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ABSTRACT Cloudlet-based optimization involves deploying a set of cloudlets in an environment and
assigning user tasks to optimize various metrics, including energy consumption, quality of service (QoS),
and cost. Typically, approaches deal with them separately, which might cause sub-optimality. Furthermore,
assuming the fixed location of the cloudlets will limit the dynamic adaptability of the problem. Enabling
more optimality and adaptability to the dynamic nature of cloudlet-based computing, we propose a novel
Variable-Length multi-objective Whale optimization Integrated with Differential Evolution designated as
VL-WIDE. Unlike the existing optimization algorithm, VL-WIDE features the capability of searching
different lengths of solutions to cover the variable number of cloudlets for deployment. Furthermore,
it enables a non-dominated evaluation of solutions based on four objectives using crowding distance for
selection. It provides an application-oriented solutions repair operator for repairing non-valid solutions and
assuring that all solutions are generated in the feasible region. The proposed algorithm enables moving
the cloudlets among pre-defined locations to increase the quality of service according to the change in the
user density caused by user mobility. Comparing this developed algorithm with other algorithms shows its
superiority in multi-objective optimization (MOO) evaluation metrics. VL-WIDE has provided the best in a
number of non-dominated solutions and delta metrics and was competitive in other metrics.

INDEX TERMS Mobile edge computing environment, cloudlet deployment, task offloading, multi-objective
optimization, variable-length optimization.

I. INTRODUCTION

Cloud technology is gaining popularity globally with various
applications, and its spending growth has been maintained
between 26% - 38%, as shown in Figure 1. Mobile edge
computing (MEC) is a well-known technique to support
delay-sensitive applications at the edge of mobile networks.

The associate editor coordinating the review of this manuscript and

approving it for publication was Taechong Kim

In recent years MEC has received significant attention from
the academic and industrial communities [1]. MEC alle-
viates the shortcomings of traditional cloud computing by
minimizing the delay of computation services for mobile
devices [2]. One of MEC’s critical challenges is selecting
an efficient placement of the cloudlet and task offloading
decision [3]. In the Mobile Edge Computing Environment
(MECE), cloudlets can be collocated with the base station
in the wireless metropolitan area network (WMAN) [4]. The
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FIGURE 1. Statistical graph of the spending growth from Q2-2019,
to Q1-2021 (www.statista.com).

latter is a wide area network consisting of many base stations
(BSs) that allow mobile devices to access their needed ser-
vices. On the one hand, the deployment of the base station is
not a random process; rather, it is based on conducting certain
optimization for selecting the best location for the base station
to accomplish the maximum coverage [5]. On the other hand,
deploying cloudlets at a certain base station should also result
from an optimization algorithm aiming to maximize or mini-
mize several factors. Hence, researchers have considered the
problem of cloudlet deployment as one of the sub-problems
of MEC [6]. However, a minority of studies have considered
mobile cloudlets in order to enable dynamic deployment
by moving cloudlets based on the temporal condition of
MEC [7]. The integrated dynamic cloudlet deployment with
task offloading (IDCD-TO) is a more general optimization
problem compared with static cloudlet deployment separated
from task offloading. Hence, IDCD-TO is an NP-hard opti-
mization problem with combinatorial nature that has not been
studied well in the literature.

Optimizing one aspect of a certain system is irregular in
real-world applications due to more than one user satisfaction
perspective. This has led researchers to develop the concept
of Pareto-optimization, which assesses a certain decision
regarding the system using a set of satisfaction metrics [8],
e.g., delay, cost, energy, and quality of service. Consequently,
instead of dealing with one optimal solution, we consider
a set of non-dominated solutions that are provided to the
decision maker or to an automated process for selecting one of
them to be enabled according to certain criteria such as cost,
time, and energy consumption. Some famous algorithms for
multi-objective optimization are the non-dominated sorting
genetic algorithm (NSGA-II) [9], NSGA-III [10], and the
multi-objective evolutionary algorithm based on decomposi-
tion (MOEAD) [11].

Traditional meta-heuristic optimization algorithms con-
sider a fixed length of the solution space, but this does
not apply to many real-world problems. The reason for
this is that certain values of some decision variables may
generate or disable other decision variables, resulting in a
variable-length nature of the solution space caused by differ-
ent solution lengths [12]. Dealing with such types of problems
requires special types of operators that are aware of the length
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variability of the solution space and capable of covering all
dimensions of solutions during the search. Some of the recent
algorithms that were developed with variable-length handling
are the work of [13] and [14].

IDCD-TO is a multi-objective variable-length optimization
problem. The multi-objective nature comes from having more
than one metric to be optimized, i.e., energy consumed by
cloudlet, energy consumed by the user device, delay of execu-
tion, and cost of deployment. It is observed that these objec-
tives have a self-conflict nature. The variable-length nature
comes from having more than one cloudlet to be deployed
according to the demand. This article aims to propose an inte-
grated whale optimization algorithm with differential evo-
lution for IDCD-TO. Our proposed algorithm is designated
as Variable-length multi-objective Whale optimization Inte-
grated with Differential Evolution designated as (VL-WIDE).
This article presents several contributions. We state them as
follows:

o To the best of our knowledge, this is the first arti-
cle that enables tackling the problem of cloudlet-based
computing with an additional degree of freedom that
enables not only deploying the cloudlets in optimal loca-
tions but also moving them according to the geographi-
cal demands information and integrating this with task
offloading between more than one cloudlet for better
load balancing.

o It presents a novel formulation of the optimiza-
tion problem of cloudlet-based computing using the
variable-length of solution space. This enables reserving
a compact representation of the decisions in terms of the
variables needed for locating the cloudlets and offload-
ing the tasks from the user to the cloudlets.

« It provides an application-oriented solution repairing
operator for fixing non-valid solutions and assuring that
all solutions are generated in the feasible region.

« Itincorporates variable-length searching within a hybrid
framework combined with multi-objective whale opti-
mization and differential evolution. Hence, it provides
the literature with the first variable-length searching
of multi-objective hybrid whale-differential evolution
optimization.

o This article presents an extensive evaluation using
300 scenarios generated randomly for the variable
affecting the parameters of the system. Furthermore,
it compares it with state-of-the-art algorithms, including
NSGA-II, NSGA-III, MOEAD, PSO, and fixed length
hybrid whale optimization-differential evolution with
standard MOO performance metrics, namely, hyper-
volume, set coverage, and delta-metrics.

The remainder of this article is organized as follows.
Section II presents the related research. In Section III we
provided the system model that presents problem formula-
tion, whale optimization, differential evolution, framework,
and evaluation metrics. The experimental works and analysis
are provided in Section IV, and finally, the conclusion and
future works are given in Section V.
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Il. RELATED RESEARCH

The literature is decomposed into two sub-sections. The first
one is a survey about cloudlet optimization algorithms in
the literature based on meta-heuristic optimization and the
second one is a survey of the algorithms that were developed
in the area of meta-heuristic optimization in general with the
feature of variable-length despite the application nature.

A. CLOUDLET OPTIMIZATION

Cloudlet optimization involves cloudlet deployment and task
offloading, and the literature is rich with numerous works for
cloudlet deployments. In the work of [15], the authors have
explored the edge server deployment problem in a large-scale
mobile edge computing system to balance workload amongst
edge servers and minimize edge server access time. Then,
they described the problem as a multi-objective constraint
optimization and presented a mixed integer programming
(MIP) edge server deployment method to calculate the best
solution. In the work of [16], the Cost Aware cloudlet P1Ace-
ment in moBiLe Edge computing (CAPABLE) technique
is developed by considering both cloudlet cost and average
E2E delay when placing cloudlets. A Lagrangian heuristic
algorithm is developed to achieve the suboptimal solution to
this problem. In addition, the creation of a workload alloca-
tion mechanism after cloudlets are installed to minimize the
E2E delay between users and their cloudlets by taking user
mobility into account. In the work of [17], In WMAN, con-
centrating on cloudlet placement for Cyber-Physical-Social
Systems. Technically, a new approach is proposed based on
affinity propagation with optimal preference (APOP). In the
work of [18], the heterogeneous cloudlet placement problem
has been tackled with a bifactor approximation approach
that guarantees a bounded latency and placement cost while
properly mapping user applications to appropriate cloudlets.
The problem is first formulated as a multi-objective integer
programming model. The bifactor approximation algorithm
(ACP) has been proposed to deal with its intractability. This
algorithm requires an estimate of the user demands to find
the appropriate solution without the upgrade. In the work
of [19], a particle swarm optimization algorithm utilizing
genetic algorithm operators with the encoding library updat-
ing mode (PGEL) was used to address the problem of cloudlet
deployment based on workflow applications (WAs) in wire-
less metropolitan area networks (WMANS). Their approach
enables the cloudlet to be deployed in appropriate positions,
which minimizes the execution time of WAs.

Task offloading is a method used in the MEC environment
to improve the performance of mobile devices by offload-
ing tasks to nearby cloudlets collocated with the BSs in
the WMANS. In the work of [20], a new concept of Digi-
tal Twin Edge Networks (DITEN) was provided, in which
edge server digital twins (DTs) estimate edge server states,
and the DT of the entire MEC system provides training
data for offloading decisions. In DITEN, a mobile offload-
ing system is presented to reduce offloading delay while
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balancing the cost of accumulated utilized service transfer
during user mobility. The Lyapunov optimization method is
used to reduce the long-term migration cost constraint to a
multi-objective dynamic optimization problem that is solved
using Actor-Critic deep reinforcement learning. In the work
of [21], In MEC, task offloading is modeled as a constrained
multi-objective optimization problem (CMOP) that aims at
minimizing mobile devices’ energy consumption and task
processing time. To solve the CMOP, an evolutionary method
is proposed capable of identifying a representative sample of
the optimum trade-offs between energy consumption and task
processing latency, referred to as the Pareto-optimal front.
The development includes initialization, selection, crossover,
and mutation. The added constraints have enabled handling
the two competing objectives better than the non-constraint
approach. They included three constraints: the first one guar-
antee that all task portions are computed either locally or
at a remote device. The second one prevents the ECs from
offloading tasks to non-neighboring devices, and the third
constrains the offloading decisions to non-negative values.
The work of [22] proposes a Multi-Objective Whale Opti-
mization Algorithm (MOWOA) based on time and energy
consumption. Crowding distance was used to improve the
quality of the solution set, and crowding degrees were used to
sort the solutions. Also, an improved MOWOA (MOWOA2)
based on the gravity reference point method was proposed to
increase the number of possible solutions.

According to the specifications set by the European
Telecommunication Standard Institute (ETSI)-MEC, [23]
developed a method for predicting spatiotemporal dynam-
ics of mobile users and allocating communication and
computational resources at the edge of the network based
on those predictions. The proposed architecture uses
Software-Defined Networking to monitor user mobility and
employs Convolutional Long Short-Term Memory (ConvL-
STM) architecture to predict the number of users and their
related service requests over various horizons, followed by
Dynamic Programming to optimally allocate requests to
Multi-access edge servers. In [24], the authors considered
the problem of cooperative task offloading in a distributed
MEC environment, where the task can be migrated between
servers. To address this, they proposed a multi-agent actor-
critic framework using a Variational Recurrent Neural Net-
work (VRNN) based global state-sharing model to reduce
communication overhead. Additionally, they utilized a Long
Short-Term Memory (LSTM) based state estimation model
to learn the spatiotemporal dynamics of tasks. They also
presented a cooperative task offloading algorithm based on
multi-agent deep reinforcement learning, which significantly
reduces computational complexity.

Other works in the literature consider cloudlet deploy-
ment and task offloading simultaneously to address the
cloudlet optimization problem. In the work of [3], the cloudlet
deployment and task offloading from user to cloudlet have
been modeled using M /M /c. Three algorithms were pro-
posed, namely, Heaviest-AP First Placement, Density-Based
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TABLE 1. Summary of existing literature for cloudlet based computing optimization and comparison with this work.

. Cloudlet Task Inter-Cloudlet Variable- Users Cloudlet Ener, Load
Article deployment oftloading flow C}zﬁﬁtlle:ts Mobility Mobility Delay Cost consum%ilion balancing
[15] v X X X X X v X X v
[16] v X X X v X v v X v
[17] v X X X v v v X X v
[18] v X X X X X v v X X
[19] v X v X X X v X X X
[20] x v v X v X v x x v
[21] X v X X X X v X v v
[22] X v X X X X v X v X
[23] x N v X v X v X X v
[24] X v N X v X v x x v
[3] v v x X x x N x x v
(7] v v x x X v v x x v
[25] v v X x X x v x v X
[26] v v N x x x N N N X
[27] N X X X X X N N X X
This paper v v v v v v v v v v

Clustering Placement, and K-medians clustering algorithm.
In the work of [7], a dynamic cloudlet deployment technique
based on a clustering algorithm (DCDM-CA) is proposed for
deploying mobile cloudlets for mobile applications. Based
on the geographic location of numerous devices and the
number of tasks generated by multiple devices in a unit of
time, DCDM-CA calculates the cloudlet deployment loca-
tion. In addition, after deploying cloudlets, task offloading
is optimized to reduce system response latency. In [25], the
authors first studied how to determine task completion delays
and produced energy consumption models for various MEC
equipment. Following that, they investigated the problem of
placing cloudlets on AP nodes and allocating each user’s
tasks to associated cloudlets and the public cloud, intend-
ing to minimize total energy consumption while satisfying
each task’s delay requirement. A mixed integer linear pro-
gramming and solution benders decomposition-based algo-
rithm has been proposed to overcome the problem. In the
work of [26], the issue of task offloading and combined
cloudlet deployment are addressed. Its goals are to reduce
user energy usage, task response time, and the number of
cloudlets deployed. This optimization issue is modelled as a
mixed integer nonlinear program. A modified directed pop-
ulation archive whale optimization technique and its time
complexity are described. The methods of encoding, ini-
tializing, and restoring a whale position are designed in
this algorithm. In addition, generalized and quasi-opposition-
based learning, as well as mutation and crossover in differ-
ential evolution algorithm, are used to boost its optimization
capacity. The work of [27] proposes a procedure combining
edge server deployment and service placement, where service
placement explicitly considers the structure of current edge
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server deployment and different service request rates and
prices. Furthermore, design a joint edge server deployment
and service placement model to maximize the overall profit
of all edge servers under the constraints of the number of edge
servers, the edge servers and base stations relationship, the
computing capacity of each server, and the storage capacity.
Hence, to solve the problem, propose a two-step method, the
clustering algorithm and nonlinear programming.

We summarize the different criteria considered in the lit-
erature using Table 1. Our approach will consider all the
criteria provided in Table 1. Some of the criteria are tack-
led implicitly, such as load balancing. Overall, we observe
from Table 1 that non-of the existing approaches have jointly
dynamically addressed the cloudlet deployment and task
offloading. More specifically, the joint cloudlet deployment
and task-offloading have been addressed only by [3], [25],
and [26]. However, they have not considered cloudlet mobil-
ity, and by [7], where they have considered cloudlet mobility
but used a fixed number of cloudlets. Furthermore, enabling
joint optimization of cloudlet deployment, deactivation and
activation by moving, task offloading, and inter-cloudlet flow
is an optimization problem with a variable number of decision
variables. Hence, this optimization is regarded as a special
class of optimization algorithm that needs careful study.
Furthermore, it becomes more complex when considering its
multi-objective nature due to various performance criteria,
including energy consumption, cost, and latency with a self-
conflict nature.

To cover this issue, we dedicate another section in
the literature survey to addressing the existing variable-
length multi-objective optimization algorithms used in other
fields.
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TABLE 2. Review of existing variable-length meta-heuristic optimization algorithms.

Objective
space

Number of

Limitation S
objectives

Algorithm

Article Application Decision space
Laminate stacki
28] am\;\lfliig ;a?rcn e Based on
the problem

Sensor coverage

Based on the problem

X . It is based on
Metameric Genetic . .. 1
single objective

Laminate stacking
problem

Vector of angles

14
(14] on the plies of a laminate.

The number of plies
buckling load factor

Lo It is only tested on
Multi-objective .
) Mathematical

Evoluti 2/3
volutionaty problems without real

scheduling that will send data

lgorith
agortim world application
A
coxferage and Based on Evolutionary It is based on
[29] a wind farm Based on the problem . . L 1
the problem algorithm single objective
problem are used
[30] WSN deployment Sensors numbers location Covering percentage Genétic .It is bassad qn 1
and coverage zone and cost algorithm single objective
S d Deciding th It is based
31] ensor node eciding the sensor Simulator Genetic algorithm is based on 1

single objective

the vehicle

the set of possible

It is based on

[32] coordination road traffic intersection genetic algorithm . L 1
. routes single objective
multipath problem
Changin; . . .
sing Encoding neuron Particle swarm It is based on
[33] the topology . Accuracy s . L 1
of C in the layer optimization single objective

Sensors numbers location

[13] WSN deployment and coverage zone

Covering percentage
and cost

Social class
variable-length
particle swarm

optimization

Inter-class
interaction is weak

IIR filters and designing optimal IIR

34
[34] sensor coverage filters

Based on the problem

article swarm .
P Lo It is based on
optimization . .. 1
. single objective
algorithm

B. VARIABLE-LENGTH MULTI-OBJECTIVE OPTIMIZATION

Several applications have found the development of variable-
length multi-objective algorithms in the literature, Table 2
shows the algorithms developed in meta-heuristic optimiza-
tion with the variable-length approach to solving prob-
lems in different fields. In the work of [28], a metameric
genetic algorithm (MGA), which uses a segmented variable-
length genome, is proposed. The development covers the
recombination, mutation, and selection operators, as well
as the representation of the solution in the genome. Fur-
thermore, the algorithm has proved that even if the optimal
number of components is supposed to be known a priori,
the MGA outperforms the fixed-length GA on the speci-
fied problems with these adjustments. In the work of [14],
the variable-length multi-objective evolutionary algorithm
was proposed based on a two-level decomposition strategy
(local and global) that decomposes a multi-objective opti-
mization problem in terms of penalty boundary intersec-
tion search directions and variable dimensionality. In the
work of [29], a novel metameric problem selection operator
is presented: length niching selection. First, the population
is divided into numerous niches based on the length of
the solution. A window function determines the lengths at
which a niche is generated. Local selection is done indi-
vidually within each niche, resulting in a new parent pop-
ulation with various solution lengths. In the work of [30],
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the improved Dynamic Deployment Technique based on the
Genetic Algorithm (IDDT-GA) has been proposed to maxi-
mize the area covered with the minimum number of nodes and
undervalue overlapping area between neighbouring nodes.
A two-point crossover novel is presented to confirm the
notation of variable-length encoding. In the work of [31],
an expanded genetic algorithm with the variable-length chro-
mosome (VLC) and mutation and crossover operations is
introduced to address the problem of sensor node scheduling.
Their method may evolve the population’s individuals from
generation to generation, and the resulting network schedules
are better optimized than those produced by algorithms using
a fixed-length chromosome. In the work of [32] to solve
the vehicle coordination multipath problem in crossroads,
propose a genetic algorithm with variable-length chromo-
somes. The proposed algorithm is focused on optimizing the
arrival sequencing of vehicles according to the present flow
rates where the traffic flows can be asymmetric. In addi-
tion, expand one of the existent crossroad models based
on fixed paths to allow multiple paths. Furthermore, each
vehicle can move at the crossroad from any input point to
any output point. Moreover, developed specific selection,
crossover, and mutation operators and a new methodology
to carry out the crossover function between different-sized
individuals are adapted to the specific peculiarities of the
problem.
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Other algorithms were based on the swarm class of meta-
heuristics. The work of [33], focuses on using Particle Swarm
Optimization (PSO) to find the best architecture for CNNs
without having to do any manual tuning. Based on clas-
sic PSO, CNN layers were encoded using particle vectors.
A disabled layer is used to learn variable-length CNN and is
designed to disguise parts of the particle vector’s dimensions
to accomplish particles with varying lengths. In the work
of [13], SC-MOPSO (Social Class Multi-objective Particle
Swarm Optimization) was proposed to solve joint MOO and
V-length optimization challenges. By dividing the solution
space into classes based on their dimension, the technique
expands the concept of social interaction from Particle Swarm
Optimization. It also includes intra and inter class operators
to ensure that the required dynamics of solution changes are
met to reach the Pareto front. It was applied to the wireless
sensor network problem, two objective problems, and the
length variability comes from the change in the number of
sensors. In the work of [34], the variable length particle
swarm optimization algorithm with a weighted sum fitness
function (WS-VLPSO) is proposed as an adaptive algorithm
for designing optimal Infinite Impulse Response (IIR) filters.
The algorithm is based on including the order as a discrete
variable in the particle vector to minimize the order and
thereby reduce the design complexity of IIR filters. In addi-
tion, the Optimum Modeling Indicator (OMI) is introduced as
a measure to determine the percentage reduction of order and
the success rate of the proposed Method. Furthermore, the
proposed algorithm is applied to solve the sensor coverage
problem as another real-world variable-length optimization
application.

Overall, as shown in Table 2 from the reviewed algo-
rithms the majority of them were developed to support a
single objective except for the work of [13], which suffers
from weak interclass interaction between the solutions and
the work of [14] that based on an evolutionary algorithm
and was applied only on a bi-objective real-world prob-
lem. Hence, the literature lacks a multi-objective swarm-
based algorithm with a variable-length feature. We fill
this research gap by developing a novel variable-length
whale optimization algorithm with supportability of multi-
objective aspects. The developed algorithm will be applied
to solve the cloudlet optimization problem presented in this
article.

Ill. SYSTEM MODEL

This section presents the developed methodology for
building cloudlet-based computing optimization using a
variable-length whale optimization algorithm and differen-
tial evolution. It starts with problem formulation. Follow-
ing, we present an overview of the whale optimization
algorithm and differential evolution. Then the development
framework is given, and the evaluation metrics are pro-
vided. All the notations used in this article are presented
in Table 3.
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TABLE 3. List of the important notations used in the system model.

Notations or symbols with their definitions:

BS: Number of base stations

U: Number of users

C: Number of cloudlets

Ne: Number of deployed cloudlets

Npgs: Total number of base stations

bsy: base station k

Ut User i

¢ Cloudlet j

@°: Computing capacity (CPU cycles/second) of each cloudlet

u: Maximum workload (CPU cycles/second) of each cloudlet

X¢: The x position of the user at moment t

Vet The y position of the user at moment ¢

% The variance of the user mobility random walk model

Uy Step of random walk at moment t

E;q4: The expected energy consumption for executing task on u;

A Average task arriving rate generated from u;

Z; ) Probability of assigning the task generated from u; to ¢;

el Energy consumption for executing tasks generated from u; at his
device

Bi: Exponential resource demand of tasks generated from u;

[0S Computing capacity of u;

& Effective switching capacitance of the CPU of wu;

Ej: Energy consumption for transmitting the task from w; to ¢;

el The required energy for transmitting a task of u; to its related BS

pit Transmission power of u;

a;: The input data size of the task of u;

it Transmission rate of u;

E;y The expected energy consumption by u;

E;.: The expected energy consumption for executing the task at ¢;

ef: Energy consumption for executing tasks generated from u; at ¢;

& Effective switching capacitance of the CPU of ¢;

L: The maximum number of currently operating cloudlets L < N¢

75 Average waiting time composing of the queue waiting time and

the execution time at ¢;

A. PROBLEM FORMULATION
Assuming that we have a mobile edge computing environ-
ment MECE that contains a set of base stations BS =
{bsi},k = 1,2,...,Nps to serve users U = {u;},i =
1 2,.  for ofﬂoadmg their tasks to movable cloudlets
{c]} j = .,Nc, where Nc < Nps. Each
cloudlet is equlpped W1th the same number of servers. Denote
¢¢ and p as the computing capacity (CPU cycles/second)
and the maximum workload (CPU cycles/second) of each
cloudlet, respectively. The set of cloudlets C are deployed
at selected base stations SBS C BS. The cloudlets in C can
move between base stations for a limited number of times
per day Ny, max for each movable cloudlet. Hence, the envi-
ronment elements, base stations, and cloudlets combine two
graphs, where the first one contains the second one. Another
difference is that the first is static, and the second is dynamic
in terms of topology. The environment can be occupied by
walking users which are given by the Egs. (1), (2), and (3).
Each user carries a mobile device. Users are assumed to be
walking in the environment in the random walk model.

Xt4+1 = Xt +I/l; (1)
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Vil =YV T Uy ()
u; ~ N, %) 3)

Users generate their tasks and can serve them locally on their
devices or offload them to the assigned cloudlet through the
nearest base station and shortest path. The same bandwidth
B is shared by all users. The model of generating the task
for each user is exponential, with an average arrival rate
A;. The input data size and computational resource demand
can characterize a task of the user u;. Both are supposed to
satisfy the exponential distribution, and their average values
are represented by «; (bits) and B; (CPU cycles). Each user
has two options, executing their tasks at the local device or
sending them to MECE for execution. The device of the user
is characterized with computing capacity ¢;' and effectively
switched the capacitance of the CPU §;. We assume that
MECE is provided with an optimization algorithm that gen-
erates the decision for selecting a cloudlet for the execution
of the user tasks, moving the cloudlets among base stations,
and changing their number N¢ in order to optimize the system
from four perspectives:

« Computational energy consumption at the user device,
which is given by the computational energy consump-
tion at the user device: it indicates the consumed energy
at the user device by executing the tasks instead of
offloading it to the cloudlet. It is given by the Eqgs. (4)
and (5).

Era=eni(1- > 1)) @
& =& (o) Bi )

o Communication energy consumption at the user device:
it indicates the energy consumption at the user device for
transmitting the task to be executed at the cloudlet

Ey=éa ZlﬂSL Zij (©6)
where
o
o = pi %
i
o The expected energy consumption at the cloudlet, which

defines the energy consumption in the cloudlet that
is resulted from executing the task of the user at the

cloudlet
Ejc=¢€ihi (Zlgst Zi,j) ®)
2
ef =& ()" Bi ®
o Number of deployed cloudlets N¢.
o Delay of serving the offloaded tasks (the average of
wireless delay and waiting time composing of the queue
waiting for time and the execution time at cloudlet c)

2i<j<u Gikib)
2 1<j<U Fikj
¢ <j<U %iikj (10)

T = —
9° = 2 i<j<u GiriB

1
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The system has several challenges:

e It presents a combinatorial NP-hard optimization
problem.

e The solution space is variable-length due to the change,
which implies changing the solution length. It consists
of two components:

a) x which is 1 x N¢ a vector that is responsible
for deciding which base station is assigned to the
corresponding cloudlet.

b) z whichis 1 x (N¢ x N,) vector that is respon-
sible for deciding the probability of selecting
the corresponding cloudlet for executing the user
task.

The length variability occurred regarding N¢ as a
decision variable that provides different solution
lengths.
« The objective space is a multi-objective combination of
four objectives with self-conflicting nature.

f = (flszsf3sf4) = (Ei,uv Ei,cv I[chC) (1])
where

Eiy=FE4+E; (12)

o The problem is dynamic due to user mobility. How-
ever, the algorithm will receive a snapshot of the users
inside the map at one execution. The decision to dis-
tribute the cloudlet and the task offloading to cloudlets
will be generated using this snapshot.

B. OVERVIEW OF WHALE OPTIMIZATION

The thought of the whale optimization algorithm (WOA) [35]
is to imitate the behaviours of humpback whales. When
humpback whales are hunting, they have three behaviours
associated with a bubble net, upward spirals, double-loops,
and random search. It is based on two parameters, random

number 7€ [0, 1] and two coefficient vectors A and C given
by Egs. (13) and (14).

A=2-a-r—a (13)
C=2-r (14)

where a denotes a linearly decreased from two to zero in the
iterations.
The model of the bubble net is given by Eqgs. (15) and (16)

P =D e - cos2rl) + P, (15)
D= |P, — P (16)
The model of Encircling Prey is given by Eqs. (17) and (18)
D=|C x P, — Pi| (17)
1
Pl =P —AxD (18)
The model of random search is given by Egs. (19) and (20)
D = |C X Prgna — P} (19)
P = Prna —A x D (20)
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Algorithm 1 Whale Optimization (WO)

Input

Parameters

Output

SolutionSet

Start

1: Initialize the whales population P;(i =1, 2, ..., n)
2: Calculate the fitness of each search agent

3: P,= the best search agent

4: while (t < maximum number of iterations)

5:  for each search agent

6: Updatea, A, C, I, and w

7: ifl(w < 0.5)

8: if2(JAl < 1)

9: Update the position of the current search

agent by Eq. (18)

10: elseif 2 (JA|> 1)

11: Select a random search agent (Pyanq)

12: Update the position of the current search
agent by Eq. (20)

13: end if2

14: elseif1(w>0.5)

15: Update the position of the current
search by Eq. (15)

16: end ifl

17:  end for

18:  Check if any search agent goes beyond
the search space and amend it

19:  Calculate the fitness of each search agent

20:  Update P, if there is a better solution

21: t=t+1

22: end while

23: returnPy

End

C. DIFFERENTIAL EVOLUTION

More than two decades ago, the DE algorithm emerged as a
highly competitive form of evolutionary computing. R. Storn
and K. V. Price published the first written article on DE as
a technical report in 1995 [36]. The algorithm comprises
four steps, initialization, difference vector-based mutation,
crossover, and selection [37]. In our article, the solutions are
already generated and selected by WOA. Hence, we perform
only crossover and mutation. For crossover, two mutually
different solutions, S and S’ or three S, S’, and S”, must be
randomly selected from the archive before the updating. The
probabilities of selecting the two or three solutions are the
same. The update is based on Eq. (21) for selecting two and
Eq. (22) for selecting three.

S = Sl + F (S'1j1 — SIj) @1
S =S+ F (ST - S"I7)) (22)

After updating the solution, we perform the mutation by
changing randomly selected components from the solution.

D. FRAMEWORK OF DEVELOPMENT

The framework of cloudlets computing optimization is pre-
sented in Figure 2. As shown, the environment E which
contains the users, their location, and generate tasks, and the
map information that includes the positions of users, base

VOLUME 11, 2023

. E ] Users Locations )
Users Tasks Whale :‘l D Differential

Environment '=,>

Map [
N

Solution Repairing
J

J

e

Optimal Solution

Solution

Selection

FIGURE 2. Block diagram of the framework of cloudlets computing
optimization.

stations, and the initial position of cloudlets, will provide this
information to the optimization algorithm. The optimization
consists of three sub-blocks, whale optimization, differential
evolution, and solution repairing. The results are represented
in the set of non-dominated solutions or Pareto front. One of
the solutions will be selected to be used in the environment
using uniform random selection.

The algorithm is an integration of whale optimization and
differential evolution. It is depicted as VL-WIDE. The gen-
eral pseudo code of the algorithm is provided in Algorithm 2.

Algorithm 2 Variable-Length Multi-Objective Whale Opti-
mization Integrated With Differential Evolution (VL-WIDE)

Input:

Initial Population

Output:

Updated Population

Start:

1: For all solutions inside population
2: r=generateRandom(0,1)

3 If (r> 0.5)

4: Use whale optimization for updating
the position of the solution

5: Else

6: Use differential evolution for updating
the position of the solution

7 End

8: repairedSolution= Call repairing Algorithm

9: End

End

1) INITIAL POPULATION AND SOLUTION REPAIRING

The role of the solution repairing is to assure that all generated
solutions are within the feasibility region. For solutions that
are outside the feasibility region, an altering operation of the
solution is performed in order to return the solution to the
feasibility region. The pseudo-code of the initial population
and solutions repairing is presented in Algorithms 3 and 4,
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Algorithm 3 Initial Population

Input:
Population size, number_of_user, number_of_cloudlets
Output
Population
Start
1: Population =[ ]
2: For from 1 until Population_size
3:  Solution=Generate_random
(1, number_of_cloudlets, number_of_cloudlets x number_of_user)
4:  Add Solution to Popluation
5: End
6: Return Population
End

Algorithm 4 Solution Repairing

Input:
Solution, User_total_offloads, cloudlet.max_workload
Output:
Repaired_solution
Start
1: [cloudlets_position,user_offload]=extract(solution)
2: cloudlets_position = min(cloudlet_posisions,
number_of_base_stations)
3: cloudlet_position = max(cloudlet_position, -1)
# -1 represent cloudlet would not be used.
4: for user_offload in total_user_offloads:
5: remaining_offloads = user_offload
6: cloudlet_position = shuffle(cloudlet_position)
7 for cloudlet in cloudlet_position:
8 if cloudlet != -1 #this cloudlet is working.
9 taken_offload = min(random[0-> 1]
* user_offload, remaining_offloads)

10: taken_offload = min(taken_offload,
cloudlet.max_workload - taken_offload)
11: remaining_offload = remaining_offload
- taken_offload
12: cloudlet.workload 4 = taken_offload
13: user_cloudlet_offload[user, cloudlet]
+ = taken_offload
14: else if remaining_offloads != 0:
15: Distribute them to other cloudlets
16: End
17: End
18: End

19: Repaired_solution =solution

20: update Repaired_solution, user_cloudlet_offload,
cloudlet_position

21: return Repaired_solution

End

respectively. The inputs of the pseudo-code for algorithm 3
are given by Population size, number_of_base_stations, num-
ber_of_user, and number_of_cloudlets. The output is the
generated solutions that represent a population. Furthermore,
the inputs of the pseudo-code for algorithm 4 are given by
Solution, User_total_offloads, and cloudlet.max_workload.
The output is the solution after possible repair. The algo-
rithm starts with extracting two types of information from the
solution, cloudlets positions and user-to-cloudlets offloads.
The cloudlet’s position is fixed by assuring their range is
between -1, which indicates non-used cloudlets and num-
ber_of_base_stations, representing the maximum possible
position of the cloudlet. Afterward, for each user_offload,
a loop is performed to distribute the user_offload on the
cloudlets with various percentages while assuring that any
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cloudlet will not receive a load beyond its capacity, which
is given by cloudlet.max_workload.

2) SOLUTION SELECTION

The role of solution selection is to select a subset from a
pool of solutions. The pool includes both the previous gener-
ation and the current generation. For solution selection, two
mechanisms have been used. The first one is non-dominated
sorting which is responsible for reordering the solutions in
the repository, starting with the first rank, which represents
the non-dominated subset of solutions, and ending with the
last rank. The pseudo-code of the non-dominated sorting is
presented in algorithm 5. It takes a population as input and
returns the Pareto front as output. The approach is iteratively
attempting to add one solution from the population to the
Pareto front and assuring that it is non-dominated by its mem-
bers until the end. The second one is the crowding distance
which is used for solving the problem of selecting part of
the last rank solutions to fit the size of the repository. The
pseudo-code for calculating the crowding distance is given in
algorithm 6.

Algorithm 5 Non-Dominated Sorting

Input:
Population
Output:
paretoFront
Start:
: Initiate paretoFront
: move random solution from Population to paretoFront
: For each solution p in Population
: Move p to paretoFront
: Compare p with every solution q in paretoFront
If(p is dominating q )
Delete q from paretoFront
else
Delete p from paretoFront
10: End
11: End
End

E. EVALUATION METRICS

This section presents the evaluation metrics used to evaluate
our proposed VL-WIDE and compares it with the bench-
marks. It decomposes hyper-volume, delta-metric, number of
non-dominated solutions, and set coverage.

1) HYPER VOLUME

The HV metric has been used widely in evolutionary
multi-objective optimization to evaluate the performance of
search algorithms. It computes the volume of the dominated
portion of the objective space relative to the worst solution
(reference point); this region is the union of the hypercube
whose diagonal is the distance between the reference point
and a solution x from the Pareto set P, [38]. Higher values
of this measure indicator imply desirable solutions. Hyper
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Algorithm 6 Crowding Distance
Input:
ParetoFront, set of Objectives
Output:
CrowdingDistance
Start:
1: Initiate CrowdingDistance with the size of
ParetoFront and assign zeros
2: For each objective m of set of objectives

3: Sort ParetoFront according to objective

4: Set CrowdingDistance for the first and last solution to

infinity

5: For the remaining solutions

6: Update CrowdingDistance based on the value of
objective m for the neighboring

7. solutions using equation CorwdingDistanceli]l+ =

(ParetoFront(i + 1, m) — 8 : ParetoFront(i — 1, m)
9: End

10: End

End

volume is given by Eq. (23):

HV = volume (U . HyperCube(x)) (23)
XEps

2) DELTA METRIC

Delta metric is another variety of metric A. Indicates the
extent to which spread is achieved among the obtained solu-
tions. To calculate the delta metric, the function receives
the non-dominated set of solutions and provides the result
according to Eq. (24) [9]:

W di+ 3 d—d]
df+d1~|-(N—1)a

(24)

where the number of solutions is denoted by N, and the
samples of dy, d; and d; are the Euclidean distances between
the boundary solutions and the extreme solutions and the
average of all successive distances d; is denoted by d for
i=12,...,N -1

This measure should be as small as possible because this
indicates a uniform distribution, which provides a variety of
choices to the decision-maker.

3) NUMBER OF NON-DOMINATED SOLUTIONS

The cardinality of Pg can be used to calculate the number of
non-dominated solutions (NDS) that represent the effective-
ness of the optimization algorithm [39]. The higher number
of non-dominated solutions means that the multi-objective
optimization performs well.

Number of non — dominated Solutions(N) = |Ps| (25)

4) SET COVERAGE
This metric compares Pareto sets pg1 and pg [40], this metric
also called C-metric

l{y € P | 3x € P51 1 x <y}

C (P51, P2) = Pol (26)
S
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where the domination of x over y is indicated by x < y, and
the value of C denotes the ratio of non-dominated solutions
in Py that are dominated by non-dominated solutions in Py
to the number of solutions in Ps;. When evaluating the set of
Pg, X must be minimized for the value of C (X, Py) for all
Pareto sets.

IV. EXPERIMENTAL WORKS AND ANALYSIS

This section presents the experimental works and analysis.
It consists of experimental design in section IV-A and exper-
imental results in section IV-B. To evaluate the performance
of the proposed algorithm we first introduce the experimen-
tal design and then compare the proposed algorithm with
existing benchmark algorithms, which are decomposed into
two sub-sections, multi-objective metrics, and time series
analysis.

A. EXPERIMENTAL DESIGN

For evaluation, WMAN was generated based on the parame-
ters of A which denote the area dimension, V,, which denotes
the number of users, Ngsg which denotes the number of base
stations, N¢ which denotes the number of cloudlets, base sta-
tion data rate which is assumed to be the same, «; = o which
denotes the packet data size of user i, A,y Which denotes the
maximum arrival rate of tasks from users, B which denotes
the bandwidth. We generated more than 300 scenarios involv-
ing various parameters related to base stations, cloudlets,
users, wireless communications, and algorithms settings. The
algorithms are iterated for ten iterations under a fixed rate
every 10 seconds. The scenarios were generated based on the
range definition for each parameter involved. We present the
ranges with their respective parameters in Table 4. The sce-
nario generation is based on the uniform random distribution
depicted in Table 4. The values are generated using a uniform
distribution that takes the values of the min and max. For the
parameters that have the same min and max, then the value is
selected as the same value of min and max. Our developed
VL-WIDE will be compared with the fixed-length variant
of whale optimization and differential evolution algorithm
named (MGW) [26]. In addition, it will be compared with
two non-dominated sorting genetic optimization algorithms,
NSGA-II and NSGA-III, MOEAD, and PSO. In addition,
we present the parameters used for the evaluation in Table 5.
The common parameters are set for each of our developed
VL-WIDE and the other benchmarks as equal.

B. EXPERIMENTAL RESULTS

This section presents the evaluation results and analysis. It is
decomposed into two sub-sections, the multi-objective met-
rics and time series analysis.

1) MULTI-OBJECTIVE METRICS

The evaluation results are depicted in Figures 3, 4, 5,
and 6. Boxplot visualization is adopted to show the sta-
tistical behaviour of the algorithms. First, we present the
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TABLE 4. Definition of the parameters ranges that are used for the
scenarios generation.

Parameter name Min value Max value Unit
Area 100 x 100 100 x 100 km?
Ny 100 200 Users
Ngs 20 20 Base station
N¢ 5 10 Cloudlets
BSs data rate 3 % 108 3 % 108 Bits/second
BS wireless data rate 210 213 Bits/second
a 40 = 210 40 = 220 Bits
Amax 40 45 tasks
B 50 * 220 50 * 220 Hz

TABLE 5. The parameters of the algorithms used for evaluation.

Parameter VL- A- NSGA-
rame wise | Mew | NSG SUA | MOEAD | PSO
. 100 - 100 - 100 - 100 - 100 — 100 -
Tterations 1 500 | 200 200 200 200 200
Population 100 - 100 - 100 - 100 - 100 — 100 -
Size 200 200 200 200 200 200
Mutation 0.5 0.5 0.5 0.5 0.5
rate
‘Whale 11 -1
!
28— 28—
b 32 32
DE
Weighting 0.8 - 0.8 -
Factor 0.9 0.9
Binary eta=15, eta=30, eta=20),
Crossover ) ) prob=0.9 | prob=1 prob=1
Tournament
Selection
Pressure . ) 2 2
n-Parents 1 1
Random 0.15 - 0.15 -
Portion Size 0.2 0.2
n_neighbors - - - - 20 -
0.9, 2,
w, cl, c2 2
Velocity 02
rate

FIGURE 3. Hyper-volume of our developed VL-WIDE and other
benchmarks.

hyper-volume, which provides optimization performance by
providing a rich set of options to the decision-maker.
Hyper-volume is presented in Figure 3. As shown, our
developed VL-WIDE has provided the highest hyper-volume
in terms of all indicators of the boxplot, namely, median, min,
max, Q1, and Q3 compared with MGW, NSGA-II, NSGA-III,
and MOEAD while PSO has provided higher hyper-volume
for its non-dominated solutions in the last generation.
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TABLE 6. Descriptive statistics of hyper-volume measure for our
developed VL-WIDE and its comparison with the benchmarks.

i | maw | NSEA | RSOA vopaD | pso

Min | 162610 | ML o 0 R
Q| 19010 | MO 1o 0 0o | 27F
Median | 2.068-10 | 907 |0 0 0o |2
Q3 | 219E-10 | 2B 0 0 0 | EE
Max | 267E-10 | ZDF | o 0 0 | E

Considering that solutions of PSO are inferior as we will
observe in the set coverage, having a higher value of
hyper-volume of PSO is still not an indicator of superior-
ity. The fixed-length variant is the second one in terms of
hyper-volume performance after VL-WIDE. The last obser-
vation is that the least performance in terms of hyper-volume
is NSGA-II, NSGA-III, and MOEAD. It is observed that
the hyper-volume value was very small for them com-
pared with the whale optimization algorithm when integrated
with differential evolution, namely, VL-WIDE and MGW.
This provides that the swarming nature of the whale opti-
mization and the mutation functionality of the differential
evolution provide significant improvement in the searching
capability for the optimization algorithm, which generated
higher hyper-volume compared with the evolutionary type
of algorithms such as NSGA-II and NSGA-III. Furthermore,
the variable-length nature has contributed to an additional
improvement in the performance of VL-WIDE.

For more elaboration on the quantitative performance of
our developed VL-WIDE and its relationship with the bench-
marks, we present the numerical values of the descriptive
statistics for the MOO metrics of VL-WIDE. As shown
in Table 6, VL-WIDE has accomplished the second high-
est values of descriptive statistics, namely, Min value or
1.62E-10, Q1 value or 1.90E-10, the value of Median or
2.06E-10., Q3 value and Max values with 2.19E-10 and
2.67E-10 respectively. This shows that VL-WIDE was supe-
rior in terms of the exploration and finding more diverse
solutions in the objective space, which gives more degree
of freedom to the decision maker. This is interpreted by the
variable-length aspect of the VL-WIDE which has enabled
searching more effectively in different dimensions to reach
the optimal areas in the solution space.

The second metric used for evaluation is the delta met-
ric, which assesses the performance in terms of how much
the solutions are equally distributed in the solution space.
As shown in Figure 4, it is observed that VL-WIDE has
generated the least value in terms of delta metric compared
with all other benchmarks. This provides that it was more
capable of generating equally distributed solutions in the
Pareto front. Consequently, VL-WIDE is more suitable for
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FIGURE 4. Delta Metric for our developed VL-WIDE and other
benchmarks.

TABLE 7. Descriptive statistics of delta-metric measure for our developed
VL-WIDE and its comparison with the benchmarks.

VL- NSGA- | NSGA-
WIDE MGW I I MOEAD | PSO
Min 0.624 0.623 0.770 0.735 0.757 0.764
Ql 0.740 0.767 0.851 0.855 0.855 0.852
Median | 0.774 0.812 0.879 0.880 0.885 0.881
Q3 0.817 0.862 0.905 0.906 0.910 0.906
Max 0.950 1.016 0.987 0.971 0.983 1.001

FIGURE 5. Number of Non-Dominated Solutions.

the decision-maker to move between solutions according to
their non-dominated preference.

Similar to hyper-volume, we present the numerical values
of descriptive statistics of delta metric in Table 7. It shows that
VL-WIDE has accomplished the smallest values in terms of
Ql, median, Q3, and maximum with values equal to 0.740,
0.774, 0.817, and 0.950 respectively. The only descriptive
statistic that has generated a superiority of MGW is the mini-
mum which was slightly lower than the VL-WIDE minimum
with the value of 0.623.

The third metric that has been presented is the non-
dominated solutions. The boxplot is presented in Figure 5.
As observed, the highest value of a number of non-dominated
solutions is accomplished by VL-WIDE in terms of median,
MIN, QI1, and Q3. Furthermore, we find a similar value
of MAX between each of VL-WIDE and MGW. On the
other side, we find that other benchmarks, namely, NSGA2,
NSGA3, MOEAD, and PSO were inferior in terms of a
number of non-dominated solutions. This provides that the
swarm behaviour with the integration of the local searching
enabled by differential evolution was effective in generating a
higher number of non-dominated solutions. Furthermore, the
operators designed by VL-WIDE were effective in increasing
the number of non-dominated solutions.

The numerical values of descriptive statistics of the number
of non-dominated solutions are presented in Table 8. The
results show that VL-WIDE has accomplished the highest
values of all descriptive statistics. This is also an indicator
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TABLE 8. Descriptive statistics of the number of non-dominated
solutions measure for our developed VL-WIDE and its comparison with
the benchmarks.

VL- NSGA- | NSGA-
WIDE MGW " I MOEAD | PSO
Min 32 30 10 8 8 8
Q1 47 43 17 17 15 16
Median 52 49 20 20 18 19
Q3 57 55 22 23 20 21
Max 75 73 35 34 30 34

FIGURE 6. Set Coverage.

TABLE 9. Descriptive statistics of set-coverage measure for our
developed VL-WIDE and its comparison with the benchmarks.

MGW NSI(I}A' NSIﬁA' MOEAD | PSO
Min 0 0 0 0 0
Q1 0 0 0 0 0
Median 0 0.040 0.057 0.038 | 0.044
Q3 0.277 | 0.289 0.270 0.289 | 0.284
Max 1 1 1 1 1

of the strength of VL-WIDE compared with the bench-
mark algorithms. The number of non-dominated solutions for
VL-WIDE has accomplished a value of a median equal to
52 which is higher than any of the other method’s median val-
ues. Similar accomplished in witnessed for other descriptive
statistics.

The last metric that is provided is the set coverage. Figure 6
shows the domination percentage of each method over the
other methods. First, VL-WIDE has accomplished a domina-
tion over all other benchmarking algorithms. The domination
percentage reached in the Q3 a level close to 0.3 over each
MGW, NSGA-II, NSGA-III, MOEAD, and PSO. Conse-
quently, VL-WIDE is superior in generating non-dominated
solutions compared with the benchmark solutions.

In addition to the MOO metric, we present the numer-
ical values of descriptive statistics in Table 9. The results
show that VL-WIDE has accomplished maximum domi-
nation equal to 1 over all the algorithms which provide
an outstanding superiority. This is justified by the fact the
VL-WIDE is equipped with variable-length searching which
enables exploring the solution space with different dimen-
sions of solutions at the same time and providing sufficient
interaction among them. In addition, VL-WIDE is provided
with solutions repairing operator which enables preserving
every generated solution inside the feasible region.
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FIGURE 7. Delay of task serving with respect to time.
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FIGURE 8. Tasks serving with respect to time.

The proposed VL-WIDE algorithm demonstrates signifi-
cant positive impacts on cloudlet-based optimization tasks,
offering improved solution quality, better adaptability to
dynamic environments, enhanced feasibility, and more effec-
tive support for decision-makers. Its superior performance
in various multi-objective optimization (MOO) evaluation
metrics, including hyper-volume, delta metric, and the num-
ber of non-dominated solutions, highlights its ability to
provide higher quality solutions compared to benchmark
algorithms. Additionally, the variable-length search capa-
bility and the application-oriented solutions repair operator
enable increased adaptability and ensure all generated solu-
tions lie within the feasible region.

2) TIME SERIES ANALYSIS
For more elaboration, we present the time series analysis.
In order to visualize the time series, we select one solution
from the Pareto front, and we generate the corresponding
metrics as time series. The first metric is the delay presented
in Figure 7. The delay is decomposed into three components,
wireless transmission, base station to cloudlet, and cloudlet
execution. Hence, the total delay is the summation of the
internal components. It is observed that the base station to
cloudlet is the smallest delay because of the wired connection.

The second metric produced is the tasks serving measure
presented in Figure 8. This metric is composed of two com-
plementary components, namely, the remotely served task
and the locally served task ratio. The summation of these two
ratios is one.

The third metric that is visualized is energy consump-
tion which is presented in Figure 9. This metric has two
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FIGURE 9. Energy consumption of task serving with respect to time.
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FIGURE 10. Server renting rate of task serving with respect to time.

components, the consumed energy at the cloudlet and the
consumed energy at the mobile device. The latter result from
two components the execution at the mobile device and the
transmission. It is observed that the significant component is
the cloudlet consumed energy because the system serves the
tasks.

The fourth metric is the server renting rate presented in
Figure 10. It is observed that the server renting rate changes
concerning time between 0.002 and 0.0043, resulting from
the demand for task processing that is generated following
the random process.

V. CONCLUSION AND FUTURE WORKS

This article has presented cloudlet-based computing
optimization using developed Variable-length Whale Opti-
mization and Differential Evolution. It presented the first
algorithm that enables handling cloudlet-based optimiza-
tion with an additional degree of freedom of moving the
cloudlet according to the geographic demand. Second, the
article has provided a novel formulation of the problem
using variable-length for solution space. Third, the algo-
rithm included application-oriented operators for solutions
interaction. This has been accomplished based on a hybrid
framework combined with multi-objective whale optimiza-
tion and differential evolution. Performance analysis has been
done using extensive evaluation using more than 300 scenar-
ios generated randomly for the variable affecting parame-
ters on the system. Furthermore, VL-WIDE compares with
state-of-the-art algorithms, including fixed length hybrid
whale optimization-differential evolution (MGW), NSGA-II,
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NSGA-III, MOEAD, and PSO with standard MOO perfor-
mance metrics, namely, hyper-volume, delta-metrics, number
of non-dominated solutions and set coverage. Compared to
existing meta-heuristic algorithms, our algorithm can provide
a non-dominated solution set with higher quality. In addition,
it is concluded that the usage of variable-length searching
for supporting multi-dimensional solutions space is useful in
such types of combinatorial problems to reach more optimal
regions. One of the limitations of our developed VL-WIDE
is that it provides a Pareto front instead of a single solution
which provides the need of using solution selection in order
to operate in real-time as future work. Another future work
is exploring the performance of reinforcement learning for
solving the same problem and comparing it with our proposed
algorithm. The difference between RL-based methods and
a meta-heuristic searching-based method is that the former
is more powerful in terms of knowledge representation and
preservation. Hence, it is regarded as a strong future direction.
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