plant leaf in the image. The transfer
learning extracts the features and reduces the dimension of
the image before the classification part of its model. In light
of this, the aims listed below constitute the focus of the study:

1) Different transfer learning models are used to extract
initial features and reduce the dimensionality of plant

disease images instead of applying the Vit model on
raw images with entire dimensions, which reduces the
time consumption and trainable parameter numbers.

2) ViT model is used to extract the deep features of leaf
images, i.e., interactions between all pixels that are
extracted from the previous stage (Initial Features).

3) Different combinations of Transfer learning-based
models with ViT have been experimented.

4) Different five transfer learning-based models are com-
pared with the proposed work TLMViT.

IV. PRELIMINARIES
A. TRANSFER LEARNING
Transfer learning models or pre-trained models such as
ResNet50, AlexNet, Inception V3, VGG16, and VGG19 are
very active and useful in overcoming the flaws in deep
learning [43]. Training a deep learning model with millions
of parameters needs a lot of training samples that are only
sometimes applicable to be collected and too much training
time [44]. The transfer learning technique is utilized to trans-
fer the knowledge from a pre-trained model to another model,
which should be trained for a classification task. Hence, the
training time is decreased because the model is not trained
from scratch.Moreover, it is utilized to train the deep learning
model on a small-size dataset and overcome the overfitting
issue [45], [46]. Fine-tunning is the most popular architecture
in transfer learning, where a large dataset is used to pre-train
the model and then, the parameters of the pre-trained model
are frozen and transferred to the target model for fine-tuning
with the dense layers of the target model. Finally, the dense
layers which have reasonable parameters should be trained on
the dataset that belongs to the desired classification task [47].
Figure 1 shows the process of using the transfer learning
model for training a new model to classify a new dataset.

FIGURE 1. An illustration of using a Pre-Trained based model to classify a
new dataset.

B. VISION TRANSFORMER (ViT)
The transformer was initially used to visualize backbone
networks through the local relational network (LR-Net) [48]
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and SASA [49]. Bothmodels improved accuracy over ResNet
while utilizing the same theoretical computing resource by
restricting self-attention computation to a local sliding win-
dow. LR-Net has the same theoretical and computational
complexity as ResNet, but it is much slower in reality. ViT
model was proposed by Dosovitskiy et al. [50] in 2021 as
an efficient image classifier. He suggested using the origi-
nal transformer architecture in computer vision applications
since it was previously applied only in natural language pro-
cessing applications. In image classification, ViT performs
better than standard CNN architectures when trained on a
huge amount of image data. The input image is divided into
patches, each one is flattened and merged across the channels
of the image to produce a vector representation of each patch.
The patch embeddings are calculated via linear projecting
the vectors using a dense layer. The positional embeddings
are generated, which help the ViT model to analyze the
patches orderly and have a full view of the input image.
Then, each patch is added to the corresponding positional
embedding to obtain the input of the transformer’s encoder.
The encoder consists of one block executed several times such
that the architecture of the block contains a multi-head self-
attention followed by a dense layer. Finally, MLP classifies
the input image based on the output of the transformer’s
encoder.

V. METHODOLOGY
This paper proposes a hybrid model for plant disease classi-
fication based on transfer learning models and vision trans-
formers (TLMViT), as shown in Figure 2. TLMViT includes
four stages:

1) Data acquisition: The PlantVillage and Wheat Rust
datasets are used to train and validate the proposed
model. Different three crops are considered in the
PlantVillage dataset (pepper bell, potato, and tomato
leaf).

2) Image augmentation: It artificially increases a dataset’s
size by applying random transformations to existing
images. This allows the model to generalize better and
reduce overfitting, as it has seen different variations of
the same image.

3) Feature extraction: It is a process of identifying and
extracting important information from raw data, like
edges, corners, and textures in image data, which
can be used as input for a classifier model. More-
over, two phases are consequently used to extract the
features:
a) First phase: a Pre-Trained based model is used to

extract the initial features of the leaf, then pass
them to the second stage.

b) Second phase: ViT is utilized to extract the deep
features from the initial features.

4) Classification: simple MLP classifier is used to be
trained and evaluated.

Each stage is discussed in detail as follows:

A. DATA ACQUISITION AND IMAGE AUGMENTATION
In this work, PlantVillage andWheat Rust datasets are used to
evaluate the proposed model for extracting the deep features
of leaves.

1) PlantVillage
The PlantVillage dataset is a collection of images of healthy
and diseased plants created by the PlantVillage non-profit
project. The dataset contains over 54,000 images of over
38 different crop species, focusing on cassava, tomato, pep-
per, and potato. Each image is labelled with the species of
plant and the disease that is present if any. The dataset is
freely available for computer vision and deep learning tasks
such as Image classification, Object detection, and seman-
tic segmentation. In this research, three different crops of
the PlantVillage dataset [51] from Kaggle are utilized and
downloaded for training and evaluating the proposed model.
It comprises three main categories of plants: pepper bell,
potato, and tomato leaves. It includes 20,638 images of dis-
eased and healthy leaves from these three crops. Table 1
illustrates the differentiation of two bell pepper leaves, three
varieties of potato leaves, and ten types of tomato leaves.
Figure 3 shows samples of all 15 types of leaves included
in the dataset.

From Table 1, it can be noted that some classes have less
number of images compared to other classes. Moreover, the
limitation of images while training the model leads to over-
fitting issues. In order to restrain the influence of imbalanced
data and overfitting issues, data augmentation is applied
to increase the samples [52]. The data augmentation, such
as scaling, shearing, rotating, horizontal flip, zooming, and
shifting [53], [54] are applied, and its parameters are noted in
Table 5. From the initial set of 16511 training images, the data
augmentation generated 33257 augmented training images.

2) WHEAT RUST
Wheat rust disease is a fungal disease that affects wheat
plants, causing significant damage to crops and resulting in
significant economic losses for farmers. The disease is caused
by several species of fungi belonging to the Puccinia genus.
There are three main types of wheat rust: stem rust, leaf rust,
and stripe rust [55]. Stem rust is themost destructive type, as it
attacks the stems of the wheat plant, weakening the plant and
reducing yield. Leaf rust affects the leaves of the plant and can
reduce photosynthesis, while stripe rust affects the leaves and
stems of the plant.Wheat rust is spread by wind-borne spores,
which can travel long distances, making it difficult to control.
Preventing the spread of wheat rust is crucial to maintaining
healthy crops and ensuring food security. Early detection
and prompt treatment are essential for effectively managing
the disease. In this work Wheat Rust dataset [42] is utilized
for training and evaluating the proposed model. The dataset
contains three classes (1128 Brown rust, 1348 Yellow rust,
and 1203 Healthy wheat), as illustrated in Table 2. Figure 4
shows samples of the Wheat Rust dataset.
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TABLE 1. Details of the leaves images used in the PlantVillage dataset.

FIGURE 2. The architecture of the proposed model TLMViT.

TABLE 2. Details of the leaves images used in the Wheat Rust dataset.

B. FEATURES EXTRACTION
The proposed model uses two consecutive phases for desir-
able feature extraction. In the first phase, the pre-trained
model is used for the initial extraction of leaf features and for
reducing the dimensionality of images, leading to decreased
time while applying the second phase. In the second phase,
the ViTmodel is applied on initial features for deep extraction
of features.

1) 1ST PHASE (INITIAL FEATURES EXTRACTION)
In this phase, a pre-trained model is utilized to extract
initial features (IF) from the input images, where dif-
ferent pre-trained models, namely (AlexNet, Res-Net 50,
VGG-16, VGG-19, and Inception-V3) are experimented on
the proposed work to observe which model will be superior.
The weights of all pre-trained models are initialized by using
the ImageNet dataset and then used to extract the features
from the PlantVillage and Wheat Rust datasets as described
below:

a: ResNet 50
Residual Network is referred to as ResNet. Kaiming He,
Xiangyu Zhang, Shaoqing Ren, and Jian Sun initially
described this novel neural network in [56]. There are several
distinct implementations of ResNet, all of which use the same

basic structure but have various layers. Resnet50 is shorthand
for the version of Resnet that supports 50 neural network
layers. The dimension of the default input of ResNet50 is
224*224*3. Five different stages based on convolution and
Residual Networks are applied, and after each stage, Max-
Pooling Layers are applied, which leads to reducing the
dimension of the image by 2. The output of the final stage
of the default input gives a 7*7*2048 size. Whereas the
dimension of the PlantVillage dataset is 256*256*3, the final
stage of ResNet50 gives 8*8*2048. These are used as the
initial feature and pass it as input to deep feature extraction
using ViT.

b: AlexNet
Alex Krizhevsky and his colleagues [53] published their find-
ings in a research article titled Imagenet Classification with
Deep Convolution Neural Network, in which they suggested
the model. There are eight layers in the Alexnet model,
involving five layers based on convolution with a combina-
tion of max pooling, followed by three fully connected layers.
Relu activation is used for each of these layers, excluding the
output layer. In this work, only the first five layers are used
to extract the initial features from the PlantVillage dataset,
and the last three layers are eliminated. The dimension of
input images is 256*256*3, and the output of the last layers
is 8*8*256, as mentioned in Table 3.

c: VGG16 AND VGG19
VGG contains a combination of convolutional and three fully
connected layers. The name of the VGG model depends on
how many layers are used in the model [57], e.g., 13 con-
volutional and three fully connected layers produce VGG16,
whereas 16 convolutional and three fully connected layers
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FIGURE 3. Image Samples of PlantVillage Dataset: (a) Tomato Spider
mites Two spotted spider mite, (b) Tomato Yellow Leaf Curl Virus,
(c) Tomato Target Spot, (d) Tomato Sep-toria leaf spot, (e) Tomato
Bacterial spot, (f) Potato Late blight, (g) Tomato Late blight, (h) Tomato
Leaf Mold, (i) Tomato Early blight, (j) Tomato healthy, (k) Tomato mosaic
virus, (l) Potato healthy, (m) Potato Early blight, (n) Pepper bell healthy,
and (o) Pepper bell Bacterial spot.

FIGURE 4. Image Samples of Wheat Rust Dataset: (a) Brown Rust,
(b) Yellow Rust, and (c) Healthy wheat.

produce VGG19 [58]. A simple 3*3 convolution kernel is
utilized across all layers to deepen the network and reduce
the number of parameters. A 224*244 RGB image is used as
VGG’s default input. Moreover, the last three fully connected
layers of both VGG16 and VGG19 models are not used in
our work. Table 4 shows the default input of both models
(VGG16 and VGG19), which is 224*224*3 and generates
7*7*512 as an output of the last layer, whereas the input size
of the PlantVillage dataset is 256*256*3, so the last layer
gives 8*8*512 an output size as shown in Table 4. This output
is considered the initial features of themodels to be forwarded
to the next phase to extract the deep features.

d: INCEPTION V3
In the image classification competition at the 2014 ILSVRC,
Google presented a network named GoogLeNet that could
achieve the performance of human experts on the Ima-
geNet database [59]. An improved version of GoogLeNet got
inspired to generate the Inception-v3 model. It uses various
sizes of receptive kernels. By utilizing zero padding, the
convolution operation’s output size is maintained. Finally,
filter concatenation produces the feature maps that will be

TABLE 3. Details of the feature map size for default and our input size of
the AlexNet model.

TABLE 4. Details of the feature map size for default and our input size of
the VGG16 and VGG19 models.

used for the classification part. Feng et al. [60] represent the
structure of the Inception V3 model in detail, the default size
of an input image in the Inception V3 model is 299*299*3,
and the final output size is 8*8*2,048.

In contrast, the image size in the PlantVillage dataset is
256*256*3, which is less than the default, leading to less
output size of the feature map. Moreover, the output size
of the features map for all previous pre-trained models that
were used in our experiments gives 8*8*c (c is 2048, 256,
512, 512 for ResNet 50, AlexNet, VGG16, and VGG19 mod-
els, respectively) when using PlantVillage dataset. To main-
tain consistency throughout all experiments, the images of
PlantVillage dataset are rescaled to the size of the default
input of inception V3, which is 299*299*3, and fed as input
to extract the initial features in size of 8*8*2,048 to be used
in the second stage of the proposed model.

In contrast, the image dimensions of the Wheat Rust
dataset are in different scales, so it may be difficult to compare
and analyze the data accurately. To address this issue, rescale
function is used to ensure that all inputs (image dimensions)
are of the same shape. The image dimensions of the Wheat
Rust dataset are rescaled as the same image dimensions of
PlantVillage to have the same output dimensions in the 1st
phase of feature extraction with the size of 8*8*c.

2) 2ND PHASE (DEEP FEATURES EXTRACTION)
In this phase, the Vit model is applied on the initial features
that are extracted from the previous phase to extract deep
features of leaves images, where ViT is described as follows:
As mentioned in the first phase, the features are extracted
by using transfer learning model, such that the extracted
features IF are represented by a 2D image I ∈ RL∗W∗C

dimensions, where L is the length, W is the width of image
and C is the number channels. The final dimensions of
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the initial features that are extracted by pre-trained model
e.g, AlexNet, VGG-16, VGG-19, Res-Net, and Inception-V3
are R8∗8∗256,R8∗8∗512,R8∗8∗512,R8∗8∗2048,R6∗6∗2048 respec-
tively. Then these features are fed as input to ViT model to be
processed according to the steps that are shown in Figure 2.
The first step is image partitioning, such that the extracted

features are split into non-overlapping patches. The initial
feature dimensions from the previous phase are 8∗8∗c. Since
the dimension is not too big (8 ∗ 8), and splitting it into lots
of patches will give less dimension with less information on
features, so the number of patches is chosen by taking the half
size of the IF with N (P) = 4. Each patch P has size 4 ∗ 4 ∗C
where C is the number of IF’s channels and (4 ∗ 4) are the
dimensions of P. The process of image partitioning is shown
in equation [1].

IF = P1||P2||P3||P4; P ∈ R4∗4∗C and IF ∈ R8∗8∗C (1)

where C = 256, 512, 512, 2048, and2048 for AlexNet,
VGG-16, VGG-19, Res-Net, and inception respectively.
Then, every patch is flattened to a 1D vector such that, the
size of the vector is S = 4 ∗ 4 ∗ C . Hence, four flattened
patches (vectors) are obtained with size S. Next, the patch
embeddings PEi are calculated by linear projecting on the
four vectors using dense layer that has 64 units as shown in
equation [2].

PEi = Project(Pi) = Dense64 (Pi) ;

Pi ∈ R4.4.C∗1, PEi ∈ R64, i = 1, · · · 4 (2)

where i is the index of patch and the dimension of PEi is 64.
The second step: in this step, the positional information

of patches Zi is retained by adding the patch embeddings PEi
to the position embeddings PEi. The aim of this step is to
process the patches as per their positions in the images (IF),
and the process of getting positional information is shown in
equation [3].

positional information(Zi) = PEi + Pos_Ei; i = 1, · · · 4

(3)

where PEi and Pos_Ei have the same dimension (64*1),
and i is the index of patch. Position embeddings Pos_Ei are
generated by mapping integer numbers which represent the
positions of patches into vectors with size 64. Finally, the
class token Z0 is embedded and appended to the positional
information Zi; i=1 . . . ,4 such as the dim ( Z0) = dim ( Zi);
i = 1 . . . , 4 as shown in equation [4].

Z = [Z0||Z1||Z2||Z3||Z4] (4)

The third step is transformer encoding which consists of a
one block that is executedN times (N = 8) to extract the deep
features. This block has two main components i.e., multi-
head self-attention and MLP beside that, normalization oper-
ations are used to improve the performance of transformer
encoder. The process of transformer encoder is shown in

equations [5 - 6] and Figure 5.

Xi (j) = FH=4 (Norm (Zi)) + Zi;

i = 0, · · · 4 and j = 1, · · · 8 (5)

X´
i(j) = MLP (Norm (Xi (j))) + Xi (j) ;

i = 0, · · · 4 and j = 1, · · · 8 (6)

where FH=4 is the function of multi-head self-attention with
heads H = 4, MLP is multi-layer perceptron neural network
that uses two hidden layers with 128 neurons in the first layer
and 64 neurons in the second layer. Norm is the normalization
operation of vector. X´

i(j) is the output of transformer’s block
at the j-th iteration. At j=8 (the last iteration of encoder
block), the deep features are obtained.

FIGURE 5. Structure of the transformer encoder.

C. CLASSIFICATION
The classifier that has been used in the proposed model is
MLP head. Once the transformer encoder generates the deep
features in the previous stage, they are fed to the classifier,
which determines to which class the image belongs. The deep
feature vectors X´

i(8) are fed to the MLP classifier as input
values, where the input layer has 256 neurons equal to the
dimension of the deep feature vector X´

i(8). Two hidden layers
with dimensions 1024 and 512 for the first and second layers
respectively are used. Lastly, 15 neurons are used as the MLP
classifier’s output, which is the dataset’s number of classes.
The process of classification is shown in equation [7].

P (j) = MLPhead
(
X´
i(8)

)
; j = 1, · · · 15 (7)

VI. EXPERIMENTAL ANALYSIS
All the experiments in this work are carried out on Win-
dows 10 PCs version 21H2, with 64-bit operating system
and a processor Intel(R) Xeon(R) 4.01 GHz with 64 GB
RAM. CUDA with version 11.2 is used on NVIDIA Geforce
GTX 1080 Ti. Python 3.9.12 was used as the programming
language and all the experiments were performed on the
Spyder IDE including various libraries e.g., Keras, and Ten-
sorFlow. Table 5 illustrates the parameters of all models that
were experimented in this research. In the data augmentation
function, the parameters are randomly initialized in ranges.
Dataset Splitted (80% for training and 20% for both eval-
uating and testing the model). Since the dataset size is not
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small, 20% would be sufficient for testing the model (almost
4100 images for testing the model). The Epoch number is
chosen (25) to compare the results of all experiments at a
specific epoch number to give a fair comparison. Since the
dataset is under multi-class classification problems, categori-
cal cross-entropy is used as a loss function that calculates the
predicted probability distribution and the true probability dis-
tribution. Adam is used as an optimizer since it requires fewer
parameters for tuning, which leads to faster computation time.
The dimension of the initial feature (features dimension at the
last stage of the pre-trained model) is 8*8*C, as explained in
section V-B1. So, the patch size of the ViT model is chosen
four as half of the initial feature dimension. The rest of the
parameters are chosen experimentally.

TABLE 5. Experimental parameters.

VII. RESULTS AND DISCUSSION
This section discusses the results of the proposed model and
compares its performance with the pre-trained-based models’
performance.

A. RESULTS OF OUR PROPOSED MODEL
The proposed model based on a pre-trained model followed
by ViT is evaluated in terms of accuracy, loss, precision, F1-
score, and recall. Five different pre-trained-based models are
experimented to measure the performance of the proposed
model. Firstly, the weights of the CNN model are initialized
by the frozen weights of a transfer learning-based model that
was trained on the ImageNet dataset. Hence, no training is
required in the initial features extraction phase, this manner
overcomes the issue of consuming a lot of processing time for
training a complex model from scratch on the PlantVillage
dataset, which contains more than 20 thousand images. The
aim of using pre-trained-based models in our approach is
to (1) Extract the initial features from the input image and
reduce the number of trainable parameters. (2) Reduce the
dimension of the input image to accelerate the performance
of ViT in the next phase and drive Vit to focus on the most
significant features. Then, ViT model is trained to extract
the deep features and classify the plant diseases based on
the training set of the PlantVillage dataset. After that, the
overall model is validated based on the testing set of the

PlantVillage dataset. Figure 6 (a, c, e, g, and i) show the
classification accuracy of training and validation set for five
experiments, i.e., ResNet50, AlexNet, VGG16, VGG19, and
Inception V3, each of which is followed by ViT-based model
respectively in 25 epochs. The outcome of training accuracy
is improved after each epoch till it reaches 90.405%, 92.5%,
99.60%, 98.8%, and 99.2% for ResNet50, AlexNet, VGG16,
VGG19, and Inception V3, each of which is followed by
ViT-based model respectively. The outcome of validation
accuracy is also improved after each epoch till it reaches
89.2%, 90.49%, 98.43%, 98.81%, and 98.48% for ResNet50,
AlexNet, VGG16, VGG19, and Inception V3, each of which
is followed by ViT-based model respectively as shown in
Table 6. Figure 6(b, d, f, h, and j) show the training and
validation loss outcome in 25 epochs for five experiments,
i.e., ResNet50, AlexNet, VGG16, VGG19, and Inception V3,
each of which is followed by ViT-based model respectively.
The outcome of training loss is decreased after each epoch
till it reaches 0.3448, 0.2288, 0.0814, 0.1, and 0.0900 for
ResNet50, AlexNet, VGG16, VGG19, and Inception V3,
each of which is followed by ViT-based model respectively.
The outcome of validation loss is decreased after each epoch
till it reaches 0.3735, 0.2974, 0.1300, 0.0947, and 0.1 for
ResNet50, AlexNet, VGG16, VGG19, and Inception V3,
each of which is followed by ViT-based model respectively
as shown in Table 6. Moreover, according to the results
in the five experiments, (VGG-16 followed by ViT) model
outperforms in the training phase where the training accuracy
is equal to (99.60%), and training loss is equal to (0.0814).
Whereas, (VGG-19 followed by ViT) model outperforms in
the validation phase where the validation accuracy is equal to
(98.81%), and validation loss is equal to (0.0947).

Furthermore, Figure 8 shows the confusion matrices of the
proposed model that experimented using ResNet50, AlexNet,
VGG16, VGG19, and Inception V3 each of which is followed
by ViT-based model respectively. Finally, some statistical
manners are used to analyze confusion matrices such as (pre-
cision, recall, and F1-score) for ResNet50, AlexNet, VGG16,
VGG19, and Inception V3 each of which is followed by
ViT-based models respectively as shown in Table 8.

B. RESULTS OF TRANSFER LEARNING-BASED MODELS
In this work, five different pre-Trained based models are
also experimented to classify the plant diseases on the
PlantVillage dataset, which means the extracted features
that used in its model are the initial features only as men-
tioned previously. The performance of five different trans-
fer learning-based models i.e, ResNet50, AlexNet, VGG16,
VGG19, and Inception V3 are shown in Table 6. The clas-
sification accuracy of the training set is increased after
each epoch till it reaches 80.43%, 83.9%, 90.44%, 88.70%,
and 92.78% for ResNet50, AlexNet, VGG16, VGG19, and
Inception V3 respectively, and the classification accuracy
of validation set is also improved after each epoch till it
reaches to 79.84%, 81.91%, 89.31%, 86.55%, and 90.77%
for ResNet50, AlexNet, VGG16, VGG19, and Inception V3
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FIGURE 6. The performance of TLMViT models. (a, c, e, g, and i) Accuracy and (b, d, f, h, and j) Loss of ResNet50_ViT, AlexNet_ViT, VGG16_ViT, VGG19_ViT,
and Inception V3_ViT models respectively.

TABLE 6. Performance comparison for training and validation set on PlantVillage dataset in terms of accuracy and loss between transfer learning-based
models and TLMViT.

TABLE 7. Performance comparison for training and validation set on Wheat Rust dataset in terms of accuracy and loss between transfer learning-based
models and TLMViT.
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FIGURE 7. The performance of Transfer Learning-based models. (a, c, e, g, and i) Accuracy and (b, d, f, h, and j) loss of ResNet50, AlexNet, VGG16, VGG19,
and Inception V3 models respectively.

TABLE 8. Results Comparison in terms of F1-score, precision, and recall
between transfer learning-based models and TLMViT using PlantVillage
dataset.

respectively. Figure 7( a, c, e, g, and i) show the classifi-
cation accuracy of training and validation set in 25 epochs
for ResNet50, AlexNet, Inception V3, VGG16, and VGG19
respectively. Whereas Figure 7( b, d, f, h, and j) show clas-
sification loss of training and validation set in 25 epochs
for ResNet50, AlexNet, Inception V3, VGG16, and VGG19
based models respectively. The value of training loss is
decreased after each epoch till reaches 0.5492, 0.47, 0.2605,
0.3277, and 0.2064 for ResNet50, AlexNet, VGG16, VGG19,

TABLE 9. Results Comparison in terms of F1-score, precision, and recall
between transfer learning-based models and TLMViT using Wheat Rust
dataset.

and Inception V3 respectively. The value of validation loss
is decreased after each epoch till reaches 0.6, 0.55, 0.3188,
0.3792, and 0.2967 for ResNet50, AlexNet, VGG16, VGG19,
and Inception V3 respectively as shown in Table 6. Moreover,
the values of precision, F1-score, and recall for ResNet50,
AlexNet, Inception V3, VGG16, and VGG19 are shown in
Table 8. Moreover, a different comparison is done for the
pre-trained based models with each other, on the PlantVillage
dataset. According to the results, Inception V3 achieves the
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FIGURE 8. The confusion matrix of the proposed model. (a) ResNet50 with ViT, (b) AlexNet with ViT, (c) VGG16 with ViT,
(d) VGG19 with ViT, (e) Inception V3 with ViT.
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TABLE 10. A comparison between the proposed model vs. other works.

best performance among all, obtaining the highest training
accuracy equal to 92.78%, and the lowest training loss equal
to 0.2064 values, as well as the highest validation accuracy
equal to 98.48% and lowest validation loss equal to 0.1.

Furthermore, our proposed model is compared with the
pre-trained based models. According to the results, the per-
formance of the proposed model outperforms the samemodel
without using ViT, due to extracting the deep features from
the initial features by ViT. The initial features are extracted
from the previous phase by the Transfer Learning-based
model. In other words, ViT in the proposed model’s topology
is considered the second level of extracting features of leaf
images. By analyzing the comparison above, the proposed
model enhances performance compared with the Transfer
learning-based model in terms of accuracy and loss for plant
disease classification. Where enhancements percentages are
(1.11%, 1.10%, 1.08%, 1.10%, and 1.14% validation accu-
racy) and (1.60%, 1.89%, 2.9%, 2.45%, and 4.00% valida-
tion loss) for ResNet50, AlexNet, Inception V3, VGG16,
and VGG19 respectively. On average, the TLMViT model
has 1.106% higher validation accuracy and 2.568% lower
validation loss than pre-trained-based models.

Table 11 compares the epochs number and execution time
of a model taken to reach a specific accuracy for both the
pre-trained-based models and the proposed model on the
PlantVillage dataset. The specific accuracy is chosen as per
the highest accuracy of the pre-trained-based model. For
example, ResNet50 took 15 epochs to achieve ∼80% accu-
racy in 56.90 minutes, whereas the proposed model using
ResNet50 with ViT reached almost the same accuracy in
2 epochs in 7.79 minutes.

Similarly, the proposed approach is experimented on the
Wheat Rust dataset. Table 7 presents the performance com-
parison for the training and validation set of the Wheat
Rust dataset in terms of accuracy and loss between transfer
learning-based models and TLMViT. Where the outcomes
of training accuracy are equal to 93.26%, 95.48%, 99,93%,
99.67%, and 99.81% for ResNet50, AlexNet, VGG16,
VGG19, and Inception V3 each of which is followed by
ViT-based model respectively. Furthermore, the outcomes of
validation accuracy are equal to 91.74%, 93.39%, 99.44%,
99.86%, and 99.69% for ResNet50, AlexNet, VGG16,
VGG19, and Inception V3 each of which is followed by
ViT-based model respectively. Moreover, Table 9 shows the
results comparison between transfer learning-based models
and TLMViT on the Wheat Rust dataset in terms of F1-
score, precision, and recall. Table 12 compares the epochs
number and execution time of a model taken to reach a
specific accuracy for both the pre-trained-based models and
the proposed model on the Wheat Rust dataset. The specific
accuracy is chosen as per the highest accuracy of the pre-
trained-based model. For example, ResNet50 took 21 epochs
to achieve ∼84% accuracy in 13.15 minutes, whereas the
proposed model using ResNet50 with ViT reached almost the
same accuracy in 2 epochs in 1.39 minutes. According to the
results of all models that are experimented on the PlantVil-
lage and Wheat Rust datasets, the proposed model performs
accurately on classification problems for both datasets using
less number of Epochs and execution time.

In addition, Table 10 compares the performance of our
model with other models using the main performance met-
rics (accuracy, precision, recall, and F1-score). In this
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TABLE 11. Comparison of Epochs number and execution time for both
Transfer Learning-based model and TLMViT model using PlantVillage
dataset.

TABLE 12. Comparison of Epochs number and execution time for both
Transfer Learning-based model and TLMViT model using Wheat Rust
dataset.

comparison, the ImageNet dataset is used to fine-tune the
parameters for our proposedmodel and all comparativeworks
that used the transfer learning approaches. As shown in
Table 10, the recent works that are done so far on plant dis-
ease classification concentrate on using four different scopes:
machine learning models, CNN models, CNN along with
attention approach, and CNN along with ViT. The plant
disease-based machine learning classifiers need more steps
in pre-processing stage to extract the leaf features, and the
model performance would be less accurate due to the limita-
tion of machine learning. In [33], a machine learning model
using LGBM mode is proposed and trained on the PlantVil-
lage dataset, the performance metrics did not exceed 94%.
Though CNNmodels are effective in classifying plant disease
images, these models represent only the connections between
neighbouring pixels and are not able to encode the orientation
and position of infected parts in the leaf. For this reason,
their performance, i.e., accuracy, precision, recall, and F1-
score are not very close to 1. In [61], [62], [63], and [64],
CNN models are trained on the PlantVillage dataset, where
the performancemetrics did not reach 99%. Similarly, in [68],
[69], [70], and [71] different types of CNNs are trained on the
Wheat dataset where the performance metrics did not reach
99%. Combining the attention approach along with the CNN
or pre-trained CNN model improves the accuracy because
the attention unit is considered an adaptive filter, where its
weights are set according to how well two pixels compose.
In [65] and [66] DenseNet and pre-trained MobileNet-V2
along with attentionmechanism are used respectively. In their
proposed work, the performance metrics got improved and
reached 98% and 97% approximately. Finally, the pre-trained
CNN model along with ViT achieves the best performance
in plant disease classification where the metrics are close
to 1. In [67], a CNN model followed by ViT is trained on
PlantVillage for plant disease detection, and the performance
metrics reached 99% approximately. Whereas our proposed
model uses pre-trained models followed by ViT is trained
on PlantVillage and Wheat datasets. The performance met-
rics achieved accuracy equal to 98.81% and 99.86% for

plantVillage and Wheat datasets respectively, which outper-
formed the previous models.

VIII. CONCLUSION
This paper proposes a hybrid model (TLMViT) for plant
disease classification based on a pre-trained based model
followed by a vision transformer. TLMViT has four stages:
data acquisition, image augmentation, feature extraction, and
classification. Firstly, three crops namely( bell peppers, pota-
toes, and tomato leaves) including fifteen classes of the
PlantVillage dataset and three classes of the Wheat Rust
dataset, are used individually to train and evaluate our pro-
posed model. Secondly, the leaf images in the datasets are
augmented by many functions such as rotation, shifting,
shearing, zooming, and flipping to increase the number of
training samples. Thirdly, the features are extracted in two
consecutive phases: initial features extraction and deep fea-
tures extraction. In the first phase, the pre-trained model is
used to extract the features of the leaf and call them initial
features. The weights of the pre-trained model are fine-tuned
using the ImageNet dataset. In the second phase of features
extraction, the vision transformer is utilized as deep layers to
extract the deep features of leaves based on initial features.
Lastly, the MLP head classifier determines to which class the
leaf belongs. The proposed model’s performance is exper-
imented by five pre-trained models and evaluated in terms
of accuracy, loss, precision, F1-score, and recall. The results
show that the proposed model performs accurately in plant
disease classification, getting the highest validation accuracy
for VGG-19, followed by the ViT model. The validation
accuracy is equal to 98.81% and 99.86%, and validation
loss is equal to 0.0947 and 0.0715 for PlantVillage and
wheat datasets respectively.Moreover, the results of TLMViT
are compared with transfer Learning based models (without
using ViT) to show the efficiency of using ViT for deep fea-
ture extraction. The TLMViTmodel outperforms the Transfer
Learning-based model with an enhancement of 1.11% and
1.099% higher in validation accuracy and 2.576% and 2.92%
lower in validation loss for PlantVillage and wheat datasets
respectively. From all the above, the following findings of
the proposed model can be noted: (1) The data augmentation
approach provides a simple way to overcome the lack of
images that leads to overfitting issues and reduce the influ-
ence of an imbalanced dataset. (2) A pre-trained-based model
could be utilized to extract the initial leaf features and reduce
the dimensionality of the original image, then be used as
inputs for deep layers or a deep approach to extract the deep
features. (3) ViT model shows the ability to extract the deep
features from extracted features of the CNN model (initial
features). On the other hand, the pre-trained model often fine-
tunes for specific tasks. So, the proposed model could need
more training and fine-tuning the weights in the first phase of
feature extraction for particular crops. In future work, various
crops could be considered for training on TLMViT to study
the ability of the proposed model.
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