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ABSTRACT Orthogonal time frequency space (OTFS) has emerged as a promising modulation for
next-generation wireless systems. This two-dimensional (2D) modulation has the inherent capability of
providing uninterrupted connectivity and improved performance in a high-mobility doubly-selective channel
by mapping the information symbols to the delay-Doppler (DD) domain. In order to improve the directivity
of OTFS signals, this paper considers a reconfigurable intelligent surface (RIS)-aided OTFS transmission for
a high-speed environment. While OTFS mitigates the dispersion due to the highly mobile wireless channels
by mapping the transmit symbols to the DD domain, RIS improves the directivity by appropriately shifting
the phase of the signal in non-line-of-sight (NLOS) communication channels. We provide a concrete matrix-
based mathematical model of the RIS-aided OTFS communication system. Capitalizing on the simple matrix
multiplication-based model, a number of detectors can be used. These include the usual zero-forcing (ZF)
and the minimum mean-squared error (MMSE) linear detectors, and a low-complexity message passing
algorithm (MPA)-assisted detector. We evaluate the performance of these detectors for RIS-based OTFS
systems. A deep learning (DL)-based signal detector is also proposed for the RIS-aided OTFS system.
A significant improvement in bit-error-rate (BER) performance is achieved using the system considered,
while the RIS-induced computational burden is not high. Furthermore, in NLOS communication, our system
can ensure seamless connectivity with a reduced number of base stations (BS).

INDEX TERMS Reconfigurable intelligent surface (RIS), orthogonal time frequency space (OTFS), deep
learning (DL), doubly selective channels.

I. INTRODUCTION
With the advancement of wireless communications, numer-
ous modulation techniques have been developed to meet the
next-generation requirements. Network requirements have
also become stringent as well over time. The next-generation
wireless networks will have to satisfy the requirements of
data transmissions indoors and outdoors. Additionally, these
networks will have to support communication in densely
populated areas, mobile broadband services in high-mobility
vehicles, for example, airplanes, internet of things (IoT), and
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others. High-speed data transmissions may be accomplished
by high carrier frequencies, network densification, and/or
by new access methods for spectral efficiency enhance-
ment [1], [2]. Orthogonal frequency-division multiplexing
(OFDM) was considered as modulation of choice for Euro-
pean Digital Audio Broadcasting (DAB) [3] and the Digi-
tal Video Broadcasting (DVB) [4], and HIPERLAN/2 [5].
OFDM was chosen for its ability to provide high spectral
efficiency, whilst combating the inter-symbol interference
(ISI) imposed by dispersive wireless channels [6], [7]. OFDM
was also found suitable for multi-user multi-antenna scenar-
ios [8], [9]. However, in the context of the more complex
network required for the next-generation wireless systems
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where Doppler shifts of different users are high or cannot
be accurately predicted, OFDM has to face the challenges
imposed by timing- and carrier frequency offsets and by
the out-of-band (OOB) emissions [10]. The Doppler shift
present in the channel degrades the orthogonality between
the subcarrier frequencies, thus increasing the inter-carrier
interference (ICI) of the network [11], [12]. To mitigate the
ICI-related problems due to a doubly selective channel, there
are numerous attempts [13], [14], [15], [16], [17] in the litera-
ture, Additionally, to overcome the synchronization problem
and the OOB emissions, several modulation techniques, for
example, filter-bank multicarrier (FBMC) [18], universal fil-
tered multi-carrier (UFMC) [19], and generalized frequency
divisionmultiplexing (GFDM) [20] were proposed. However,
these modulations cannot effectively mitigate channel disper-
sion due to the high mobility of users.

Against this background, orthogonal time frequency space
(OTFS) [21], [22] was proposed. OTFS is an avant-garde
modulation format, which changes the conventional mech-
anism of mapping the information symbols. Traditionally,
the symbols are mapped to the time or frequency domain,
whereas OTFS maps the symbols to the delay-Doppler (DD)
domain. OTFS is an ingenious two-dimensional (2D) mod-
ulation approach that empowers the doubly selective chan-
nel to have orthogonality and separability between carrier
waveforms allowing highly dispersive gain [23], [24], [25],
[26]. The exclusiveness of this DD representation of the
signal is that it embodies two opposite ideas. According
to Heisenberg’s uncertainty principle, a signal can not be
simultaneously localized in both time and frequency. With-
out violating Heisenberg’s uncertainty principle, an OTFS-
modulated signal behaves as if it is simultaneously localized
in both the time and frequency domain. This unique character-
istic is achieved through maintaining the ‘quasi periodicity’
of the OTFS carrier [22], [27]. OTFS can provide improved
performance in high-mobility channels as well as static mul-
tipath channels [24], [28]. The performance of OTFS was
compared with that of OFDM in [29], [30], and [31] for high-
mobility channels, and OTFS was observed to outperform
OFDM.

To ensure high-speed ubiquitous connectivity, we have to
face some more impediments. Firstly, we have to guaran-
tee seamless network coverage both indoors and outdoors.
In addition to the line of sight (LOS) propagation, random
natural and man-made entities such as buildings, trees, vehi-
cles, mountains, etc. hinder the propagation in non-line of
sight (NLOS) communication. Uncontrollable interactions
of the transmitted signal with surrounding random objects
contribute to multipath interference and degrade the quality
of the received signals [32], [33]. The main propagation
challenges are deep fading, ISI, severe attenuation, and high
Doppler shifts [34]. Although a good number of physical
layer (PHY) solutions, for example, adaptive modulation and
coding (AMC), cooperative communications, multicarrier
modulation, and large-scale multiple-input multiple-output

(LS-MIMO) have emerged, the improvements in the PHY
are not sufficient to provide maximum capacity and required
reliability. Furthermore, as the propagation medium is unpre-
dictable, the implemented technologies can not ensure the
quality of service (QoS) of the network. As a solution, the
idea of employing a reconfigurable intelligent surface (RIS)
has recently attracted substantial interest. RISs are placed in
between the transmitter and the receiver, and can strategically
configure and redirect the radio signal impinged on it. The
design and fabrication details of RIS are detailed in [35].

The ideal operation of RIS is considered by analyzing a
perfectly conducting plate all by itself. This passive surface
behaves as a reflecting mirror for incoming radio waves by
scattering the incoming signal to an angle determined by the
generalized Snell’s law of reflection [36], [37]. However, it
is necessary to attain ‘anomalous reflections’ [38] in order
to serve a system where the transmitter or receiver or both is
non-stationary. Instead of using a single continuous reflect-
ing element, a practical RIS surface is constituted with a
finite number of software-controlled passive elements. Each
of the elements adapts a constant phase shift based on the
position of the desired user to provide directive reflection
[39], [40]. The properties of the individual elements can be
controlled by a switching device, which is further controlled
by a microcontroller. The RIS enabled by the microcontroller
automatically redirects the incident signal to a specific user
even in mobile conditions [41]. By varying the characteristics
of the components, the impedance of the elements may be
varied, resulting in a phase shift of the signals impinging on
the surface. The RIS operates in two fundamental strategies:
the energy-focusing mode and energy-nulling mode [36],
[42], [43]. In energy-focusing mode, appropriate phase shifts
are provided by each passive element with the help of a
microcontroller in order to provide focused beamforming to
the desired user by constructively adding the phase shifts
of the individual elements. In the energy-nulling strategy,
the signal received by any user other than the desired user
is destructively added with an appropriate phase shift to
nullify the overall effect of co-channel interference. In this
way, microcontroller-operated RIS can function as a recon-
figurable lens that focuses the incident signal to the desired
user and ensures directive gain [34], [44]. Recently, a reso-
nant coupling-based RIS unit was designed by utilizing the
characteristics of PIN diode for phase controlling [45]. This
technique utilizedmicrostrip andmeander antenna theory and
achieved lower loss along with broadband capacity. RIS has
been proven in studies to enhance network coverage, data
transmission speed, and energy efficiency while maintaining
an effective cost margin [46], [47]. RIS can improve the rank
of a LOS system by adding multipath, thus improving the
capacity gain [48]. In [44], the SNR behavior of RIS was ana-
lyzed in the context of LS-MIMO systems. In the far field, the
SNR of RIS grows quadratically as a function of the number
of elements. However, in the near field, the SNR performance
of RIS significantly degrades. The analysis of [44] suggests

47322 VOLUME 11, 2023



M. H. Abid et al.: RIS-Aided OTFS and Its DL-Based Signal Detection

that RIS of a greater number of elements than the array size
in the LS-MIMO system can resolve the issue of SNR degra-
dation. Configuring the propagation medium with decode-
and-forward (DF) relaying is another popular choice [49].
In [50], the authors showed that a hundred-element RIS can
outperformDF in terms of energy efficiency and the transmit-
ting power of the signal. The performance of a RIS-assisted
channel is determined by its ability to provide accurate phase
shift and the channel path-loss to the desired user [36]. The
accuracy of the phase shift is dependent on the size and the
number of passive elements. In general, the elements are of
the sub-wavelength size in order to provide precise directivity
of the scattered signal [36]. By contrast, the path-loss depends
on the net size of the RIS surface rather than the sizes of the
individual elements. The beamwidth of the reflected signal is
inversely proportional to the size of the RIS surface [36]. RIS
has been implemented in numerous applications. For exam-
ple, a RIS-assisted system was proposed for Industrial IoT
(IIoT) systems, that demonstrated significant performance
enhancement even in scenarios with high interference and
limited spectrum availability [51].

The majority of RIS research studies have taken a static
environment into account. Recently this has also been imple-
mented in channels with high mobility [52], [53], [54]. In par-
ticular, in the papers [52], [53], and [55] a doubly selective
channel with a high Doppler spread has been taken into con-
sideration for RIS-assisted OTFS communication. However,
a straight-forward matrix multiplication-based system model
for RIS-aided OTFS communicating in high-mobility disper-
sive scenarios and the design of an appropriate detector for
this system is unexplored. In this research, we explored three
types of conventional detectors, namely- linear zero-forcing
(ZF) or minimum mean-squared error (MMSE) detectors,
maximum a posteriori (MAP) detectors [24], [54], [56],
[57], and designed a machine learning-aided detector for the
proposed RIS-aided OTFS system. As far our knowledge,
machine learning-based detection for the RIS-assisted OTFS
system has not been studied yet.

Specifically, our contributions may be summarized as
follows:

1) We propose a deep neural network (DNN) based
detector for the RIS-assisted OTFS system considered
for communications over doubly selective high-speed
channels.

2) We provide a simple matrix multiplication-based
model for a RIS-aided OTFS scheme communicating
in a hostile environment characterized by a doubly
selective channel.

3) The shapes of the channel transfer matrix in both the
time domain (TD) and the DD domain for OTFS with
or without RIS are characterized. The performance of
the system using the proposed DL-based detector has
been investigated and compared with that employing
ZF, MMSE, and message passing (MP)-based detec-
tors and with that of OFDM using similar parameter

values. The system considered in conjunction with the
proposed detector provides significantly improved per-
formance compared to the benchmark schemes.

The RIS-aided OTFS scheme is capable of simultaneously
providing higher directive gain and mitigating the channel-
induced dispersion in a hostile environment. In general, the
higher the directive gain of a scheme, the less its capability
to overcome channel-induced dispersion. The system can
benefit from the simultaneous use of RIS and OTFS and
thus stands out to be a promising solution for next-generation
ultra-reliable systems.

A. OUTLINE
The paper is organized as follows. In Section II, the
transceiver architecture of the RIS-aided OTFS system is
detailed. The straightforward matrix multiplication-based
model is also derived in this section. Section III discusses the
proposed DL-based detector for the RIS-aided OTFS system.
The complexity imposed by the proposed DL-based detector
and by the conventional detectors are compared in Section IV.
In Section V, the system is studied using numerical simula-
tions. Section V also discusses the limitations of the study and
outlines some potential futureworks. Finally, we conclude the
paper in Section VI.

B. NOTATIONS
In general, we use boldface letters such asA to denote a vector
or a matrix, whereas A−1, AT , AH represent the inverse,
transpose, and Hermitian transpose of a matrix, respectively.
The Kronecker product of twomatricesA andB is denoted by
A⊗B, the convolution of two vectors by ∗, theM×M identity
matrix by IM , while FN and FH

N denote the N -point discrete
Fourier transform (DFT) matrix and the N -point inverse DFT
(IDFT) matrix, respectively.

II. SYSTEM OVERVIEW
Fig. 1 portrays an overview of the RIS-aided OTFS scheme.
We consider a source-to-user communication scenario over a
high-mobility doubly selective channel. A RIS is positioned
in between the source and the destination user in order to
provide reconfigurable directivity to the destination. We con-
sider a RIS consisting of K processing elements and their
phases may be controlled in accordance with requirements
at the receiver. The communication from the source to a
single user is illustrated in Fig. 1 for the sake of simplicity.
Communication with other users - may be mobile or sta-
tionary - can be performed in a similar fashion. Although
there may exist a direct line-of-sight (LOS) link, these links
are seldom available for long-distance high-speed vehicular
communications or in mobile hotspots, for example, railway
stations and busy airports. Hence, we consider the source
information to be OTFS modulated in both the source-to-
RIS and the RIS-to-destination links. We also consider the
K -element RIS to have a smart controller which ensures
directive gain to the desired user by offering an appropriate
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FIGURE 1. Overview of the RIS-aided OTFS system. The source information is OTFS-modulated, and appropriately
phase-shifted at the RIS to reach the destination, where it is OTFS-demodulated and detected.

phase shift to the incident signal. The phase-shifted incident
signal or the reflected time-domain signal reaches the desired
user and is demodulated at the receiver side.

A. OTFS MODULATION AT THE TRANSMITTER
At the transmitter end, at first, OTFS modulation is applied
to the source information. As described, OTFS modulation
is the process of mapping the information symbol into a 2D
grid. In OTFS modulation, instead of using the 1D time-
frequency (TF) grids, the source bits are first translated to
a set of L−QAM symbols, and then the resulting QAM
symbols are translated into a 2D grid, called DD grids.
We consider the OTFS transmit frames consists of (M × N )

number ofL−QAM symbols that are mapped to DD symbols
X ∈ CM×N . Explicitly, the total duration of the signal
frame is assumed to be NT and the sampling interval is MT ,

where T denotes the pulse duration. We consider integer
delay and Doppler scenario as opposed to fractional delay-
Doppler [53].

For wireless transmission, TD signal is needed. Using
a two-step conversion method, the DD symbols are trans-
formed into TD signal-

1) At first, the DD symbols are transformed into TF signal
using inverse symplectic Fourier transform (ISFFT).
The ISFFT operation is implemented by applying
M−point fast Fourier transform (FFT) and then the
N−point inverse fast Fourier transform (IFFT) across
the columns and rows of the DD transmit frame X ,
respectively.

2) Then the TF signal is transformed into TD signal using
the Heisenberg transform. AnM−point IFFT is used in

conjunction with a pulse-shaping waveform to achieve
this.

Assuming rectangular pulse shaping, the OTFS-modulated
TD transmit signal can be expressed as [58], [59], [60]:

S = FHM
(
FMXFHN

)
= XFHN . (1)

The TD transmit matrix S ∈ CM×N can be converted to a TD
vector s ∈ CMN×1 by:

s = vec (S)

=

(
FHN ⊗ IM

)
vec (X)

=

(
FHN ⊗ IM

)
x, (2)

where vec (•) denotes the column-wise vectorial stacking
operation on the matrix ‘•’.

As a further advance, we append a cyclic prefix (CP) of
appropriate length to mitigate inter-symbol interference (ISI).
However, we use a single cyclic prefix per frame to increase
the overall spectral efficiency [58], [59], [60].

B. SOURCE-TO-RIS AND RIS-TO-DESTINATION CHANNEL
We consider both the source-to-RIS and the RIS-to-
destination links to be doubly selective. The complex base-
band channel impulse response (CIR) h(τ, ν) of each link is
assumed to have a delay denoted by τ and a Doppler shift
denoted by ν, and the CIR may be expressed by [13], [24],
[26], [33], [58]:

h(τ, ν) =
(L−1)∑
i=0

hiδ (τ − τi) δ (v− νi) , (3)
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where L and hi denote the number of channel paths and the
channel gain at the i−th path, respectively, and δ (.) indicates
the Dirac Delta function. Still referring to (3), the delay and
the Doppler shifts τi and νi for the i−th path are given by τi =

ℓi

M△f
and νi =

κi

NT
, respectively, where△f =

1
T

, and ℓi and

κi denote the delay and the Doppler indices, respectively.
Denoting the continuous time transmit signal by s (t) , the

TD signal received at the k−th processing element of RIS can
be written [13], [26], [58] as:

rSR,k (t) =
∫
v

∫
τ

hSR,k (τ, v)s(t − τ )ej2πv(t−τ )dτdv

+ wSR,k (t), (4)

where the suffix ‘SR’ refers to the source-to-RIS link,
and wSR,k (t) denotes the TD additive white Gaussian noise
(AWGN) corresponding to the source-to-the k−th processing
element of RIS link.

To have a clear understanding of both the source-to-RIS
and the RIS-to-destination channels and the input-output rela-
tionship in the DD and the TD, we now commence with
the channel behavior. Specifically, the TD output over the
doubly selective channels can be expressed in a simple matrix
multiplication-based representation as

rSR,k = HSR,ks, (5)

where the channel transfer matrix can be expressed [23], [60]
as:

HSR,k = h0P030 + h1P131 + · · · + hL−1PL−13L−1

=

(L−1)∑
i=0

hSR,k,iP i3i, (6)

where theMN×MN permutation matrix P is expressed [23],
[60] as

P =


0 . . . 0 1
1 . . . 0 0
...

. . .
...

...

0 . . . 1 0


MN×MN

, (7)

the Doppler shift matrix 3i is given [23], [24], [60] by

3i =


e
j2πki(0)
MN 0 . . . 0

0 e
j2πki(1)
MN . . . 0

...
. . .

...

0 0 . . . e
j2πki(MN−1)

MN


MN×MN

,

(8)

and the channel gain corresponding to the i−th path is
expressed as hi.
Thus, the channel transfer matrix HSR,k in (6) can be

viewed as a combination of a circulant matrix characterizing
the circular shifts in accordance with the channel delays,
and the Doppler shift matrix 3i given by (8). Specifically,

FIGURE 2. Typical shape of the time-domain channel transfer matrix of
an OTFS channel.

the channel transfer matrix of a time-invariant frequency
selective channel is circulant, and can be seen [7], [16], [17],
[32] as:

H̆ =



h0 0 · · · h(L−1) · · · h2 h1
h1 h0 · · · · · · h3 h2
...

...
. . .

. . .
. . .

. . .
...

h(L−1) h(L−2) · · · h0
. . . 0 0

...
...

. . .
. . .

. . .
. . .

...

0 0 · · · h(L−2) . . . h0 0
0 0 · · · h(L−1) · · · h1 h0


, . (9)

where the ‘SR’ suffix has been dropped for clarity.
The circulant matrix H̆ can be expressed as the sum of L

matrices given [6], [24], [60] by

H̆ = h0P0
+ h1P1

+ h2P2
+ · · · + hL−1PL−1

=

(L−1)∑
i=0

hiP i. (10)

We see that the time-invariant frequency selective channel
can be expressed by the circulant matrix H̆ in a form either
as (9) or as (10). The incorporation of the Doppler shift
matrix 3i of (8) with H̆ of (9) results in HSR,k of (6) for
characterizing a doubly selective channel.

The typical shape of the source-to-RIS channel HSR,k or
the RIS-to-destination channelHRD,k is shown in Fig. 2. The
shape is seen to be similar to the matrix H̆ of (9). However,
due to the presence of Doppler-related diagonal components
of 3i, all the diagonal elements ofHSR,k are not equal except
for the main diagonal. Hence, HSR,k and HRD,k are not,
in general, circulant matrices.

C. RIS PROCESSING
The signal received at the RIS passes through a controlled
propagation medium. Each processing element of RIS will
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include its own phase shift with that of the OTFS modulated
signal incident on it. A direct path between the transmitter
and the receiver may or may not exist. When a direct path
exists, the phase changes induced by all of the elements are
summed coherently, resulting in a focused beam of the signal.
Beamforming using RIS increases the signal reception sce-
nario of the direct-path signal. For NLOS communications,
the OTFS modulated signal impinges on the RIS and then
to the target user, thereby covering blockage or a blind spot
in the channel. We consider both the source-to-RIS and the
RIS-to-destination links to be high-speed doubly selective
channels with L channel paths, and as such, may be modeled
in a similar way:HSR,k =

∑(L−1)
i=0 hSR,k,iP i3i, andHRD,k =∑(L−1)

i=0 hRD,k,iP i3i, where the suffix ‘RD’ refers to the RIS-
to-destination link. The transmitted signal impinges on the
RIS at an arbitrary angle, and the RIS ‘reconfigures’ the
phase shift by which the incident signal will be reflected
toward the destination. Hypothetically, RIS can tune any
phase shift using receiver feedback on near-instantaneous
channel conditions to reflect the signal in the desired direc-
tion. Practically, the phase response of RIS is controlled
by a controller and the associated software. An approach
based on the ℓ2− norm maximization of the effective chan-
nel matrix has been proposed in [55] for the design of
the reflection phase shift. To outline the RIS processing,
the received signal at the destination can be expressed
as [61]:

r =
√
Pt

√
PL

(K−1)∑
k=0

HSR,kej(φk)HRD,k

 s+W , (11)

where Pt indicates the transmit power, PL represents the path
loss,W denotes the additive white Gaussian noise (AWGN),
and φk represents the phase angle matrices of the correspond-
ing elements of the RIS. Let us further represent the phase
angle of the combined source to RIS’s k−th element plus the
element-to-destination link by θk .

For maximization of the channel SNR, we consider the
phase shift by which the signal is reflected towards the
receiver to be given by [61], [62], [63]:

φk = θk = ̸
(
HSR,kHRD,k

)
, (12)

where ‘̸ •’ refers to the phase angle matrix containing
phases of the elements of the matrix‘•’. We consider the
channel information corresponding to the source-to-RIS link
and the RIS-to-destination link is available at the RIS. The
overall channel response of our RIS-assisted DD channel
is [34]:

Ho =

K∑
k=1

(
HSR,k9kHRD,k

)
=

K∑
k=1

(
HSR,ke−jφkHRD,k

)
. (13)

Finally, the signal received at the receiver will be:

r = Hos+W . (14)

The elements of a RIS are typically sub-wavelength in size
and the phase shift introduced usually depends on the size as
well as the number of RIS elements [36]. Again, the accuracy
with which a RIS can change the channel phase to the target
user is a measure of its performance. Equation (12) is used to
calculate the ideal phase shift introduced by a RIS in order
to maximize the SNR. To justify (12), let us consider that
18k = φk − θk. Then the received signal at the destination
can be written as [61], [62], [63]:

r =
√
Pt

√
PL

(K−1)∑
k=0

HSR,kej(18k )HRD,k

 s+W (15)

The SNR obtained from (15) is given by:

γ =

∣∣∣√PL ∑(K−1)
k=0 HSR,kej(18k )HRD,k

∣∣∣2 Pt
W

. (16)

The SNR γ of (16) will be maximized, when

18k = φk − θk = 0,

i.e., φk = θk .

Thus, for SNR maximization, the total phase shift intro-
duced by the RIS elements should be equal to the phase
angle of the combined source to RIS’s k−th element plus the
element-to-destination link.

D. RECEIVER PROCESSING: OTFS DEMODULATION AND
DETECTION
At the receiver end, the TD received signal is first con-
verted into the DD domain using OTFS demodulation, and
then the DD signal is detected using different conventional
detectors or the proposed DL-based detector. For OTFS
demodulation, at first, the Wigner transform is used to con-
vert the TD signal to the TF domain. Then the symplectic
fast Fourier transform (SFFT) is used to convert the TF
domain signal to the DD domain. The OTFS demodulation
is discussed in Section II-E and the shapes of the chan-
nel transfer matrices in different domains are elaborated in
Section II-F. The conventional detectors are then highlighted
in Section II-G.

E. OTFS DEMODULATION
The received TD signal r is de-vectorized to the M × N
TF matrix denoted by R = vec−1 (r). Thus, the Wigner
transform performs the reverse operation of the Heisenberg
transform. It maps back the received time domain signal to TF
domain. The symplectic Fourier transform (SFFT) is finally
performed on R to convert the TF domain signal to the DD
domain. This is accomplished by an M−point FFT followed
by the SFFT operation. The demodulated DD domain signal,
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assuming rectangular pulse shaping, can be expressed [23],
[25], [60] as:

Y = FHM (FMR)FHN . (18)

Upon substitution of (2) in (14), the vectorially stacked
form of the received DD grid can be expressed by [25], [60]:

y = (FN ⊗ IM ) r.

= (FN ⊗ IM ) (Hos+W )

= (FN ⊗ IM )Ho

(
FHN ⊗ IM

)
x+

(
FHN ⊗ IM

)
W

= Heffx+ W̃ , (19)

where W̃ =
(
FHN ⊗ IM

)
W indicates the DD domain AWGN

and Heff is the effective channel matrix given by Heff =

(FN ⊗ IM )Ho
(
FHN ⊗ IM

)
.

F. SHAPES OF THE CHANNEL MATRICES IN DIFFERENT
DOMAINS
For a clear understanding of the input-output relationship of
the RIS-aided OTFS system and to design an appropriate
detector, we need to know the shapes of the channel matrices
in both the TD and theDD domains. Although the TD channel
matrix for an OTFS system without RIS has the shape of a
circulant matrix, it is not truly circulant due to the unequal
diagonal elements caused by the Doppler matrix 3i in HSR,k
of (6). However, the TD channel matrix for the RIS-OTFS
system, expressed by equation (13), is circulant. Because
the RIS-induced phase shift and the multiplication of simi-
lar components of the channel matrices provide real-valued
elements in (13). The matrix shape is similar to the TD OTFS
channel matrix shown in Fig. 2. Since the diagonal elements
are converted back to equal values, the TDRIS-OTFS channel
matrix is circulant, as shown in Fig. 3.
The previous literature, including [24], [54], [60], [64],

discussed the DD channel of OTFS and RIS-aided OTFS.
However, a more comprehensive discussion on the actual
shape of the DD channel is still necessary. The mathematical

FIGURE 3. Typical shape of the time-domain channel transfer matrix of
RIS-assisted OTFS channel.

derivation of the TD channel can be found in [24], [53],
and [60]. Here, rather than providing the details of these
derivations, we provide a simple discussion on the shapes of
the DD domain channel matrix.

To discuss the DD channel matrix of an OTFS system, let
us consider an example withM = 4, N = 4, and L = 2. The
shape of the TD channel matrix is similar to the one shown in
Fig. 2 and can be represented as:

H̆TD =


A0 0 · · · 0 C1
B0 A1 · · · 0 0
0 B1 · · · 0 0
...

...
. . .

. . .
...

0 0 · · · B14 A15

 . (20)

To obtain the DD channel, we use the following equation:
HOTFS

eff = (FN ⊗ IM ) H̆TD
(
FHN ⊗ IM

)
mentioned in Subsec-

tion II-E. The result is illustrated in (17), as shown at the
top of the page, which represents the typical shape of the
DD channel without the assistance of RIS. In (17), we notice
that the DFT-based eigendecomposition and the Kronecker
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FIGURE 4. Typical shape of the DD channel transfer matrix for
RIS-assisted OTFS. We see that this is block diagonal matrix, where each
of the diagonal submatrices is circulant.

product have rendered the DD channel matrix a specific
shape. The DD channel matrix HOTFS

eff shown in (17) has
components a0, a1, · · · , a15 along the main diagonal, which
correspond to A0,A1, · · · ,A15 of (20). However, the other
diagonal components b0, b1, · · · , b11 and c0, c1, · · · , c3 are
shifted and dispersed across theM ×M submatrices.

By contrast, the DD channel matrix of a RIS-aided OTFS
system can be obtained from its TD counterpart, which is
expressed by Ho in Equation (14). To obtain the corre-
sponding DD channel matrix, we can use the same equa-
tion: HRIS-OTFS

eff = (FN ⊗ IM )Ho
(
FHN ⊗ IM

)
. As discussed

earlier and shown in Fig. 3, Ho is a real circulant matrix.
Therefore, HRIS-OTFS

eff is a block diagonal matrix, with each
diagonal submatrix being circulant. The off-diagonal sub-
matrices of HRIS-OTFS

eff are transformed into zero matrices,
0M×M , by the phase adjustment performed by the RIS. Thus
RIS can favorably redirect the signal, thereby increasing the
directivity of transmission. The typical shape ofHRIS-OTFS

eff is
illustrated in Figure 4, where the diagonal submatrices are
shown above the main block diagonal matrix. To provide
a better visual, Table 1 summarizes the shape of the CSI
matrices in different domains.

Above all, the MN ×MN channel transfer matrix - which
can be either in the TD or in the DD domain for the OTFS
system with or without RIS - has a total number of L non-
zero terms in each row or in each column. Thus the matrix is

TABLE 1. Shape of the CSI matrices in different domains.

a sparse matrix, which facilitates a low-complexity channel
estimation, and a low-complexity detector can be employed.

G. CONVENTIONAL DETECTORS
For the detection, linear zero-forcing (ZF) and minimum
mean square error (MMSE) detectors can be employed. As a
non-linear detector candidate, the message passing algorithm
(MPA) based detector can also be considered.

1) LINEAR DETECTORS
Linear detectors are filters that reverse the channel effects
on the received signal. Using the simplified matrix
multiplication-based DD domain relationship of (19), the
DD grids may be detected with the aid of zero-forcing (ZF)
detectors:

x̂ZF =
(
HH

effHeff

)−1
HH

effy. (21)

To mitigate the performance degradation due to ZF-induced
noise enhancement, minimum mean-squared error (MMSE)
detector may also be employed:

x̂MMSE =

(
HH

effHeff + σ 2
N IMN

)−1
HH

effy, (22)

where σ 2
N denotes the noise variance.We note that these linear

detectors have a computational complexity ofO(M3N 3) [65],
[66], as they require inversion ofMN × MN matrices.

2) MESSAGE PASSING DETECTOR
Message passing algorithm (MPA) can be effectively applied
to recover the RIS-aided OTFS signal. As seen from (19),
Heff is a sparse matrix, and hence MPA-based detector may
be employed using y as the observation nodes and x as the
variable nodes. The detector recovers the transmitted signal
passing variance and the mean of interference between vari-
able nodes and observation nodes.

Denoting r ′ and c as the number of rows and columns of
the Heff, respectively, I(r ′) and J (c) as the set of indices
of non-zero elements of Heff. pc,r ′ as the probability mass
function (pmf) for message passing from variable nodes to

observation node, the mean µ
(a)
r ′,c and the variance

(
σ
(a)
r ′,c

)2
at the a−th iteration can be calculated for observation nodes
by [27], [67]:

µ
(a)
r ′,c =

∑
e∈I(r),e̸=c

L∑
j=1

p(i−1)e,r ′
(
aj

)
ajHeff[r ′, e], (23)
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and(
σ
(a)
r ′,c

)2
=

∑
e∈I(r ′),e̸=c

 L∑
j=1

p(a−1)e,r ′ (s)
∣∣sj∣∣2 |Heff[r ′, e]|2v

−

∣∣∣∣∣∣
L∑
j=1

p(a−1)e,r ′
(
sj
)
sjHeff[r ′, e]

∣∣∣∣∣∣
2
+ σ 2,

(24)

respectively, where σ 2 denotes the noise power.
The variable nodes update the vector p(a)c,r ′ using (25)

[23], [27]:

p(a)c,r ′
(
sj
)
= 1 · p̃(a)c,r ′

(
sj

)
+ (1−1) · p(a−1)c,r ′

(
sj
)
, sj ∈ A

(25)

where A denotes the modulation alphabet and 1 is the damp-
ing factor. Then, we have [23], [67]:

p̃(a)c,r ′
(
sj
)
∝

∏
e∈J (c),e̸=r ′

Pr
(
y[e] | x[c] = sj,Heff

)
=

∏
e∈J (c),e̸=r ′

ξ (a)(e, c, j)∑L
k=1 ξ (a)(e, c, k)

(26)

where

ξ (a)(e, c, k) = exp

−
∣∣∣y[e]− µ

(a)
e,c −He,csk

∣∣∣2(
σ
(a)
e,c

)2
 (27)

This transfer of variance and mean is performed in two steps.
• In the first step, the Gaussian distributed variance(

σ
(a)
r ′,c

)2
and the mean µ

(a)
r ′,c of ζ

(a)
r ′,c is computed by the

observation nodes y[r ′] using p(a−1)c,r ′ . Then the observa-

tion node passes the
(
σ
(a)
r ′,c

)2
,µ(a)

r ′,c and p
(a−1)
c,r ′ to variable

nodes x[c], c ∈ I(r ′)
• In the second step, the p(a)c,r ′ is updated by the variable

nodes by using
(
σ
(a)
r ′,c

)2
, µ(a)

r ′,c and p
(a−1)
c,r ′ . Then the vari-

able nodes pass the p(a)c,r ′ to the observation nodes y[r ′],
r ∈ J (c).

This process will be continued until a satisfactory criterion
is reached. The MPA-based detectors have low complexity
due to their graph-based approach, message-passing-based
operation, and use of soft decision metrics. The complexity of
MPA-based detectors is given by O (niterNMSL) [23], [68].
Because, as in obtaining (26), we first compute:

p(i)c
(
aj

)
=

∏
e∈J (c)

ξ (i)(e, c, j)∑L
k=1 ξ (i)(e, c, k)

which has a complexity of O(NML), and then we divide
p(i)c

(
aj

)
by the term related to e = r ′ for all r ′, which

has complexity of O(S) for each c. Hence, the overall com-
plexity for a single iteration becomes O(NMSL), where

S =
∣∣I ′r ∣∣ = |Jc|. Therefore for niter iteration, the complexity

is O (niterNMSL), which is much lower than linear detectors
of Section II-G1.

III. PROPOSED DEEP LEARNING-BASED DETECTOR
Deep learning (DL)-based detectors have become increas-
ingly popular in wireless communication due to their ability
to handle complex and non-linear systems, and to efficiently
process a large volume of data. In this section, we propose
a DL-based detector for the RIS-aided OTFS system. The
DL-based detector is composed of three steps - data collec-
tion, training, and testing [69], [70], [71]. A new approach to
dataset generation, training, and testing is considered for the
signal detection of the system considered.

DL uses forward propagation as well as backpropagation
and works with the aid of an activation function and an
appropriate optimization technique. In a typical feedforward
neural network, each neuron in a layer receives inputs from
the previous layer, performs a weighted sum of these inputs,
and applies an activation function to produce an output. The
output of a neuron j in layer l can be computed by adding
up the weighted inputs from the previous layer, adding a bias
term, and applying an activation function [69], [72]:

zlj =
nl−1∑
i=1

wljia
l−1
i + blj alj = f (zlj) (28)

where wlji denotes the weight of the connection between
neuron i in layer l − 1 and neuron j in layer l, al−1i the output
of neuron i in layer l−1, blj the bias term for neuron j in layer
l, nl−1 the number of neurons in layer l−1, and f indicates the
activation function applied to the weighted sum of inputs. The
activation function decides whether the information received
by the neuron is significant or not. In this work, SELU (Scaled
Exponential Linear Unit) activation function is used as it
very often outperforms other activation functions [73] and is
defined by [73], [74]:

f (x) =

{
λx, x > 0
λα

(
ex − 1

)
, x ≤ 0

(29)

where α and λ are pre-defined constants (α = 1.67326324,
and λ = 1.05070098).

In the backpropagation process, the weights and biases are
first randomly set - then the weights and biases are updated
after each epoch of forward propagation based on the loss
function or the difference between the output of that epoch
and the ground truth. Sincewe consider the signal detection as
a classification problem, we use the categorical cross-entropy
loss function, which is defined by [70], [75]:

C = −
c̈∑
j=1

ÿj log
(
ŷj

)
(30)

where, ÿ, ŷ, and c̈ denote the actual value, the predicted value,
and the number of classes, respectively.
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FIGURE 5. Data collection process of the DL-based detector for the
RIS-aided OTFS scheme.

The gradient of the loss functionwith respect to theweights
and biases of the network can be computed recursively using
the chain rule [71], [76]:

∂C

∂wlji
= al−1i δlj

∂C

∂blj
= δlj (31)

where δlj indicates the gradient of the loss function with
respect to the output of neuron j in layer l and is computed
by [74], [76]: δlj =

∂C
∂alj
⊙ f ′(zlj), where f

′ is the derivative

of the activation function. The backpropagation followed by
forward propagation will be continued until the minimum
loss point or a satisfactory criterion is reached. The minimum
point is generally found using the stochastic gradient descent
(SGD) method. SGD updates the weights and biases of the
network in the direction of the negative gradient of the loss
function, scaled by a learning rate [77], [78]:

wlji← wlji − η
∂C

∂wlji
(32)

blj ← blj − η
∂C

∂blj
(33)

where η denotes the learning rate.
Let us now elaborate on the proposed DL-based detector

for the RIS-aided OTFS system.

1) DATA COLLECTION
In this step, the pseudo-randomly generated transmit message
bits and the received symbols after OTFS demodulation are
collected [72], [79]. Fig. 5 depicts the data collection process
more clearly.

As shown in Fig. 5, the message bits are pseudo-randomly
generated, and collected as ‘transmit bits’. The received sym-
bols corresponding to the transmitted bits are also collected
after OTFS demodulation and are referred to as the ‘received
symbols’. Each frame of transmit bits forms aDDgrid and the
corresponding demodulated received symbols are arranged
row-wise to form the dataset. Thus the number of samples in
the generated dataset is equal to the number of transmitted
frames. For example, if 5000 frames are transmitted, the
dataset will contain 5000 samples. For the detection problem,
the received symbols are considered as ‘features’, and the

FIGURE 6. The structure of the collected dataset.

FIGURE 7. The structure of the converted dataset.

transmit bits are the ‘targets’. Present DL models do not sup-
port complex numbers [80], [81], [82]. So, we store the real
and imaginary parts of the received symbols separately in the
dataset [64], [83], [84]. As a result, the dataset contains 2MN
number of features. The structure of the collected dataset is
shown in Fig. 6, where the data samples are shown across
rows and the features are across the columns.

2) TRAINING
Wenote that the transmit bits are communicated over the RIS-
aided OTFS scheme to generate the received symbols. The
detector detects the source bits from the symbols received.
As such, we train themodel with the aid of a dataset generated
for a specific SNR value [85], [86].

We convert the ‘target’ of the dataset from binary to the
corresponding decimal values in order to create an opti-
mum dataset for effectively employing DL for detection.
Fig. 7 shows the structure of the converted dataset, where the
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FIGURE 8. The DNN structure of the proposed DL-based deector.

TABLE 2. DNN parameters.

transmitted bits of Fig. 6 have been replaced by their decimal
values for facilitating the employment of our DL detector.

A fully connected deep neural network (DNN) is devel-
oped using the ‘Keras’ framework [87], [88]. Firstly, the
decimal target values are converted into a categorical variable
using the ‘to_categorical’ function from the Keras utility
package. The network consists of three layers: one input,
one output, and multiple hidden layers. The number of neu-
rons in the input layer is 2MN and for the output layer, the
number of neurons is similar to the length of categorical
variables. In each of the hidden layers, there are Q neurons.
The structure of the network is shown in Fig. 8. During the
training, the validation split must be kept at 0 as all the mem-
bers in the target variable are individual classes. For testing
purposes, datasets generated for other SNRs may be used.
The additional parameters of the model are given in Table 2
[54], [64], [89].

3) TESTING
Themodels trained at several SNR values are tested for a wide
range of SNR. For testing purposes, the datasets are gener-
ated as described in Section. III-1. The preprocessing of the

FIGURE 9. The flowchart of testing algorithm.

dataset is similar to that of the training step. Then the feature
sets of the dataset are fed to the model to predict the category
and the categorical variables are reconverted into the corre-
sponding decimal classes. Finally, using a decimal-to-binary
conversion, the predicted binary transmitted bits are achieved.
During this conversion, the 0s fromMSB bits of the frames (if
any) might get missed. To handle this, the required number of
zeros must be appended at the start of such frames. The flow
chart of the testing algorithm is depicted in Fig. 9.

IV. COMPLEXITY IMPOSED BY THE DETECTORS
Here, we investigate the complexity imposed by the proposed
DL-based detector and compare it with that imposed by
conventional detectors. When the DNN is trained offline,
computational complexity is not a significant concern since
the time requirements are relatively low [90]. The complexity
of the fully connected layer is calculated asO(

∑I
i=1 Ci−1Ci)

[89], [91], whereCi−1 andCi represent the number of neurons
in the previous layer and the current layer, respectively, and
I indicates the total number of layers in the DNN struc-
ture. As a result, the complexity of the proposed DNN is
O(

∑I−1
i=1 Ci−1Ci). The asymptotic complexity of the DNN

is comparable to O(M2N 2) [89]. By contrast, traditional
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TABLE 3. Asymptotic complexity of the detectors used.

detectors such as MMSE and ZF impose complexity of
the order of (MN )3 due to the matrix inversion operation,
as already discussed in Section II-G1. Consequently, the
computational complexity imposed by the DL-based detector
is lower than that of MMSE and ZF linear detectors.

Table 3 summarizes the asymptotic complexities of the
detectors used.

V. RESULTS AND DISCUSSION
In this section, we investigate the bit-error-rate (BER) per-
formance of the RIS-aided OTFS system using ZF, MMSE,
and MPA detectors. We have used 4-QAM modulation for
mapping the source bits to symbols, and we have used a
frame size of 10000. We have used an 8 × 8 DD grid.
We use 4-tap channels for our investigations. The network
parameters of the DNN model are given in Table 2. For
controllable propagation, 16-element and 32-element RIS
were considered. In addition to the conventional detection
algorithms, we investigated the system’s performance using
the proposed DL-based detector. The results correspond-
ing to the conventional detectors are discussed in subsec-
tion V-A, while that of the DL-based detector is presented in
subsection V-B.

A. BER PERFORMANCE OF RIS-OTFS USING
CONVENTIONAL DETECTORS
The performance of the RIS-assisted OTFS system using
the conventional detectors mentioned in Subsection II-G is
detailed here. We compared the BER of the RIS-aided OTFS
and OTFS without RIS systems. We considered a doubly
selective channel having Rayleigh distribution with 4 channel
taps aggravated by Doppler spread. The error performance
with ZF, MMSE, and MPA detectors is studied.

1) BER PERFORMANCE USING ZF DETECTOR
In Fig. 10, the suggested RIS-OTFS scheme’s BER perfor-
mance is shown using the ZF detector, and its performance is
compared with that of an OTFS scheme without RIS. The ZF
detector can deliver respectable performance for RIS-aided
OTFS despite being a relatively basic detector with a straight-
forward design. We can see from Fig. 10 that a 16-element
RIS greatly improves system performance when compared to
an OTFS system without RIS. Additionally, we observe that
the system offers a further decreasedBERwhen outfittedwith
a RIS that has 32 processing elements. Thus, it is clear that
the OTFS with a ZF detector can perform better in NLOS
communication when supported by a RIS.

FIGURE 10. BER Performance of the ZF detector.

FIGURE 11. Performance analysis using MMSE detector.

2) BER PERFORMANCE USING MMSE DETECTOR
The BER performance of the RIS-OTFS system using an
MMSE detector is shown in Fig. 11. It can be seen from
Fig. 11 that the performance of theMMSEdetector is superior
to that of the ZF-based system. Similar to the ZF detector,
using the MMSE detector also, the RIS-assisted OTFS sys-
tem’s performance is better than an OTFS system without
RIS. We additionally note that, as was the case with the ZF
detector, even with the MMSE detector, the performance of
the RIS-OTFS system is enhanced by increasing the number
of processing elements of RIS.

The performance will be even better if binary phase shift
keying (BPSK) rather than QAM is used, as found by [53].
Fig.17 compares the performance of the proposed RIS-OTFS
system for BPSK and 4-QAM modulation, using an MMSE
detector. From Fig.17, it is proved that the detection is
easier at lower modulation orders, for all 16 and 32 RIS
elements.
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FIGURE 12. Performance comparison between BPSK and QAM using
MMSE detector.

3) BER PERFORMANCE USING MPA DETECTOR
TheMPA-based detector is widely used in OTFS receivers for
their low-complexity design due to the sparse DD channel.
Fig. 13 shows the BER performance of the RIS-aided OTFS
system for both the 16 and 32 RIS processing elements.
We observe from Fig. 13 that MPA-based OTFS system with-
out RIS is subjected to extremely high erroneous detection
in lower SNR values. On the other hand, RIS-implemented
OTFS systems experience less performance degradation even
in the highly dispersive channels. Introducing 16-element
RIS significantly improves the performance of OTFS. The
improved performance of the RIS-aided OTFS is attained due
to RIS’s capability to reduce ISI and to adaptively modify
the phase shift of the OTFS signal. The BER reduces far
more if the number of RIS elements is increased. Thus it can
be inferred that the RIS-assisted system enhances the signal
reception scenario using an MPA-based detector.

4) PERFORMANCE COMPARISON FOR DIFFERENT
NUMBERS OF CHANNEL TAPS
Here, we investigate the impact of different numbers of chan-
nel taps on the performance of a RIS-assisted OTFS system.
Channel taps represent the discrete delays and Doppler shifts
in the time-domain channel impulse response. To investigate
the impact of channel taps on the system’s performance,
we evaluated the system’s BER performance using anMMSE
detector using channels of 4, 6, and 8 taps in our simulation.
Fig. 14 shows that the optimal number of taps depends on the
SNR of the communication channel. At lower SNRs, using a
higher number of taps, such as 6 taps, can provide improved
performance. This is likely due to the additional taps being
able to capture more details of the channel’s time and fre-
quency response, leading to better utilization of the available
resources. On the other hand, the system performs better

FIGURE 13. BER performance of the MPA-based detector.

FIGURE 14. Variation of BER performance for different numbers of
channel taps, using 32 RIS elements.

at higher SNRs for channels with a lower number of taps.
This may be due to the fact that at higher SNRs, the signal
power is sufficiently higher, thus the signal detection is easier.
However, more taps introduce more noise and interference
into the system, which can degrade the BER performance.
Interestingly, we found that the channel of 8 taps did not
improve the system’s performance, regardless of the SNR.
This suggests that there is a point of diminishing returns
beyond which the error performance degrades.

B. BER PERFORMANCE OF THE PROPOSED DL-BASED
DETECTOR
In this section, the performance of the DL-based detector for
a RIS-aided OTFS system is discussed for different training
SNR values. As described, the DL model can be trained with
a dataset created for any training SNR - however, the training
SNR should be within the operating SNR range. The error
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FIGURE 15. Error performance of DL-based detector trained at 10 dB.

performance of our DL-based detector is now discussed for
training SNRs of 0 dB and 10 dB.

1) PERFORMANCE OF DL DETECTOR TRAINED AT 10 dB
Fig. 15 depicts the performance of the proposed DL-based
detector for the RIS-OTFS for a training SNR of 10 dB.
We considered the number of RIS elements to be 64, 32, and
16. As expected, the higher the number of RIS elements, the
lower the BER. TheDL-based detector with a training SNRof
10 dB and with a 64-element RIS can provide infinitesimally
low BER at an SNR as low as −9 dB. When the number of
RIS elements is decreased to 32 or 16, the SNR requirement
for low BER is increased.

2) PERFORMANCE OF DL DETECTOR TRAINED AT 0 dB
Fig. 16 shows the error performance of the proposed
DL-based signal detector for a training SNR of 0 dB.We note
that the performance of the proposed DL-based detector with
a training SNR of 0 dB is more improved than that with a
training SNR of 10 dB. Fig. 16 shows that for a 64-element
RIS, infinitesimally low BER is attainable at around−13 dB.
For 32- and 16-element RIS, similar BER is attainable at
around −10 dB and −7 dB, respectively.
Thus, the training SNR has an impact on the performance

of the proposed DL-based detector, and hence, it should be
judiciously selected within the operating SNR range. We do
not recommend the deep learning-based detector to be trained
at negative SNR. This is because the dominant noise at nega-
tive SNR may result in higher noise corruption in the training
data, impairing the deep neural network’s ability to learn the
underlying data patterns and leading to some degradation in
performance.

3) PERFORMANCE COMPARISONS
The performance of the DL-based detector trained at the two
SNRs can be numerically summarized in Table 4. In Table 4,
the BER values are rounded up to four decimal points.

FIGURE 16. Error performance of DL-based detector trained at 0 dB.

As observed, the RIS-aidedOTFS can provide improved error
performance with a large number of RIS processing elements
- however, the training SNR has to be judiciously selected.

Finally, we compare the performance of the proposed deep
learning (DL)-based detector for RIS-aided OTFS scheme,
with the conventional MMSE detector, as depicted in Fig. 17.
The results indicate a substantial improvement in the perfor-
mance of the RIS-assisted OTFS system when equipped with
the proposed DL detector. Thus, Fig. 17 demonstrates the
efficacy of the proposed DL-based RIS-aided OTFS detec-
tor for high-mobility communications. Additionally, Fig. 17
highlights the superiority of the RIS-aided OTFS over the
RIS-aided OFDM systems in terms of performance. The for-
mer outperforms the latter, as evidenced by Fig. 17. As usual,
the performance with a larger number of RIS processing ele-
ments is observed to be better than those with fewer elements.

Deep neural network (DNN) based detectors can provide
improved performance because they can learn complex sig-
nal patterns and classify signals with high accuracy without
explicit feature engineering. DNNs adapt to varying signal
conditions and generalize to new scenarios, making them
more robust and generalizable than traditional signal detec-
tion algorithms. They can be trained on a dataset of labeled
signals, allowing them to learn the patterns of the signal as
well as of the noise for a wide range of signal variations and
noise levels. In a nutshell, a DNN-based detector is a promis-
ing approach for the signal detection of the RIS-aided OTFS
system - it possesses the inherent capability of automatically
extracting meaningful features from input signals and it can
adaptively detect the signal even in rapidly-changing channel
conditions.

C. LIMITATIONS OF THE STUDY AND POTENTIAL FUTURE
WORKS
The present study shows that the RIS-aided OTFS system and
the proposed DL-based detector have the potential for provid-
ing improved performance in the context of next-generation
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TABLE 4. The summary of the results for the proposed DL-based detector.

FIGURE 17. Error Performance of the RIS-aided OTFS using the proposed
DL-based detector compared with the conventional MMSE detector. The
performance is also compared with that of the RIS-aided OFDM scheme.

wireless systems. Nevertheless, the study has got some lim-
itations. As already mentioned, the numerical simulations
were conducted using the assumption that the channel state
information (CSI) of both the source-to-RIS and the RIS-
to-destination links are available at the RIS. Practically, the
system will have a pilot overhead to have the instantaneous
CSI of both links at the RIS elements. However, since the
channel matrices are sparse by nature, the channel estimation
might not be too complex [54], [58]. Another limitation of the
study is that we employ the RIS-associated reflection-angle
control strategy based on the SNR maximization technique
presented in [61], [62], and [63]. An improved mechanism
for controlling the reflection angles of the RIS elements can
be devised for the system [36], [41], [63].

Now, we outline some potential future research ideas
related to the present study:

1) RIS-AIDED MIMO-OTFS
The present study deals with single-input single-output
(SISO) systems. The RIS-aided MIMO-OTFS designs and
the proposed DL-based detector might be useful in the near
future. The RIS-aided MIMO-OTFS might have the chal-
lenge of fast acquisition of the CSI. The RIS-MIMO-OTFS
can also be extended to the RIS-aided massive MIMO-OTFS
systems [92], where a three-dimensional DD-domain sparse
channel matrix estimation might be feasible.

2) DESIGNING RIS-ASSOCIATED REFLECTION-PHASE
CONTROLLERS
Themost important task of the RIS is to reflect the signal with
an optimized phase shift in order to obtain desirable perfor-
mance. In addition to the signal processing-based reflection
angle controllers [62], [63], some machine learning (ML)-
based techniques may also be explored for ensuring an appro-
priate phase shift toward the desired user. The ML method of
controlling the reflection angle of the RIS may also be used
for the optimization of resources (power, spectrum, etc.) and
for optimized resource allocation among users.

3) RIS-AIDED OTFS FOR JOINT SENSING AND
COMMUNICATIONS
One of the key capabilities of next-generation wireless sys-
tems will be joint sensing and communications (JSAC), and
the waveform design for JSAC is an important research
problem. Traditionally, radars use either an un-modulated
pulsed signal or a frequency-modulated continuous wave
(FMCW) signal for sensing. By contrast, there are differ-
ent types of modulation for communications. OTFS sym-
bols are mapped to the DD-domain and radar sensing is
usually carried out using the Doppler frequency of moving
objects, Hence, OTFS-based JSAC has been considered in a
few recent works [93], [94]. RIS-aided OTFS can also be a
promising candidate for next-generation JSAC. To the best of
our knowledge, RIS-aided OTFS for JSAC has not yet been
explored.
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VI. CONCLUSION
In this paper, we have considered a RIS-aided OTFS scheme
for the next-generation high-mobility wireless channels.
We have provided a simple matrix multiplication-based
input-output relationship for the RIS-aided OTFS. A number
of linear and MPA-aided detectors based on the DD-domain
channel matrix have been studied, and their performances
have been investigated. We have also proposed a DL-based
signal detector for the RIS-aided OTFS scheme. A new
modality of dataset generation for DL has been conceived.
The proposed system exhibits an improved performance
using both the conventional and the proposed DL detectors in
high-speed doubly selective wireless channels. The proposed
DL-based detector can provide infinitesimally low BER at a
lower SNR than conventional detectors.

REFERENCES
[1] M. Alsabah, M. A. Naser, B. M. Mahmmod, S. H. Abdulhussain,

M. R. Eissa, A. Al-Baidhani, N. K. Noordin, S. M. Sait, K. A. Al-Utaibi,
and F. Hashim, ‘‘6G wireless communications networks: A comprehensive
survey,’’ IEEE Access, vol. 9, pp. 148191–148243, 2021.

[2] K. B. Letaief, W. Chen, Y. Shi, J. Zhang, and Y. A. Zhang, ‘‘The roadmap
to 6G: AI empowered wireless networks,’’ IEEE Commun. Mag., vol. 57,
no. 8, pp. 84–90, Aug. 2019.

[3] Radio Broadcasting Systems: Digital Audio Broadcasting (DAB) to
Mobile, Portable and Fixed Receivers, Standard (ETSI) EN 300 401,
ETSI, European Telecommunications Standards Institute, Tech. Rep.,
May 1997.

[4] Digital Video Broadcasting: Framing Structure, Channel Coding, and
Modulation for Digital Terrestrial Television, Standard EN 300 744, Euro-
pean Telecommunications Standards Institute, Tech. Rep., Aug. 1997.

[5] Radio Equipment and Systems, High PErformance Radio Local Area
Network (HYPERLAN) Type 1, Standard (ETSI) ETS 300 652, European
Telecommunications Standards Institute, Tech. Rep., Oct. 1996.

[6] T. Y. Al-Naffouri, K. M. Z. Islam, N. Al-Dhahir, and S. Lu, ‘‘A model
reduction approach for OFDM channel estimation under high mobility
conditions,’’ IEEE Trans. Signal Process., vol. 58, no. 4, pp. 2181–2193,
Apr. 2010.

[7] L. Hanzo, M. Munster, B. J. Choi, and T. Keller, OFDM and MC-CDMA
for Broadcasting Multi-User Communications, WLANs and Broadcasting.
Hoboken, NJ, USA: Wiley, 2003.

[8] G. L. Stüber, J. R. Barry, S. W. McLaughlin, Y. Li, M. A. Ingram, and
T. G. Pratt, ‘‘Broadband MIMO-OFDM wireless communications,’’ Proc.
IEEE, vol. 92, no. 2, pp. 271–294, Feb. 2004.

[9] M. Jiang and L. Hanzo, ‘‘Multiuser MIMO-OFDM for next-generation
wireless systems,’’ Proc. IEEE, vol. 95, no. 7, pp. 1430–1469, Jul. 2007.

[10] B. Farhang-Boroujeny and H. Moradi, ‘‘OFDM inspired waveforms for
5G,’’ IEEE Commun. Surveys Tuts., vol. 18, no. 4, pp. 2474–2492, 4th
Quart., 2016.

[11] K. T. Truong and R.W. Heath, ‘‘Effects of channel aging inmassiveMIMO
systems,’’ J. Commun. Netw., vol. 15, no. 4, pp. 338–351, Aug. 2013.

[12] E. Björnson, J. Hoydis, M. Kountouris, and M. Debbah, ‘‘Massive MIMO
systems with non-ideal hardware: Energy efficiency, estimation, and
capacity limits,’’ IEEE Trans. Inf. Theory, vol. 60, no. 11, pp. 7112–7139,
Nov. 2014.

[13] A. M. Sayeed and B. Aazhang, ‘‘Joint multipath-Doppler diversity in
mobile wireless communications,’’ IEEE Trans. Commun., vol. 47, no. 1,
pp. 123–132, Jan. 1999.

[14] A. M. Sayeed, A. Sendonaris, and B. Aazhang, ‘‘Multiuser detection in
fast-fading multipath environments,’’ IEEE J. Sel. Areas Commun., vol. 16,
no. 9, pp. 1691–1701, Dec. 1998.

[15] X. Ma and G. B. Giannakis, ‘‘Maximum-diversity transmissions over
doubly selectivewireless channels,’’ IEEETrans. Inf. Theory, vol. 49, no. 7,
pp. 1832–1840, Jul. 2003.

[16] X. Ma, G. B. Giannakis, and S. Ohno, ‘‘Optimal training for block trans-
missions over doubly selective wireless fading channels,’’ IEEE Trans.
Signal Process., vol. 51, no. 5, pp. 1351–1366, May 2003.

[17] T. Dean, M. Chowdhury, and A. Goldsmith, ‘‘A new modulation tech-
nique for Doppler compensation in frequency-dispersive channels,’’ in
Proc. IEEE 28th Annu. Int. Symp. Pers., Indoor, Mobile Radio Commun.
(PIMRC), Oct. 2017, pp. 1–7.

[18] B. Farhang-Boroujeny, ‘‘Filter bank spectrum sensing for cognitive
radios,’’ IEEE Trans. Signal Process., vol. 56, no. 5, pp. 1801–1811,
May 2008.

[19] V. Vakilian, T. Wild, F. Schaich, S. ten Brink, and J.-F. Frigon, ‘‘Universal-
filtered multi-carrier technique for wireless systems beyond LTE,’’ in Proc.
IEEE Globecom Workshops (GC Wkshps), Dec. 2013, pp. 223–228.

[20] G. Fettweis, M. Krondorf, and S. Bittner, ‘‘GFDM–Generalized frequency
division multiplexing,’’ in Proc. VTC Spring - IEEE 69th Veh. Technol.
Conf., Apr. 2009, pp. 1–4.

[21] R. Hadani, S. Rakib, M. Tsatsanis, A. Monk, A. J. Goldsmith,
A. F. Molisch, and R. Calderbank, ‘‘Orthogonal time frequency space
modulation,’’ in Proc. IEEE Wireless Commun. Netw. Conf. (WCNC),
Mar. 2017, pp. 1–6, doi: 10.1109/WCNC.2017.7925924.

[22] R. Hadani and A.Monk, ‘‘OTFS: A new generation of modulation address-
ing the challenges of 5G,’’ 2018, arXiv:1802.02623.

[23] P. Raviteja, K. T. Phan, Y. Hong, and E. Viterbo, ‘‘Interference cancellation
and iterative detection for orthogonal time frequency space modulation,’’
IEEE Trans. Wireless Commun., vol. 17, no. 10, pp. 6501–6515, Oct. 2018.

[24] T. Thaj and E. Viterbo, ‘‘Low complexity iterative rake decision feedback
equalizer for zero-padded OTFS systems,’’ IEEE Trans. Veh. Technol.,
vol. 69, no. 12, pp. 15606–15622, Dec. 2020.

[25] G. D. Surabhi and A. Chockalingam, ‘‘Low-complexity linear equalization
for OTFS modulation,’’ IEEE Commun. Lett., vol. 24, no. 2, pp. 330–334,
Feb. 2020, doi: 10.1109/LCOMM.2019.2956709.

[26] V. S. Bhat, S. G. Dayanand, and A. Chockalingam, ‘‘Performance
analysis of OTFS modulation with receive antenna selection,’’ IEEE
Trans. Veh. Technol., vol. 70, no. 4, pp. 3382–3395, Apr. 2021, doi:
10.1109/TVT.2021.3063546.

[27] Y. Hong, T. Thaj, and E. Viterbo, Delay-Doppler Communications: Prin-
ciples and Applications. Amsterdam, The Netherlands: Elsevier, 2022.

[28] P. Raviteja, E. Viterbo, and Y. Hong, ‘‘OTFS performance on static multi-
path channels,’’ IEEE Wireless Commun. Lett., vol. 8, no. 3, pp. 745–748,
Jun. 2019.

[29] G. D. Surabhi, R. M. Augustine, and A. Chockalingam, ‘‘On the diversity
of uncoded OTFSmodulation in doubly-dispersive channels,’’ IEEE Trans.
Wireless Commun., vol. 18, no. 6, pp. 3049–3063, Jun. 2019.

[30] L. Gaudio, G. Colavolpe, and G. Caire, ‘‘OTFS vs. OFDM in the presence
of sparsity: A fair comparison,’’ IEEE Trans. Wireless Commun., vol. 21,
no. 6, pp. 4410–4423, Jun. 2022.

[31] F. Wiffen, L. Sayer, M. Z. Bocus, A. Doufexi, and A. Nix, ‘‘Comparison
of OTFS and OFDM in ray launched sub-6 GHz and mmWave line-of-
sight mobility channels,’’ inProc. IEEE 29th Annu. Int. Symp. Pers., Indoor
Mobile Radio Commun. (PIMRC), Sep. 2018, pp. 73–79.

[32] A. Molisch,Wireless Communications. Hoboken, NJ, USA: Wiley, 2005.
[33] M. Patzold,Mobile Fading Channels. New York, NY, USA: Wiley, 2003.
[34] E. Basar, ‘‘Reconfigurable intelligent surfaces for Doppler effect and

multipath fading mitigation,’’ Frontiers Commun. Netw., vol. 2, May 2021,
Art. no. 672857.

[35] J. Shaker, M. R. Chaharmir, and J. Ethier, Reflectarray Antennas: Analysis,
Design, Fabrication, and Measurement. Norwood, MA, USA: Artech
House, 2013.

[36] O. Özdogan, E. Björnson, and E. G. Larsson, ‘‘Intelligent reflecting
surfaces: Physics, propagation, and pathloss modeling,’’ IEEE Wireless
Commun. Lett., vol. 9, no. 5, pp. 581–585, May 2020.

[37] N. Yu, ‘‘Light propagation with phase discontinuities: Generalized laws
of reflection and refraction,’’ Science, vol. 334, no. 6054, pp. 333–337,
Oct. 2011.

[38] L. Liang, ‘‘Anomalous terahertz reflection and scattering by flexible
and conformal coding metamaterials,’’ Adv. Opt. Mater., vol. 3, no. 10,
pp. 1374–1380, 2015.

[39] Q. Wu and R. Zhang, ‘‘Intelligent reflecting surface enhanced wireless
network via joint active and passive beamforming,’’ IEEE Trans. Wireless
Commun., vol. 18, no. 11, pp. 5394–5409, Nov. 2019.

[40] C. Huang, A. Zappone, G. C. Alexandropoulos, M. Debbah, and
C. Yuen, ‘‘Reconfigurable intelligent surfaces for energy efficiency in
wireless communication,’’ IEEE Trans. Wireless Commun., vol. 18, no. 8,
pp. 4157–4170, Aug. 2019.

47336 VOLUME 11, 2023

http://dx.doi.org/10.1109/WCNC.2017.7925924
http://dx.doi.org/10.1109/LCOMM.2019.2956709
http://dx.doi.org/10.1109/TVT.2021.3063546


M. H. Abid et al.: RIS-Aided OTFS and Its DL-Based Signal Detection

[41] E. Björnson, Ö. Özdogan, and E. G. Larsson, ‘‘Reconfigurable intelligent
surfaces: Three myths and two critical questions,’’ IEEE Commun. Mag.,
vol. 58, no. 12, pp. 90–96, Dec. 2020.

[42] J. Zhang, ‘‘Prospective multiple antenna technologies for beyond 5G,’’
IEEE J. Sel. Areas Commun., vol. 38, no. 8, pp. 1637–1660, Aug. 2020.

[43] Q. Wu and R. Zhang, ‘‘Towards smart and reconfigurable environment:
Intelligent reflecting surface aided wireless network,’’ IEEE Commun.
Mag., vol. 58, no. 1, pp. 106–112, Jan. 2020.

[44] E. Bjornson and L. Sanguinetti, ‘‘Power scaling laws and near-field behav-
iors of massive MIMO and intelligent reflecting surfaces,’’ IEEE Open J.
Commun. Soc., vol. 1, pp. 1306–1324, 2020.

[45] C. Wang, B. Li, S. Liu, Z. Zhang, and D. Zhao, ‘‘1-bit reconfigurable
metasurface unit based on resonant coupling,’’ in Proc. IEEE 5th Int. Conf.
Electron. Technol. (ICET), May 2022, pp. 79–83.

[46] M. D. Renzo, ‘‘Smart radio environments empowered by reconfigurable
AI meta-surfaces: An idea whose time has come,’’ EURASIP J. Wireless
Commun. Netw., vol. 2019, no. 1, pp. 1–20, Dec. 2019.

[47] Q. Q. Wu and R. Zhang, ‘‘Beamforming optimization for wireless network
aided by intelligent reflecting surface with discrete phase shifts,’’ IEEE
Trans. Commun., vol. 68, no. 3, pp. 1838–1851, May 2020.

[48] O. Ozdogan, E. Bjornson, and E. G. Larsson, ‘‘Using intelligent reflect-
ing surfaces for rank improvement in MIMO communications,’’ in Proc.
IEEE Int. Conf. Acoust., Speech Signal Process. (ICASSP), May 2020,
pp. 9160–9164.

[49] G. Farhadi and N. C. Beaulieu, ‘‘On the ergodic capacity of multi-hop
wireless relaying systems,’’ IEEE Trans. Wireless Commun., vol. 8, no. 5,
pp. 2286–2291, May 2009.

[50] E. Björnson, O. Özdogan, and E. G. Larsson, ‘‘Intelligent reflecting surface
versus decode-and-forward: How large surfaces are needed to beat relay-
ing?’’ IEEEWireless Commun. Lett., vol. 9, no. 2, pp. 244–248, Feb. 2020.

[51] S. Dinh-Van, T. M. Hoang, R. Trestian, and H. X. Nguyen, ‘‘Unsupervised
deep-learning-based reconfigurable intelligent surface-aided broadcasting
communications in industrial IoTs,’’ IEEE Internet Things J., vol. 9, no. 19,
pp. 19515–19528, Oct. 2022.

[52] C. Xu, L. Xiang, J. An, C. Dong, S. Sugiura, R. G. Maunder, L.-L. Yang,
and L. Hanzo, ‘‘OTFS-aided RIS-assisted SAGIN systems outperform
their OFDM counterparts in doubly-selective high-Doppler scenarios,’’
IEEE Internet Things J., vol. 10, no. 1, pp. 682–703, Jan. 2023.

[53] V. S. Bhat, G. Harshavardhan, and A. Chockalingam, ‘‘Input-output rela-
tion and performance of RIS-aided OTFS with fractional delay-Doppler,’’
IEEE Commun. Lett., vol. 27, no. 1, pp. 337–341, Jan. 2023.

[54] A.Naikoti andA. Chockalingam, ‘‘Signal detection and channel estimation
in OTFS,’’ ZTE Commun., vol. 19, no. 4, pp. 16–33, Dec. 2021.

[55] G. Harshavardhan, V. S. Bhat, and A. Chockalingam, ‘‘RIS-aided OTFS
modulation in high-Doppler channels,’’ in Proc. IEEE 33rd Annu. Int.
Symp. Pers., Indoor Mobile Radio Commun. (PIMRC), Sep. 2022,
pp. 409–415.

[56] S. Li, ‘‘Hybrid MAP and PIC detection for OTFS modulation,’’ IEEE
Trans. Veh. Technol., vol. 70, no. 7, pp. 7193–7198, Jul. 2021.

[57] W. Yuan, Z. Wei, J. Yuan, and D. W. K. Ng, ‘‘A simple variational Bayes
detector for orthogonal time frequency space (OTFS) modulation,’’ IEEE
Trans. Veh. Technol., vol. 69, no. 7, pp. 7976–7980, Apr. 2020.

[58] P. Raviteja, K. T. Phan, and Y. Hong, ‘‘Embedded pilot-aided channel
estimation for OTFS in delay–Doppler channels,’’ IEEE Trans. Veh. Tech.,
vol. 68, no. 5, pp. 4906–4917, May 2019.

[59] L. Li, H. Wei, Y. Huang, Y. Yao, W. Ling, G. Chen, P. Li, and
Y. Cai, ‘‘A simple two-stage equalizer with simplified orthogonal time
frequency space modulation over rapidly time-varying channels,’’ 2017,
arXiv:1709.02505.

[60] P. Raviteja, Y. Hong, E. Viterbo, and E. Biglieri, ‘‘Practical pulse-shaping
waveforms for reduced-cyclic-prefix OTFS,’’ IEEE Trans. Veh. Technol.,
vol. 68, no. 1, pp. 957–961, Jan. 2018.

[61] I. Yildirim, E. Basar, and I. F. Akyildiz, ‘‘Modeling and analysis of recon-
figurable intelligent surfaces for indoor and outdoor applications in future
wireless networks,’’ IEEE Trans. Commun., vol. 69, no. 2, pp. 1290–1301,
Feb. 2021.

[62] E. Basar,M. Di Renzo, J. De Rosny,M. Debbah,M. Alouini, and R. Zhang,
‘‘Wireless communications through reconfigurable intelligent surfaces,’’
IEEE Access, vol. 7, pp. 116753–116773, 2019.

[63] E. Björnson, H. Wymeersch, B. Matthiesen, P. Popovski, L. Sanguinetti,
and E. de Carvalho, ‘‘Reconfigurable intelligent surfaces: A signal process-
ing perspective with wireless applications,’’ IEEE Signal Process. Mag.,
vol. 39, no. 2, pp. 135–158, Mar. 2022.

[64] A. Naikoti and A. Chockalingam, ‘‘Low-complexity delay-Doppler sym-
bol DNN for OTFS signal detection,’’ in Proc. IEEE 93rd Veh. Technol.
Conf. (VTC-Spring), Apr. 2021, pp. 1–6.

[65] H. Li, Y. Dong, C. Gong, Z. Zhang, X. Wang, and X. Dai, ‘‘Low com-
plexity receiver via expectation propagation for OTFS modulation,’’ IEEE
Commun. Lett., vol. 25, no. 10, pp. 3180–3184, Oct. 2021.

[66] H. Zhang and T. Zhang, ‘‘A low-complexity message passing detector for
OTFS modulation with probability clipping,’’ IEEE Wireless Commun.
Lett., vol. 10, no. 6, pp. 1271–1275, Jun. 2021.

[67] P. Raviteja, K. T. Phan, Q. Jin, Y. Hong, and E. Viterbo, ‘‘Low-complexity
iterative detection for orthogonal time frequency space modulation,’’ in
Proc. IEEE Wireless Commun. Netw. Conf. (WCNC), Apr. 2018, pp. 1–6.

[68] Z. Q. Zhang, H. Liu, Q. L. Wang, and P. Fan, ‘‘A survey on low complexity
detectors for OTFS systems,’’ ZTE Commun., vol. 19, no. 4, pp. 3–15,
Dec. 2021.

[69] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. Cambridge,
MA, USA: MIT Press, 2016.

[70] A. Zappone, M. Di Renzo, and M. Debbah, ‘‘Wireless networks design in
the era of deep learning: Model-based, AI-based, or both?’’ IEEE Trans.
Commun., vol. 67, no. 10, pp. 7331–7376, Oct. 2019.

[71] Y. Qiao, J. Li, B. He, W. Li, and T. Xin, ‘‘A novel signal detection scheme
based on adaptive ensemble deep learning algorithm in SC-FDE systems,’’
IEEE Access, vol. 8, pp. 123514–123523, 2020.

[72] Z. Zhou, L. Liu, J. Xu, and R. Calderbank, ‘‘Learning to equalize OTFS,’’
IEEE Trans. Wireless Commun., vol. 21, no. 9, pp. 7723–7736, Sep. 2022.

[73] G. Klambauer, T. Unterthiner, A. Mayr, and S. Hochreiter, ‘‘Self-
normalizing neural networks,’’ in Proc. Adv. Neural Inf. Process. Syst.,
vol. 30, 2017, pp. 972–981.

[74] L. Deng and D. Yu, ‘‘Deep learning: Methods and applications,’’ Found.
Trends Signal Process., vol. 7 nos. 3–4, pp. 197–387, 2013.

[75] A. Rusiecki, ‘‘Trimmed categorical cross-entropy for deep learning with
label noise,’’ Electron. Lett., vol. 55, no. 6, pp. 319–320, 2019.

[76] Y. LeCun, Y. Bengio, and G. Hinton, ‘‘Deep learning,’’ Nature, vol. 521,
no. 7553, pp. 436–444, Sep. 2015.

[77] A. Géron, Hands-on Machine Learning With Scikit-Learn, Keras, and
TensorFlow. Sebastopol, CA, USA: O’Reilly Media, 2022.

[78] M. Zinkevich, M. Weimer, L. Li, and A. Smola, ‘‘Parallelized stochastic
gradient descent,’’ in Proc. Adv. Neural Inf. Process. Syst., vol. 23, 2010,
pp. 2595–2603.

[79] A. Kosasih, X. Qu,W.Hardjawana, C. Yue, and B. Vucetic, ‘‘Bayesian neu-
ral network detector for an orthogonal time frequency space modulation,’’
IEEE Wireless Commun. Lett., vol. 11, no. 12, pp. 2570–2574, Dec. 2022.

[80] T. Wang, C.-K. Wen, H. Wang, F. Gao, T. Jiang, and S. Jin, ‘‘Deep
learning for wireless physical layer: Opportunities and challenges,’’ China
Commun., vol. 14, no. 11, pp. 92–111, Oct. 2017.

[81] T. Erpek, T. J. O’Shea, Y. E. Sagduyu, Y. Shi, and T. C. Clancy, ‘‘Deep
learning for wireless communications,’’ in Development and Analysis
of Deep Learning Architectures. Cham, Switzerland: Springer, 2020,
pp. 223–266.

[82] X. Yi and C. Zhong, ‘‘Deep learning for joint channel estimation and
signal detection in OFDM systems,’’ IEEE Commun. Lett., vol. 24, no. 12,
pp. 2780–2784, Dec. 2020.

[83] H. Huang, ‘‘Deep learning for physical-layer 5G wireless techniques:
Opportunities, challenges and solutions,’’ IEEE Wireless Commun.,
vol. 27, no. 1, pp. 214–222, Feb. 2019.

[84] L. Dai, R. Jiao, F. Adachi, H. V. Poor, and L. Hanzo, ‘‘Deep learning for
wireless communications: An emerging interdisciplinary paradigm,’’ IEEE
Wireless Commun., vol. 27, no. 4, pp. 133–139, Aug. 2020.

[85] C. Luo, J. Ji, Q. Wang, X. Chen, and P. Li, ‘‘Channel state infor-
mation prediction for 5G wireless communications: A deep learning
approach,’’ IEEE Trans. Netw. Sci. Eng., vol. 7, no. 1, pp. 227–236,
Jan. 2020.

[86] H. Ye, L. Liang, G. Y. Li, and B.-H. F. Juang, ‘‘Deep learning-based end-to-
end wireless communication systems with conditional GANs as unknown
channels,’’ IEEE Trans. Wireless Commun., vol. 19, no. 5, pp. 3133–3143,
May 2020.

[87] F. Chollet. (2015). Keras. [Online]. Available: https://keras.io
[88] F. Chollet, Deep Learning With Python, 2nd ed. Shelter Island,

NY, USA: Manning Publications, 2021. [Online]. Available:
https://books.google.com.bd/books?id=XHpKEAAAQBAJ

[89] Q. Li, Y. Gong, Y. Liu, and Z. Xu, ‘‘Explore the performance of
receiver algorithm in OTFS based on DNN,’’ 2022, doi: 10.21203/rs.3.rs-
1361868/v1.

VOLUME 11, 2023 47337

http://dx.doi.org/10.21203/rs.3.rs-1361868/v1
http://dx.doi.org/10.21203/rs.3.rs-1361868/v1


M. H. Abid et al.: RIS-Aided OTFS and Its DL-Based Signal Detection

[90] X. Ma, Z. Gao, F. Gao, and M. Di Renzo, ‘‘Model-driven deep learn-
ing based channel estimation and feedback for millimeter-wave massive
hybrid MIMO systems,’’ IEEE J. Sel. Areas Commun., vol. 39, no. 8,
pp. 2388–2406, Jun. 2021.

[91] P. J. Freire, S. Srivallapanondh, A. Napoli, J. E. Prilepsky, and S. K. Turit-
syn, ‘‘Computational complexity evaluation of neural network applications
in signal processing,’’ 2022, arXiv:2206.12191.

[92] M. Li, S. Zhang, P. Fan, and O. A. Dobre, ‘‘Multiple access for mas-
sive MIMO-OTFS networks over angle-delay-Doppler domain,’’ in Proc.
GLOBECOM IEEE Global Commun. Conf., Dec. 2020, pp. 1–6.

[93] L. Gaudio, M. Kobayashi, G. Caire, and G. Colavolpe, ‘‘On the effective-
ness of OTFS for joint radar parameter estimation and communication,’’
IEEE Trans. Wireless Commun., vol. 19, no. 9, pp. 5951–5965, Sep. 2020.

[94] S. E. Zegrar, S. Rafique, and H. Arslan, ‘‘OTFS-FMCW waveform design
for low complexity joint sensing and communication,’’ in Proc. IEEE
33rd Annu. Int. Symp. Pers., Indoor Mobile Radio Commun. (PIMRC),
Sep. 2022, pp. 988–993.

MAHMUDUL HASAN ABID received the B.Sc.
degree in electronics and communication engi-
neering from Khulna University, Bangladesh.
He is currently pursuing the M.Sc. degree in elec-
tronics and communication engineering with the
Engineering Program. He is also with the Electron-
ics and Communication Engineering Discipline,
Khulna University. His research interests include
wireless communications, machine learning, deep
learning, the IoT, and smart grids.

IFFAT ARA TALIN received the B.Sc. degree
in electronics and communication engineering
from Khulna University, Bangladesh. She is
currently pursuing the M.Sc. degree in elec-
tronics and communication engineering with
the Engineering Program. She is also with
the Electronics and Communication Engineer-
ing Discipline, Khulna University. Her research
interests include next-generation wireless systems,
waveform design for future wireless systems,

machine learning, deep learning, and smart grids.

MOHAMMAD ISMAT KADIR (Senior Member,
IEEE) received the B.Sc. (Eng.) degree in elec-
trical and electronic engineering and the M.Sc.
(Eng.) degree in computer engineering from the
Bangladesh University of Engineering and Tech-
nology, Dhaka, Bangladesh, in 1992 and 1999,
respectively, and the Ph.D. degree in electronics
and electrical engineering from the University of
Southampton, Southampton, U.K., in 2014.

He was a Visiting Fellow with the School of
Electronics and Computer Systems (ECS), University of Southampton,
from 2016 to 2017. He is currently a Professor with the Electronics and
Communication Engineering Discipline, Khulna University, Bangladesh.
His research interests include new multi-carrier systems, space-time coding,
machine learning for communications, joint sensing, and communications
and compressed sensing for wireless communications. He received the
Commonwealth Scholarship and the Commonwealth Fellowship from the
Commonwealth Scholarship Commission, U.K.

47338 VOLUME 11, 2023


