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ABSTRACT To automate operations in a logistic warehouse, a robot needs to extract items from the clutter
on a shelf without collapsing the clutter. To address this problem, this study proposes a multi-step motion
planner to stably extract an item by using the support relations of each object included in the clutter. This
study primarily focuses on safe extraction, which allows the robot to choose the best next action based on
limited observations. By estimating the support relations, we construct a collapse prediction graph to obtain
the appropriate order of object extraction. Thus, the target object can be extracted without collapsing the
pile. Furthermore, we show that the efficiency of the robot is improved if it uses one of its arms to extract
the target object while the other supports a neighboring object. The proposed method is evaluated in real-
world experiments on detecting support relations and object extraction tasks. This study makes a significant
contribution because the experimental results indicate that the robot can estimate support relations based on
collapse predictions and perform safe extraction in real environments. Our multi-step extraction plan ensures
both better performance and robustness to achieve safe object extraction tasks from the clutter.

INDEX TERMS Deep learning in grasping and manipulation, logistics, factory automation, manipulation
planning, bimanual manipulation.

I. INTRODUCTION
In a logistic warehouse, human workers usually pick and
place products from a shelf into a box for service delivery.
To replace this logistic operation with a robot, the robot
must be able to search for the target product and safely
extract it from a shelf in which many products are randomly
placed. Thus far, several learning-based methods [1], [2] have
designed the motions for robots picking objects from clutter.
Picking systems adopted in [3] and [4] used a learning-
based grasp detection and action decision model to handle the
difficulty involved in picking a specific target from a complex
scene. However, extracting the target object from a shelf
imposes a new challenge, because a robot needs to safely
extract the object while preventing the fall of neighboring
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objects. To address this problem, our previous method [5]
generated a single-step motion plan for selecting and extract-
ing target objects while supporting the surrounding objects.
However, it remains difficult for the robot to effectively
and safely manipulate products in various scenarios, such as
unstable objects, which often require a sequential process to
remove objects without disturbing the remaining clutter.

Fig. 1 shows a scenario in which our multi-step motion
planner is effective. Here, the robot extracts the target object,
box 0, marked in white from the pile. Boxes 1 and 2, however,
are stacked on the target. The robot is expected to remove
these boxes and subsequently extract the target object. To this
end, we need the information regarding where box 2 is sup-
ported by box 1 and box 1 by box 0.

In this study, the support relations of the objects included
in the clutter are expressed by a graph structure. For example,
the support relations of the boxes shown in Fig. 3 can be
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FIGURE 1. Safe object extraction based on support relations. The support
relations in the upper right are visualized in a collapse prediction graph.
To extract the target object marked in white, the robot extracts the object
in a safe extraction order.

expressed by a hierarchically structured graph. To extract box
0 from the clutter, the graph indicates that boxes 2, 1, and
0 should be extracted in this order. This study proposes a
novel multi-step object extraction planning from clutter by
using graphs obtained by estimating the support relations of
objects included in the clutter. Our proposed method analyzes
the cluttered environment in the graph structure by consider-
ing the physical phenomenon of collapse, and the results of
this study are expected to contribute to the development of
safe robot manipulation.

The proposed multi-step object extraction planning con-
tains three major components: 1) a collapse predictor (CP)
that predicts the support relations between two objects from
the clutter by using depth images, 2) a collapse prediction
graph (CPG) that consists of the support relations to ensure
safe extraction, and 3) a multi-step extraction planner based
on the CPG. We infer support relations using a CP based
on a deep neural network proposed in [6]. The predictor can
predict the movement of objects when extracting an object
and identify supported objects for different targeted objects
using only depth images. The CPG consists of inferred sup-
port relations and provides the best extraction planning by
searching for the target object via a recursive traversal search.
Additionally, to efficiently extract stacked objects, we pro-
pose a novel bimanual extraction planning based on the CPG
and validate typical scenes.

The rest of this paper is organized as follows. In Section II,
we review related studies. Section III describes the proposed
method. In Section IV, we evaluate robotic experiments.
In Section V, we discuss the limitations and possible future
extension. Finally, we present our conclusions and future
work in Section VI.

II. RELATED WORK
Picking objects from clutter is an active research area [1], [7],
[8], [9], [10], [11]. This review of related works particularly

focuses on three aspects: picking from clutter, visual detec-
tion of object relations, and support relations of objects.

A. PICKING FROM CLUTTER
Picking objects is a fundamental task in logistics [3], [12],
[13], [14]. Recently, several studies, such as [3], [4], [15],
and [16], have assumed that objects are randomly placed in
a box and use deep neural networks to perform high-level
picking tasks with accurate grasp detection in various sce-
narios. Mahler et al. built a large-scale dataset, Dex-Net, and
predicted the grasp poses based on a convolutional network
(ConvNet) [15]. To address a wide range of object categories
in cluttered environments, Zeng et al. developed a system
for specific target retrieval by pick-and-place with multiple
ConvNets [3]. Matsumura et al. adapted the ConvNet to
predict object entanglement [16]. Other approaches assumed
that objects were placed side by side on a shelf and relocated
to pick the target object. Huang et al. planned a sequence of
pick-and-place actions to search for an occluded target [17].
Nam et al. proposed relocating objects by pushing [18].
However, if objects are piled on a shelf, an object cannot
easily be pushed and slid. By contrast, our study considers
the support relationships among stacked objects and presents
a multi-step extraction plan to extract the target object. Our
method provides a safe extraction process that prevents the
fall of neighboring objects.

B. VISUAL DETECTION OF OBJECT RELATIONS
Although the grasp detection algorithms for robotic grasping
have achieved significant progress, some of these methods
assume the grasp of a single isolated object. In a cluttered
environment, a robot should sufficiently understand the clus-
ter to interpret various properties included in an image. These
properties include the geometrical, spatial [19], [20], [21],
[22], and linguistic [23] relation among objects. Zhang et al.
proposed the visual manipulation relationship network to
address the grasping order of vertically stacked objects [24],
[25] and considered the visual relation of overlap between
objects. Recently, datasets such as the visual manipulation
relationship dataset [24] and relational grasp dataset [26] have
been proposed to build inference models for such relation-
ships. However, these relationships only show the geomet-
rical relationships among objects but cannot be extended to
a more general situation of clutter. In this study, the support
relations are inferred from a predictive model trained with
object movements based on a physics simulation.

C. SUPPORT RELATIONS OF OBJECTS
The support relations among objects have been obtained by
analyzing geometric and spatial relationships [27], [28], [29],
[30], [31]. Panda et al. extracted the geometrical properties of
objects from images and inferred support relations [27], [28].
Kartmann et al. extracted physically plausible support rela-
tions using primitive shapes [31]. Paus and Asfour inferred
the relations in probabilistic representation, including
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FIGURE 2. Proposed system overview. The collapse predictor outputs the probability that the other objects might fall. Support relations are estimated
from this result and graphically represented. Based on the collapse prediction graph, the robot successively picks objects from the pile. In bimanual
manipulations, the robot directly extracts the target object by holding the supported object if the target object is supporting only a single supported
object.

uncertainty in shapes and poses [32]. In support-relation
detection, the related works use the simple primitive that
requires preprocessing and pose estimations to approximately
predict the scene and restricts real-world use. Contrarily, our
study only uses depth images to predict the object collapse
and infer the support relations among objects without depend-
ing on the shapes and numbers of objects.

III. METHODOLOGY
An overview of the multi-step extraction planning is illus-
trated in Fig. 2. The proposed framework consists of a CP, the
inference of support relations, and a safe extraction strategy.
First, we begin with the details of the CP proposed in our
previous study [6] (Section III-A). Then, we infer the support
relations, which represent the physical relationship between
two objects using the CP given a depth image captured from a
shelf scene (Section III-B). By concatenating all the support
relations, we create a CPG to determine which objects can
be extracted from the pile. Herein, we generate a multistep
plan to extract the target object (Section III-C). Furthermore,
we propose bimanual manipulation based on the CPG for
efficiently extracting the target object. The proposed method
is described in the following section.

A. COLLAPSE PREDICTOR
The CP is a deep neural network based on themodel proposed
in [6] and further customized to infer support relations in
cluttered environments. This section describes the network
architecture, data collection process, and training details. Our
method needs sufficient accurate predictions to infer physical
relations among objects. Therefore, we extend the dataset
and adjust the network parameters to improve the accuracy
compared with that of previous studies. The details are as
follows.

1) NETWORK ARCHITECTURE
The neural network architecture includes two encoders and
a decoder. The scene encoder compresses the input of depth

FIGURE 3. Architecture of the collapse predictor consists of two encoders
that compress the depth image (256 × 256) and target mask (256 × 256).
These outputs are concatenated, and a decoder network generates a
heatmap (256 × 256), showing the probability of an object falling. Finally,
the support relation is inferred based on the heatmap.

images (256 × 256) with a grayscale using the VGG16 [33]
(until the last convolutional block) pre-trained with Ima-
geNet [34]. The first ten convolutional layers are fixed in
training to transfer feature extraction. The target encoder
converts target masks (256×256) into feature maps using five
convolutional (Conv) layers, each followed by batch normal-
ization and rectified linear unit activation layers, respectively.
The convolution layers comprise 16, 32, 32, 32, and 64 layers.
The Conv layers output latent codes (8×8×64). The decoder
upsamples the latent code concatenated with both outputs, the
head of VGG-16 (8×8×512) and target encoder (8×8×64),
using five Conv layers and one Conv layer. The networks
output a heatmap (256×256), which shows the probability of
falling objects in pixels. The architecture is shown in Fig. 3.

2) GENERATING TRAINING DATASET
In this section, we introduce the process for our collapse
dataset generation. A PhysX physics simulator [35] simulates
object removal. First, we place the objects in any of the fol-
lowing scenes: (a) shelved, (b) stacked, and (c) random (see
Fig. 4). In the shelved scene, we arrange objects vertically at
random intervals, i.e., bookshelves; in stacked, we randomly
place objects on each object; and in random, we drop objects
at random poses and heights. Specifically, the random scenes
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FIGURE 4. Simulating the extraction of a box from a clutter. Each scene is
generated by adjusting the object poses/positions (a,b) and random pose
(c) and dropping the random points (c) on top of others (b) and
horizontally (a).

encompass depth data, which we incorporate into the dataset
to discern the relative positioning of objects along the z-
axis. However, occlusion is beyond the scope of the current
study, and therefore shelved and stacked environments were
focused on over random environments. In each simulation,
we use 5-10 objects in five types of rectangular shapes. Then,
a target object is randomly selected and removed from the
shelf. During data generation, if the change in the object’s
center position exceeds a threshold, the objects are moved.
We empirically set the threshold to 5.0 mm, coefficient of
static friction to 0.9, coefficient of dynamic friction to 0.8,
coefficient of restitution to 0.1, and density to 1.0 kg/m3.
Notably, the viewpoint is set to face the shelves, implicitly
assuming that the direction of gravity is downward.

We collect a depth image, target mask, and collapse-
labeled image. The depth image is a 256 × 256 grayscale
height map showing an initial scene in which objects are
placed. The target mask is a 256×256 binary image in which
all the pixels are black, except those of the target object. The
collapse-labeled image is also a 256 × 256 binary image in
which other objects are annotated after the target is removed.

For data collection, we executed all the simulations in
10,000 shelved, 10,000 stacked, and 30,000 random scenes.
The dataset of 50,000 simulations is split into training (90%)
and validation (10%). As a test set, we prepared 1,000 simu-
lated data in random scenes.

3) TRAINING DETAILS
The batch size is 24, learning rate is 0.001, and total epoch
is 100 with an early stopping with loss monitored. In this
study, the training process stopped at 58 epochs. Moreover,
the background occupies the heatmap within a wide range,
and the network estimates the risk of collapse as lower than
the real. Herein, we used the focal loss from RetinaNet [36]
as follows:

L(y) = −αy(1− y)γ log(y), (1)

where y is the probability that the predicted labels are equal
to the ground truth ∈ {1, 0}, αy ∈ [0.0, 1.0] is the weight
for y, and γ ≥ 0 is the focusing parameter. Intuitively, this
scaling factor decreases the contribution of easy examples,
i.e., a black background. In our training, α1 and α0 are set

TABLE 1. Comparison with our previous work.

FIGURE 5. Outputs of the collapse predictor. From a set of both the depth
images (top row) and target masks (middle row), the proposed network
outputs the heatmaps (bottom row), which are the probabilistic
color-scale ∈ [0.0, 1.0]. (a) The three images on the left are simulated and
(b) the three on the right are real scenes.

to 0.25 and 0.75, respectively, and γ is set to 2.0. Table 1
compares the proposed model with that of previous works.
The improved model achieves high pixel accuracy, Intersec-
tion over Union (IoU), and precision values by using the focal
loss. Therefore, we use a weighted model to predict object
collapse in later sections. Fig. 5 illustrates the outputs of the
trained network.

B. INFERENCE OF SUPPORT RELATION
In this section, we infer support relations based on the CP.
Support relations have been defined in [29], [30], and [31].
Summarily, given two objects X and Y , X supports Y is
denoted as SUPP(X ,Y ). X is the supporting object, and Y is
the supported object, i.e., if we remove X from the relation,
Y falls. Herein, we focus on the fact that the CP detects
objects that fall after removing a target object. Based on this
definition, the CP is considered appropriate for detecting the
relations between supporting and supported objects.

The flow of inference is as follows. First, we divide point
clouds captured with a depth sensor into each object, which
provides its target mask and object area RO. Then, the CP out-
puts a probability map, which is a dense pixel-wise heatmap
with values ranging from 0.0 to 1.0. We calculate the area
in the heatmap above the threshold value as the collapse
area RC . If an object is in the collapse area, we consider it a
support object for a target, i.e., a supporting object. To detect
supported objects, we use the IoU between the collapse area
and the area of each object:

IoU =
RO ∩ RC
RO ∪ RC

. (2)

This indicates that the overlap ratio of each object with
respect to the predicted collapse is RC . If the IoU exceeds

45132 VOLUME 11, 2023



T. Motoda et al.: Multi-Step Object Extraction Planning From Clutter Based on Support Relations

a certain value, the two objects have a support relation. In a
cluttered environment, removing an object may cause several
objects that are not in direct contact with the object to fall.
When using the CP, such indirect relations between objects
should be excluded. Each object is detected as a bounding
box (BB), and we evaluate adjacency scores with the IoU
based on object BBs that are larger than the original ones.
If an adjacency score exceeds the threshold, the relation is
considered a pseudo-direct contact.

C. MULTI-STEP OBJECT EXTRACTION
We construct a CPG to determine the next best target that
can be safely extracted from the clutter. Given all the support
relations, a tree is built with the target object as the root.
As shown in Fig. 6(a) and 6(b), we connect the support
relations and remove them except for those between adjacent
targets.

Our strategy exploits the CPG and safely removes other
objects iteratively until the target is extracted. The procedure
is shown in Algorithm 1. The multi-step algorithm selects the
strategy to safely pick the selected target ot from all objectsO.
Initially, we create the CPG G from a depth image Im.
In each iteration of the loop (lines 3-21), we extract objects
that interfere with the safe picking of the selected target.
In line 4, we find the safest object to pick in the clutter. Safe
extraction requires selecting a child node for a parent node to
minimize the risk of collapse. We explore the CPG by reverse
level order traversal with reference to [27] and [28]. If the
objects are supported hierarchically, the leaf node, which is
not supported by any other object, can be safely extracted in
the CPG. Therefore, leaf nodes are extracted first. In a special
scenario wherein the parent node has multiple child nodes,
we retain a relation between the child and parent nodes at
the lowest layer and ignore the other relations (see Fig. 6(c)).
This is because if a part of the supported objects is ignored
when picking an object at a lower node, a collapse will occur.
In lines 4-5, the robot grasps an object o selected from the
clutter based on the CPG G.

When pulling an object of a certain width (lines 7-18),
we monitor each step of the execution for the potential col-
lapse of objects. Because this research does not consider
dynamics duringmanipulations, an object may fall because of
unexpected contact or friction. Therefore, we divide an action
into several steps and ensure safety by predicting a collapse
score cp before each step. The score is calculated using the
collapse area RC and manipulated object area RO as follows:

cp =
area(RC ∩ RO)

area(RO)
, (3)

where area(R) indicates the area of R. cp is the rate of change
of RC of each object, and is used to detect the occurrence of
collapse in RO. In this case, even if only part of the collapse
area of the object is detected, the effect of the manipulation
cannot be ignored. Therefore, the exact matching of the area
is not considered, only the detection rate. If cp exceeds
the threshold cpmax, we can re-determine the extraction

Algorithm 1Multi-step Object Extraction Planning
Input: All objects in clutter O and selected target ot
1: Im← Take depth image;
2: G← Create Collapse Prediction Graph with Im and O;
3: while selected target ot is not extracted do
4: o← Select the extractable object from G;
5: g← Generate grasp pose for o;
6: Grasp object o in g;

// Detect the collapse during the object extraction
7: while true do
8: Im← Take depth image;
9: cp← Compute collapse score with Im and o

10: if cp > cpmax then
11: Release object o;
12: Exit the loop;
13: end if
14: Pull object o forward;
15: if object o has been extracted to a certain place

then
16: Exit the loop;
17: end if
18: end while
19: Im← Take depth image;
20: G← Renew Collapse Prediction Graph with Im;
21: end while
22: return Success

FIGURE 6. Creating a CPG. (a) We connect support relations, create a
CPG G on a given object, and (b) remove relations except those between
adjacent targets. (c) In these scenarios, the relations connecting to parent
nodes at higher child nodes (white edges) are pruned to maintain crucial
relations. The numbers indicate the hierarchy based on the target object.
The search is conducted via a reverse level order traversal, and each
number represents its depth from the root node. Here, objects numbered
5 are leaf nodes, and can be safely extracted.

order to select the other removable object (see lines 8-13 in
Algorithm 1). We set the threshold cpmax to 0.05 considering
minor output errors.

If support relations are detected on SUPP(X ,Y ) and
SUPP(Y ,X ), i.e., supporting each other, we select only the
support relationship with the higher collapse score and ignore
the other. Then, we determine the extraction order. Notably,
when removing these supporting objects with a single arm,
bimanual arms should be used.

Bimanual manipulation is relevant for both efficient and
safe extractions of clutter. In our previous work [5], we pro-
posed the picking of objects while supporting other objects,
but this cannot be applied to robotic picking under lim-
ited working ability, such as multiple objects stacked on
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a single object. In this study, we perform bimanual manip-
ulation using the CPG and find a strategy to pick selected
target. This technique can reduce action steps and pick objects
efficiently. Through the proposed bimanual manipulation,
we verify the capability of the CPG to pick the selected
target safely. This procedure is shown in Algorithm 2. First,
we ensure that a robot can retrieve a target object while
ensuring sufficient support with the other arm. A robot can
perform a bimanual action when only one supported object is
related to the target (see Fig. 7(d)). One arm grasps the object
to prevent it from falling, and the other extracts the target
object (see lines 6-9 in Algorithm 2). If two ormore supported
objects are present (as in Fig. 7(b.1)), before retrieving the tar-
get object, the robot extracts the supported objects to possibly
satisfy the condition. The CPG for each supported object is
constructed, as shown in Fig. 7(b.2). We select and extract the
object with the lowest leaf node from the CPGs (see Fig. 7(c))
to satisfy the condition of the bimanual manipulation in a
minimum step (see lines 10-13 in Algorithm 2). For example,
in Fig. 7(a), at least six objects should be removed based
on the CPG. In contrast, when using bimanual manipulation,
a robot can extract a target object after removing only one
object.

Algorithm 2 Bimanual Object Extraction Planning
Input: All objects in clutter O and selected target ot
1: while selected target ot is not extracted do
2: Im← Take depth image;
3: n← Count the number of objects supporting ot ;
4: os1, os2, . . . , osn← Supported objects of ot ;
5: Gsi← Create the graphs of osi with Im and O;

// Extract the target while supporting the object
6: if n = 1 then
7: gs1← Generate grasp pose for os1;
8: gt ← Generate grasp pose for ot ;
9: Pull the target ot while supporting os1;

10: else
11: ol ← Select the lowest leaf node from all graphs;
12: gt ← Generate grasp pose for ol;
13: Pick and remove object ol with grasp pose gt ;
14: end if
15: end while
16: return Success

IV. EXPERIMENTS
In this section, we evaluate the scene analysis from the esti-
mation of support relations and test robotic experiments in a
real-world environment.

A. EXTRACTION OF SUPPORT RELATIONS
We evaluated the estimation of the support relations with
reference to [31]. The depth images for several real scenes
were captured with a YCAM3D-10L (YOODS Co. Ltd.,
Yamaguchi, Japan) in front of a shelf. We constructed the

FIGURE 7. Bimanual manipulations based on support relations. Given a
CPG (a), we can estimate support relations in contact with the target
object marked in white (b.2) and generate the extraction order (b.2).
(c) We iteratively remove objects using the extraction order until the
target object supports only a single object. (d) The target object marked
in green can be safely extracted by fixing the supported object marked in
blue.

CPG GHYP = (OHYP,EHYP), which is the support hypoth-
esis, using the proposed methods. O denotes objects in the
scene, and E denotes a support relation. GGT = (OGT,EGT)
is generated as the ground truth and manually annotated for
the test. In this study, we focus only on the accuracy of the
detections of the support relations and ignore the case in
whichOHYP does not correspond toOGT. Herein, we evaluate
our results in terms of precision and recall as follows:

Prec =
|EHYP

⋂
EGT|

|EHYP|
(4)

Rec =
|EHYP

⋂
EGT|

|EGT|
(5)

Table 2 shows precision (Prec.) and recall (Rec.) for 15 scenes
and Fig. 8 illustrates selected evaluation scenes. The results
of the precision and recall are similar in accuracy to those of
the related work [31].

B. REAL-WORLD ROBOT EXPERIMENTS
In all the experiments, we used MOTOMAN-SDA5F
(Yaskawa Electric Corporation, Kitakyushu, Japan; a biman-
ual robot with 15 degrees of freedom (DOFs): seven DOFs in
each arm and one DOF in the waist) [37]. The method was
programmed using Choreonoid [38] and graspPlugin [39].
The gripper was an adaptive gripper 2F-140 [40] (Robotiq,
Lévis, Canada) installed in the arms of MOTOMAN-SDA5F.
The YCAM3D-10L was positioned in front of the shelf and
could observe the inside [41]. The experimental environment
is illustrated in Fig. 9(a). The system used a Core i7-8550U
CPU @ 1.80 GHz with 16 G RAM and Python 2.7. The OS
was Ubuntu 16.04.

We used 3-10 rectangular objects (see Fig. 9(b)) randomly
stacked on the shelf. The robot detected objects by segment-
ing point clouds with region growing [42] and created a grasp
pose from the detected object area.
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TABLE 2. Precision and Recall of estimating support relations for all the tested scene images.

FIGURE 8. Selected evaluation scenes. We estimated the support relations (white edges), except for those between adjacent objects, from the depth
images on the bottom row. We sampled the six cluttered scenes on the top row, and manually annotated the support relations (pink edges) as the
ground truth.

FIGURE 9. (a) Experiment setup, including a MOTOMAN-SDA5F robot,
Robotiq 2F-140 grippers, and a YCAM3D-10L depth sensor. (b) Objects
used for real-world extraction experiments.

TABLE 3. Real-world extraction performance of different approaches and
conditions.

1) EXPERIMENTS ON A SINGLE ARM
These experiments test object picking from a viewpoint
whereby support relations are correctly detected. Fig. 10
shows snapshots of the experiments using a real robot; the
upper images result from estimating the CPG and extraction

order. We conducted 25 experiments using only one-handed
manipulation as in proposed Algorithm 1. This algorithm
performed well at picking a selected target object with a
success rate of 80.0% (20/25), and the mean steps was 2.3.

We compared the proposed method to a single-step
method [5]. The single-step method directly extracts the tar-
get object based only on initial collapse predictions. The robot
attempted to extract a random object from 3–5 or 10 objects
using the single-step method and an object from 3-10 objects
using the proposed method. The results are shown in Table 3.
The success rate at each step was used as the evaluation
metric. We achieved the success rate of 91.2% in extracting
the objects regardless of the number of objects. The proposed
method performed better than our previous work (a success
rate of 80.0% in extracting the objects).

2) EXPERIMENTS ON BIMANUAL ARMS
To validate bimanual manipulation, we conducted exper-
iments with the bimanual arms of MOTOMAN-SDA5F.
Under the aforementioned condition in the first experi-
ments, we determine an effective option using supporting and
extracting actions simultaneously. Fig. 11 shows snapshots
of the experiments to trigger the safe extraction order based
on the proposed CPG. First, the robot captures the scene
and detects support relations. If the target supports only a
single supported object, the robot directly extracts the target
object while supporting the supported object. If other support
relations are identified on the target object, the robot removes
an object following the extraction order using the single-arm
method.

In Fig. 11, the upper row is a stacked scene experiment
and the bottom row is a shelved scene experiment. In the
former, three objects are supported by the target object, and
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FIGURE 10. Real-world experiment using single arm. (Top) The proposed algorithm estimates support relations from a depth image. A CPG (pink lines)
is generated from these relations. (Bottom) The robot selects and extracts an object from the extraction order (a)-(d).

FIGURE 11. Real-world experiments using bimanual manipulations. (a, b) When a target object supports only a single object from the estimated CPG,
(c.1) the robot holds the supported object and (c.2, c.3) extracts the target object. (Top) In stacked objects, the robot grasps an object on the target
object. (Bottom) When arranging objects horizontally, the robot grasps any object that leans on the target object.

in the latter, two objects are supported by the target object.
In each scene, the robot immediately extracts the target object
without removing all the supported objects.

V. LIMITATIONS AND POSSIBLE FUTURE EXTENSION
Our study proposes a robotic manipulation system that can
safely extract objects from a pile. The experimental results
illustrate the importance of identifying support relations and
adaptability for safe extraction in the real world. Notably,
conventional methods, such as those proposed by [30]
and [31], developed the inference of support relations of
approximate models from contact and used heuristics with
human understanding to predict uncertain information. These
studies focused on scene analysis because their applications,
which detect a complex scene and real-world manipulation,
were problematic. In our study, we proposed a novel multi-
step extraction plan and applied it to real-world robotic
experiments. Our method achieved more than 90% success
in retrieving selected objects by verifying the appropriate
extraction order.

Our limitations were observed through physical
experiments.

First, learning accuracy has a significant implication for
safe manipulation. Missing important support relations can
cause damage to the object. As shown in Table 2 and Fig. 9,
almost all the support relations are correct. In particular,
the recall, which is essential to safely manipulate objects,
is higher than 0.9. However, in scenarios similar to S4, where
the accuracy is low, the probability of object collapse is often
high due to the dense distribution of objects, which result
in redundant detection. One of the causes is that internal
unobserved parameters such as friction, mass, density, and
shape yield unexpected results. To improve detection accu-
racy, we adjust the trainedmodel on known object shapes [43]
and a specific grasp conditions [44]. Moreover, we need
inference based on higher-dimensional observation informa-
tion, such as point clouds, to accurately obtain support rela-
tions. Recently, a learning-based model for point clouds has
been investigated to extract shape features. Danielczuk et al.
proposed a model architecture that examines the colli-
sion between point clouds [45]. Chen et al. designed an
implicit estimation network to extract a 3D affordance
heatmap for each potential task [46]. By using these models,
we can accurately detect contact between objects based on
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observations. It should also be noted that this study assumes
that all objects in clutter are recognizable. Random cases
include the problem of detecting occlusions in sensing clutter.
In the future, we will extend the inference model to 3D to
develop a more robust detection model of support relations.

Second, the arrangement between two arms is challenging.
However, detection using the CPG shows that the operation
can be performed efficiently with appropriate two-handed
manipulation. However, both objects are assumed to be in
contact and extremely mutually close. Therefore, the left and
right arms can mutually interfere during robot manipulation,
and the robot must plan the best motion sequences consid-
ering the pose and placement of the two grippers. Objects
can still collapse if the supporting hand is removed while
another holds the target. In this case, it is more effective
to use multi-step extraction with a single arm to provide
sufficient safety. Conversely, the purpose of bimanual manip-
ulation is to verify the support relations derived from the
CPGs, and developing the algorithm for continuous work
is a future task. We must also consider special cases in
which two or more objects can support each other, such as
SUPP(X ,Y ) and SUPP(Y ,X ). In these cases, safe selection
is impossible if an operation is limited to using a single
arm. This study partially demonstrates that bimanual manip-
ulation can be used in such situations (Section III-C), but
as mentioned above, it is an important topic for the future.
Recent studies have focused on bimanual manipulation for
various tasks. Chen et al. constructed an assembly sequence
to evaluate the graspablity, safety, and assemblability of two
manipulators [47], [48]. Avigal et al. proposed the BiMaMa-
Net architecture for bimanual manipulation, which predicts
two corresponding gripper poses without spatial constraint,
to improve the bimanual folding for garments [49]. In the
future, we will consider using a motion planning method for
bimanual manipulation to improve usability.

Thus, identifying support relations from the CP is essential
for adaptability to safely pick objects. Our CPG can guarantee
a high level of safety in object picking by robots. In the
future, we will incorporate lifting and repositioning objects
based on action-based physical reasoning. To this end, wewill
integrate available information, such as the shapes, textures,
and masses of objects, to improve the inference model.

VI. CONCLUSION
In this study, we proposed an approach for safe object extrac-
tion based on the estimation of support relations between
objects. We primarily considered the issue of safe extraction:
determining which object should be removed to secure each
object from the graph structure by predicting the support
relations between supported and supporting objects. This
enabled the robot to choose the best next action from the
limited observations. Further, a novel bimanual manipulation
to directly and efficiently extract the selected target object
was proposed. Our proposed method outperformed previous
works in terms of success rate, and the performance was
improved regardless of the situation, such as the number of

objects and arrangements. The experimental results of this
study demonstrated that the robot can evaluate support rela-
tions by using collapse prediction and performmulti-step safe
extractions in real environments, therebymaking a significant
contribution to the literature.

In future studies, wewill learn object movement from time-
series data using updated simulations and integrate infor-
mation on the external properties of objects to predict the
outcome of the action. We will also enhance the estimation of
support relations by expanding the recognition to 3D space,
which is more intricate and practical. To achieve this, we plan
to incorporate multi-perspective information into the input of
the prediction model.
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