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ABSTRACT This paper introduces a new hyperspectral image denoising method called Non-local Con-
volutional Neural Network Denoiser (NL-CNND). The technique exploits data in four bands adjacent to
the target one as additional information for the restoring process, and it uses a pre-denoising step based on
BM4D. All the bands paired with their pre-denoised versions in a second step feed a Convolutional Neural
Network. To network generalization, one of the inputs is the noise level of the input image, allowing a single
model to work with different noise levels. This restoration technique overcomes quality when compared to
current eight classical and neural methods. The results show higher peak signal to noise ratio, structural
similarity index, and spectral angle mapper metrics than all the other restoration methods, surpassing those
achieved using Block Matching and 4D Filtering alone. Besides, the results show a higher level of detail
visually while at the same time reducing over-smoothing on the input images’ features. The paper also
includes an algorithm for complete image restoration, allowing for denoising full-sized hyperspectral images
independent of their shape. The dataset creation used for network training is detailed, based on a small set
of available hyperspectral images, encompassing data normalization, conversion, and storage.

INDEX TERMS Hyperspectral images, denoising, BM4D, convolutive neural network, NLM, band
correlation.

I. INTRODUCTION
Nowadays, a great variety of sensors are used in different
applications with the massive penetration of the Internet
of Things. Among the most common examples are image
sensors, providing data-rich in visually discernible details
humans can interpret and analyze. Computers, however, can
go further, extracting more information using the appropri-
ate processes [1]. One of the many digital imaging applica-
tions involves capturing emitted or reflected electromagnetic
waves from a target material, commonly present in remote
sensing and land surveying [2], [3]. As it mimics human
vision, conventional images are restricted to three different
electromagnetic spectrum bands related to the red, green, and
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blue colors. Due to this type of capture, color images limit
the analysis regarding the frequency response of captured
scenes [1], [4]. To address this shortcoming, HSIs (hyper-
spectral images) offer another approach to image acquisition.
Unlike its color counterparts, this capture type has no limited
number of spectral bands. Instead, it divides a chosen range
of the magnetic spectrum contiguously into several bands of
the same width [5], [6]. Multi-band images reveal further
details about their subjects that would not be present in color
captures due to the exposure to many bands. Due to the phys-
ical properties of the captured materials, their absorbance
and reflectance vary between the many bands captured by
a hyperspectral imaging device. Consequently, this allows
for classification and segmentation processes that extend the
possibility of color images alone. For example, water tends
to appear on lower frequencies of the spectrum, while land
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TABLE 1. Denoising performance comparison for the tested methods for Gaussian noise of three different standard deviations. Their performance was
evaluated using three different metrics, PSNR SSIM and SAM. The best results of the proposed method are highlighted in bold.

and crops appear throughout the spectrum in different levels
across bands [7], [8].

Remote sensing has various applications, one of which is
the non-invasive analysis of environments where direct mea-
surements are unfeasible. This technique proves particularly
useful for monitoring hazardous locations, such as power
substations, for partial discharges and corona effects, which
are indicative of potential equipment failure. Nevertheless,
the effectiveness of automated monitoring is hindered by
higher levels of noise in input data, which is a persistent
issue in image capture, andmore pronounced in hyperspectral
images [9], [10].

In general, denoising comes before classification tasks
in the image processing pipeline. As noise is intrinsic to
image capture, many of the works in the literature suggest
different ways to mitigate the various image corruption types.
However, the high correlation between close bands can be
exploited for hyperspectral images and is the core of many
methods. Classical methods, which here are the ones unre-
lated to machine learning, are present ubiquitously in the
literature and already been tried and validated, yielding good
results. As examples of classical non-local methods, there are
BM4D (Block Matching and 4D filtering) [11], and RPCA
(Robust Principal Component Analysis) [12]. Unlike local
methods, which are limited to only information present in
adjacent pixels, these methods can apply more data by com-
paring the desired pixel to other similar areas of the image that
have eventually been corrupted by noise. However, in recent
years, the focus has shifted following the significant expan-
sion of machine learning techniques, which have extended
their usefulness to image processing. Newer methods such as
those presented in [13] and [14] use the concept of deep con-
volutional neural networks to learn what consists of noise and
what does not, resulting in an inference that restores images
with greater detail and accuracy than classical methods.

This paper is organized as follows. After the current sec-
tion, section II explains the motivation behind the work and
the paper’s major contributions. In section III, some back-
ground topics for better paper understanding are explored,
briefly introducing the denoising methods used for result
comparison. The section follows, discussing image char-
acteristics, different types of noise, and the noise chosen

model. Section IV presents the proposed denoising method
and discusses how the network was constructed and trained,
how bigger images were reassembled, and how images were
pre-processed and rendered into a usable dataset. The results
are discussed in section V, comparing the proposed model
with nine other methods using objective metrics and a naked-
eye analysis. The conclusion in Section VI summarizes the
findings with notes on the meaning of results and their impact
while presenting insight for future works.

II. MOTIVATION AND MAJOR CONTRIBUTIONS
Hyperspectral images are notoriously noisy and easily cor-
rupted, given their specific sensor configurations and special
image capture restrictions to accommodate multiple bands.
Thermal noise is one of the most common types of image
corruption and is the problem this article aims to address.
A new method based in convolutional neural networks to
reconstruct hyperspectral images from their noisy observa-
tions is presented. The method is an amalgam of different
processes, updating them to work with hyperspectral images
and changing their pre-processing step for a better-suited
denoiser. BM4D acts as the first denoising step to make
the network more robust, followed by the neural network
itself. In FIGURE 1, the full process is laid out, from the
inputs to the final restored image. It restores a central band
of interest, using it and four additional adjacent bands to
explore redundant information present in closer bands. Noise
level information is also provided to the network to aid this
process and make it more flexible, allowing using the neu-
ral network in different noise scenarios. This work differs
from [15] and [14] as not being fixed to a noise level. It further
differentiates itself from these works as the kernel depth used
(5) is reduced compared to theirs (24 and 31, respectively),
which lowers network complexity without sacrificing image
quality. TABLE 1 shows the results of the proposed method,
which fares better than other tested methods, classical and
neural, including BM4D, which is part of its construction.

III. BACKGROUND TOPICS
This section presents several state-of-the-art noise reduction
methods for comparison purposes with the proposed method.
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FIGURE 1. Summary of the proposed method: A chunk of a noisy HSI (Hyperspectral Image) is denoised using a total of five
bands, a center band of interest and four adjacent bands. These bands are used as input for the convolutional neural network,
having as its inputs the noisy chunk, the pre-denoised version of the chunk, and a noise map that contains the standard deviation
of the noise corrupting the input image. The process’s output is a restoration of the central band of interest.

They are followed by briefly explaining the various types of
image corruption.

A. DENOISERS
This section reviews several denoising methods shown in
TABLE 1. Classical and neural methods are present, showing
their advances and how classical methods sometimes perform
better than those based on machine learning. The proposed
method was compared to the following classical methods:
BM4D [11], HyRes [16], fastHyDe [17], HyMiNoR [18],
rPCA [12], with default settings for Gaussian denoising.
The following neural reconstruction methods were applied:
GRN [19], HSIDCNN [14], QRNN3D [20], and MemNet
(with a HyRes step) [20], [21].

1) BM4D
In contrast to local-based denoisers, non-local denoisers
search for additional pixel information outside the neighbor-
hood of a particular pixel. Block Matching and 3D Filtering
(BM3D), a predecessor method, searches inside the target
image for 2D patches that share the same characteristics. The
assumption behind this is that the difference between those
patches is mostly noise. These similar patches are stacked
in a 3D configuration (hence the method’s name). Denois-
ing involves two steps: first, a thresholding process removes
extreme values, followed by a second filtering process based
on a Wiener filter [22].

This concept is extended for images with depth, such as
color and hyperspectral images, searching these images for
3D chunks of high similarity, which are stacked in a 4D
vector. Once again, a two-step process involving thresholding
and Wiener filtering is applied. This process also assumes
that the difference between the three-dimensional chunks is
mostly noise.

2) HyRes
Based on low-rank modeling, Hyperspectral Restoration
(HyRes) is a parameter-free method that estimates an

unknown signal based on L1 penalization in the minimization
problem. This type of denoising is widely used inHSI, explor-
ing redundancy between the many different bands making a
good low-rank approximation of the entire image.

3) FastHyDe
This method explores the relationship between data present
on HSI and extremely compact representations of them. The
sparsity of those representations is linked to their low-rank
nature alongside their self-similarity characteristics. In other
words, it exploits the same image characteristics of HyRes,
and the difference lies in the method’s speed, which uses a
pre-learned subspace where its coefficients are self-similar.
This allows for the denoising of these components by non-
local patch-based denoisers.

4) HyMiNoR
HyperspaceMixed Gaussian and Sparse Noise Reduction is a
two-step process that first filters Gaussian noise using HyRes
as the base and then offers a novel sparse noise removal (such
as salt and pepper, missing pixels, and lines). This technique
neglects sparse components, using an optimization problem
based on L1-L1 norms. This optimization uses the L1 norm
as the fidelity term instead of the L2 norm, as noise is by
nature sparse. The penalization term is also an L1 norm in
the spectral difference matrix to exploit the high correlation
between the many bands of the target HSI. The optimization
problem uses a split Bregman technique.

5) rPCA
Robust Principal Component Analysis extends the PCA sta-
tistical tool, which is hardened against sparse noise. In con-
trast, corrupted data renders the original PCA unusable,
resulting in restoration that is, in Euclidean terms, far from
the desired result. The Principal Component Pursuit recovers
both the low rank and sparse components, minimizing a
combination of nuclear and L1 norm, recovering a low-rank
matrix L0.
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6) GRN
GRN is a Deep Spatial-Spectral Global Reasoning Net-
work based on a U-Net architecture for hyperspectral image
denoising. It differs from other works as it is a non-local
neural network, where two global reasoning modules learn
global spatial relationships and global interdependencies
across channels of the feature map.

7) HSIDCNN
HSIDCNN employs HSI denoising as a spatial-spectral deep
residual convolutional neural network where not only the
spatial information is used as input for the network but also
the spectral information. The 2D part of the method learns
the features of a single band of interest, whereas the 3D part
exploits the high correlation between adjacent bands.

8) QRNN3D
QRNN3D is a quasi-recurrent neural network aimed at hyper-
spectral reconstruction. It bases itself on 3D convolutions to
extract and represent features in a lower dimensional space.
This method also employs a network architecture similar to
a U-Net, with the novelty that the skip connections alternate
directions between the layers of the encoder and the decoder.

9) MemNet + HyRes
MemNet is a persistent memory network for image restora-
tion, which adds a memory block to preserve multi-level
representations across the large number of bands present in an
HSI. The gate unit controls how much these representations
influence the final image. In addition, this method includes
a pre-processing step based on the previously mentioned
HyRes.

B. IMAGE CORRUPTION AND NOISE MODEL
Image sensors, from simple to advanced, suffer from some
level of noise that disfigures their captures [23]. Due to the
way imaging sensors are built, the many field-effect tran-
sistors present in the construction of CMOS sensors can be
subject to several effects that corrupt the true captured image.
Noise comes in different flavors and the reconstruction prob-
lem pertaining to the original image may be different for
each one of them [9]. Hyperspectral imaging presents an
even harder challenge, as ranging from the sensor to the
optical apparatus, the hardware has to be built differently.
This higher complexity however allows for the capture of a
larger number of bands, which ranges from a hundred to two
hundred usually.

Thermal and quantization noise affect images in a way
that does not depend on the image captured, because of this
they are called signal-independent noise. For a hyperspectral
image, this means there is no correlation between the noise
affecting its bands. When this happens, the sensor which in
essence is a photon counter miscounts the amount of light
arriving individually at pixels, reconstructing a distorted ver-
sion of the captured image [23]. This effect is exacerbated

in captures where the subject is in low light, as the bulk of
the photon count may not come from the captured scene,
but from thermal-induced false positives. More expensive
sensors, such as the ones attached to telescopes, are actively
cooled in order to lower the amount of captured noise. Both
types of noise (thermal and quantization) can be modeled as
a Gaussian distribution [24], thus its effects influence a target
image additively. Again, this noise has no correlation between
the multiple bands of an HSI, however, its spectral signature
remains the same across all of them.

There are some types of noise on the other hand that are
influenced by the capture itself, such as Photonic or Shot
Noise. It is the effect of the discrete nature of an electric
charge, especially when an experiment is repeated a few
times, such as low-light photon counting. It depends on the
level of the signal, which is reflected by the variance of
this noise. Furthermore, it is usually modeled by a Poisson
distribution.

Another important type of noise is Sparse noise. It relates
to corruption happening in only parts of the captured image,
not affecting it entirely due to sensor malfunction. Salt and
Pepper noise, for example, happens in some of the pixels
maximizing or minimizing the value of certain pixels, appear-
ing as black and white dots in an image. At times, entire lines
are also missing from the final capture.

In case of reconstruction error, the way images are captured
might also affect the final image. These are called Striping
Noise and Fixed Pattern Noise. A sensor that scans lines from
the image sequentially for all depths at the same time, known
as push-broom, cause striping noises which can be traced
back to calibration error or a varying sensitivity of the sensor
given the captured dynamic range [25]. This results in lines
of different contrast levels appearing along the image.

In this work, the proposed architecture aims to suppress
signal-independent noises of Gaussian nature. Some other
noise types may also be removed by this construction, as do
other methods in the literature similarly. However, our net-
work was not trained nor tested for them.

IV. THE PROPOSED DENOISING METHOD: NL-CNND
The process presented in this paper consists of a two-part
denoising method for enhanced HSI restoration. In the first
step, a classical method is used, the BM4D. The second step
uses the first results along with the original noisy image. The
output of the second step is the restored central band.

As the first step is decoupled from the second, other
methods for further image restoration improvement may be
applied. Currently, BM4D is considered the state-of-the-art
in non-neural denoising.

A. TWO-STEP DENOISING MODEL
The first step of the proposed denoising pipeline is image
restoration using a non-local method. An essential feature of
non-local methods is to use not only the information present
at a pixel’s vicinity, but also to compare features of a selected
area with other areas of the image evaluated as having high
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FIGURE 2. A top view of the neural network architecture showing the
cascading denoising blocks that comprise it. For the inputs, each noisy
band is fed alongside its pre-denoised one.

similarity. Our previous method used BM3D as the first step
denoiser. A drawback of BM3D is that it can only denoise
grayscale images and it is unsuitable for higher-depth image
denoising for not considering the correlation between differ-
ent depths. The proposed method currently uses BM4D as
a substitute for the previous one, which is more suitable for
HSI containing many bands. The denoising process is similar
for both techniques. Instead of stacking 2D patches in a 3D
vector, as the input images are tridimensional, BM4D stacks
similarly classified 3D chunks of the input image in a 4D
vector. The noise removal consists of thresholding followed
by Wiener filtering in the same manner as BM3D.

In the second step, the network presented is an extension of
different works in the literature. First, DNCNN [26] suggests
using an autoencoder (which is known as U-Net in reference
to its shape) together with residual connections to create a
denoising network. An important part of this work is the
addition of the noise map, a 2D matrix with the same size
of the input noisy image, where all its entries are the value of
the standard deviation of the noise affecting the image. Noise
mapping allows the model to learn different levels, making
for a generalist network that does not need separate training
for each noise level.

In [13], which extends the concepts of [26], it is proposed
a network construction where the inputs consist not only of
the noisy image but also a pre-denoised image using a non-
local method. This allows for better reconstruction of the

FIGURE 3. A look into the innards of the convolutional block. These take
three bands, each pair containing their noisy and pre-denoised versions.
The noise map is also used as input. The architecture also features
convolutions in their residual connections.

corrupted image without the drawbacks of BM3D alone, such
as over-smoothing of features.

However, such previous works are not meant for images
with higher depth, such as HSIs. A solution for this prob-
lem comes with the FastDVDNet implementation [27]. As it
focuses on video denoising, a different approach is taken,
using information present in different adjacent frames as the
source of redundant information for noise reduction. The
network in its core is a U-Net derived from [15], using that
construction as sub-nets in a two-step convolutional denoiser.
The first step comprises three convolutional autoencoder
blocks that share weights, each taking three of the five input
frames sequentially and outputting one denoised intermediate
frame. The second step follows with another convolution
block similar to the ones used in the first step, taking three
output frames and outputting a single restored central frame.

In this work, we build a novel network topology encom-
passing some of the previously discussed features. The U-Net
from [15] still shapes the core subnets, using convolutions
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as its main operations. The inputs, on the other hand, have
been changed to accommodate the first-step denoising data,
as shown in FIGURE 2. The overall topology resembles
that of [27]. However, instead of video frames, the network
receives five bands of the HSI in their noisy and pre-denoised
forms. The figure shows an overview of the network topology
reduced to its building blocks. The kernel of the convolutional
network has Image Shape (IS) of size 128 × 128 × 5. The
first three convolutional blocks take three bands each, which
together encompass all five input bands. These blocks share
neuron weights between themselves. Their output is a single
band, which is passed to the second convolution block. This
block outputs the restored central band. Reference [27] dis-
cussed and proved that this type of cascading of convolutional
blocks employs better the information in neighboring bands,
offering higher restoration results in this configuration rather
than with a single denoising block taking five frames as input.

FIGURE 3 shows the various convolutional layers which
shape the first and second convolutional blocks. Both blocks
share the same topology, the only difference lies in the sharing
of weights at the first three convolutional blocks which does
not happen with the second. The subnet consists entirely of
convolutional blocks arranged as an auto-encoder. Its defin-
ing features are the residual connections, aided by convo-
lutions, and the presence of the pixel shuffle layers, which
upsample the inputs converting depth to resolution.

The blocks’ inputs are three bands alongside a noise map,
feeding the network with information regarding the standard
deviation of the noise. Both first-step and second-step convo-
lution blocks receive the noise map.

B. NETWORK TRAINING
A dataset was derived from several hyperspectral images
for the network training, which correspond to roughly two
hundred thousand IS samples. As discussed in [28], a larger
number of samples impacts network performance signifi-
cantly more than changing hyperparameters, influencing the
choice of a more extensive dataset. All the entries are shuffled
every epoch so as not to introduce bias due to their ordering,
given that the same images are present for four different noise
levels. The number of total epochs for the training was not
set in advance, and the training stopped monitoring the loss
metric with a patience parameter of 10 epochs.

There are a large number of loss functions available to eval-
uate how well the output of a network matches the expected
output. We choose the L1 norm, which yields better results.
This corroborates with the results presented in [29], where
it is shown that the L2 norm is not the best for images as
supposed. In their work, the L2 norm is shown to be worse
than the L1 norm alone, followed by a proposed mixture of
L1 and L2 norms which shows improvement over the L2 and
L1 norms used separately. Here, however, the L1 norm was
chosen for the sake of simplicity.

The optimizer chosen for transversing the loss hyperplane
was NADAM set with default parameters: the learning rate
equals to 0.001, β1 = 0.9, β2 = 0.999, and ϵ = 1e− 07.

C. FULL IMAGE RECONSTRUCTION
Given the chosen kernel size for the network, an image with
dimensions different from this size needs to be sliced and pro-
cessed individually. To maintain the original image size and
compatibility with the kernel size, images with dimensions
that are not multiples of it are padded to a dimension multiple
of it. This padding is then filled with the blurred image’s
stretched borders, which are then added noise to simulate a
real image. This false-image extension prevents the network
from dealing with an abrupt change devoid of real image
characteristics, which has been shown to induce artifacts in
the real denoised area.

When reconstructing parts of a bigger image separately,
the end result shows seams where these parts are re-joined.
The applied solution consists of extracting and denoising a
third part positioned where the seam would appear in the full
image, which is then averaged with the two denoised adjacent
parts that create the seam.

D. DATASET CREATION
Hyperspectral captures are not standardized, rarely appearing
in the same shapes and depths. In general, the images come
from multiple sources and are captured by different sen-
sors [30], [31], further exacerbating their differences. A single
representation must be chosen so the neural network’s inputs
remain the same across all samples. To make these correc-
tions, the image is reformatted, normalized, and resized in
chunks to maintain the same network input requirements.

For the construction of the training dataset, a mixture of
AVIRIS (Airborne Visible/Infrared Imaging Spectrometer)
scenes with some images from the ICVL (Imperial Computer
Vision Learning Lab) dataset were used. Each one of these
images generated a number of hyperspectral chunks with
dimensions compatible with the network’s input. By the end
of the process, the dataset amounted to 125400 images added
of Gaussian noise of different levels. For the test dataset,
ten images not previously selected were chosen from both
AVIRIS scenes and the ICVL dataset. The test dataset was
composed of 160 noisy images with standard deviation in the
same range as previously presented.

1) IMAGE FORMAT
Hyperspectral images are distributed in many differ-
ent formats such as Matlab files [31], [32], tiff files
(Images exported directly from HSI cameras such as from
Cubert [33]), and many others [34]. In order to operate
on images with the same characteristics, the raw files are
converted to the same format. For each image loaded, its
contents are saved as a NumPy array with a floating point
precision of 64 bits. The input images’ pixels are also mapped
into a range between 0 and 1 and saved as NumPy file.

2) NORMALIZATION
After the initial conversion, another problem still needs to
be solved. Most of the time, captured images do not span
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the whole numerical range. This effect happens even when
comparing bands of the same image, which sometimes have
different dynamic ranges. This is a result of the limited repre-
sentation available due to the sensor’s dynamic range, affect-
ing certain bands more than others. Numerically, this means
pixel values for pure brightness or pure darkness are other
than 0 and 1, respectively, for these bands. To mitigate this
problem, a per-band normalization is performed, adjusting
their maxima and minima to the expected range accordingly
to Padjusted = Pvalue/Pmaximum, where Pvalue is a pixel value
before normalization, and Pmaximum is the maximum pixel
value found in the entire image [1]. Each normalized band
has its normalization factor saved for posterior restoration if
needed.

3) RESIZING
With the hyperspectral images converted and normalized, the
last step in the dataset creation pipeline is to generate the
samples used as input for the network training. The network
inputs require an image size of 128× 128× 5 pixels. Chunks
are acquired by choosing random positions inside the image,
and this process repeats for all available bands. This proce-
dure is useful for creating a more extensive dataset from a
limited one.

4) NOISE ADDITION
As discussed previously in subsection III-B, additive Gaus-
sian noise is used to allow for a more generalist neural net-
work that encompasses different noise levels. All the dataset
images are added by Gaussian noise with standard deviation
equals to σ = 10, 30, 50, 70. In visual terms, the image cor-
ruption varies from almost imperceptible noise to intensely
degraded, barely visible scenes.

V. DENOISERS PERFORMANCE ANALYSIS
This section first presents a brief overview of the image
metrics for denoising results comparison. Three different
methods are chosen for better analyzing the image charac-
teristics, thus aiming to evaluate the similarity of the restored
images through various aspects. The images used here were
not present in the test dataset, coming from a different set
of hyperspectral images to ensure that the trained network
learned to generalize well. In the sequel, simulation results
are presented in terms of objective numerical comparison, and
subjective visual comparison.

A. IMAGE COMPARISON METRICS
At denoising quality evaluation, it is important to choose
more than one metric as some of them may have problems
with specific scenarios, such as small brightness differences
or small visual anomalies [35]. All the metrics presented
here are full-reference, which means each noisy image to
be evaluated has to be compared against a clean, noiseless
version of it.

1) PSNR
Peak Signal to Noise Ratio (PSNR) is a full-reference metric
based on the L2 norm, averaging the squared differences
between the pixels of a reference image and a target image.
The maximum signal and noise power ratio is evaluated for
all pairs of pixels of both images.

The PSNR is widely used to analyze image degradation
in video and image compression processes. Although it is
mathematically simple to calculate and interpret, it does not
evaluate perceived visual quality. With the increase of the
likeness between two images, the PSNR value increases
towards infinity. As pointed out in [35], specific scenarios,
such as certain brightness shifts, produce no difference in
PSNR while visually degrading the image. Thus, other met-
rics are needed as well.

2) SSIM
To better assess the similarity between two images, the
Structural Similarity Index Measure (SSIM) is based on the
hypothesis that the human visual system is highly adapted
to extract structural similarity, which is the interdependence
of parts of an image that are closer to each other. After
normalizing the pixels for contrast and luminance, themethod
compares local information into pixel intensities. It evaluates
over a range from zero to one [36].

3) SAM
As a metric aimed at hyperspectral images, the Spectral
Angle Mapper (SAM) compares spectral curves between a
reference image and the target one. For an image with nb
bands, the spectral response of a single pixel is a vector on
an n-dimensional space. The metric compares the angle of
the mean spectral response vectors for all pixels between
an image and a reference. Equation (1) shows the α cal-
culation, the angle between the spectral curves of a pair of
objects, where t and r are the reference and analyzed spectral
responses respectively [37].

α = cos−1
[ ∑nb

i=1 tiri

(
∑nb

i=1 t
2
i )

1
2 (

∑nb
i=1 r

2
i )

1
2

]
(1)

As it measures the angle between two spectral curves,
when the likeness between two images increase, the angle
approaches zero.

B. RESULTS
The proposed method was compared with the following clas-
sical methods: BM4D, HyRes, fastHyDe, HyMiNoR, rPCA,
with default settings for Gaussian denoising. The following
were chosen as the neural reconstruction methods: GRN,
HSIDCNN, QRNN3D, and MemNet (with a HyRes step).
The default models were used, aimed at Gaussian denois-
ing for the selected networks. Many of the used denois-
ing methods presented here were used through their HyDe
implementation [38], whereas others such as BM4D were
installed via the official pip package [39], for GRN the official
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FIGURE 4. Denoised results for the four most performant methods tested, done for three different noise levels. A single band was chosen, and the
grayscale images were colored artificially. The right column presents the results for the proposed method, NL-CNND.

implementation available on GitHub was used [40]. To assess
the performance of thesemethods, three images were selected
from the ICVL dataset [31], and one from the NASA AVIRIS
archives, from the Kennedy Space Center [32]. After being
processed, the total number of images amounted to 160 IS
samples. The HSIs used for the comparison were not present
in the pool used for network training.

Concerning an objective comparison between methods,
TABLE 1 (already shown) precises results where the pro-
posed method surpasses the other methods in all of the three
chosen metrics. However, it is interesting to point out how
expressive are the FastHyDe results, since it is a classical
method that does not rely on the novelty features present in
neural networks.

For the visual comparison, FIGURE 4 shows an example
of a clean, and image with added noise using σ = 30, 50, 70,
at columns A and B respectively. These columns are followed
by the four most performing denoising methods. Regarding
the reconstruction results, the proposed NL-CNND method
(column F) shows the best restoration. Even though some
small artifacts are present, it shows the best contrast in
complex areas such as the terrain. The second-best method,
BM4D (column E), shows a good restoration that, on the
other hand, has a lot of blurry artifacts that can be seen
in areas of the image where the colors should have been
more consistent, such as the water body. FastHyDe (column
D) also shows a good restoration, but as the noise level
increases, the contrast of the images continuously decreases.
HSIDCNN (column C) has a more blurred reconstruction,

with lower contrast, and also suffers from a reconstruction
problem where the denoised sub-images are reassembled
back, a common problem with neural restoration fixed to a
specific kernel size.

VI. CONCLUSION
This paper has addressed the issue of noisy hyperspectral
images corrupted by Gaussian noise. These images suffer
significantly from this type of corruption due to the number of
bands acquired simultaneously, and quantization noise. Here,
we have presented a brief overview of different classical and
neural-based noise removal techniques. Our work is based on
amixture of those twomethods, BM4D andNeural Networks,
showing that the proposed recovery method yields better
results when compared to the other techniques, supported by
three different metrics PSNR, SSIM, and SAM. Subjective
metrics also show that themethod provides high-performance
restoration results. In NL-CNND, the processing time of
BM4D is an order of magnitude higher than the deep neu-
ral network inference time. As future works, optimizing the
process for BM4D is appealing for real-time applications.
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