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ABSTRACT Owing to new security threats and relevant changes in network computing environments, key
exchange methods that replace conventional public key exchange algorithms are being researched. The
neural cryptography-based key exchange algorithm proposed recently uses neural synchronization as an
alternative to public-key methods. However, the learning-based synchronization method uses considerable
communication resources to generate output values and share the results. The efficiency of this method
depends on the type of algorithm and is affected by both the communication rounds for exchanging output
values and the number of weight learning rounds. To improve its efficiency, this paper proposes 1-h random
walk and batch scheme methods and verifies their efficiency and security.

INDEX TERMS Random walk, batch scheme methods, key exchange methods, neural cryptography-based
key exchange algorithm.

I. INTRODUCTION
The Rivest–Shamir–Adelman (RSA) and Diffie–Hellman
(DH) algorithms are the most widely used public key
exchange algorithms that use mathematical complexity, such
as the prime factorization of very large numbers or dis-
crete logarithm problems, to secure data transmission [1].
With recent developments in computing performance, the
time required for prime factorization has decreased. In 2009,
Kleinjung et al. succeeded in solving the prime factoriza-
tion of an RSA-786 key [2]. Hence, RSA-2048 and higher
numbers have been recommended. Unfortunately, this has
increased the resources required for public key exchange.
Likewise, larger prime numbers are now required to ensure
the security of the discrete logarithm problem, which is the
basis of the DH algorithm. However, this also increases com-
puting resource requirements while reducing efficiency.

The associate editor coordinating the review of this manuscript and

approving it for publication was Junggab Son .

Furthermore, with the imminent commercialization of
quantum computers, the vulnerabilities of conventional key
exchange algorithms based on prime factorization will
become insurmountable. Conventional prime factorization
takes exponential time, but the possibility of prime fac-
torization within polynomial time using Shor’s algorithm
in a quantum-computer environment has been verified [3].
To respond to quantum computing, the DH algorithm has
been improved via the introduction of newmodels, such as the
supersingular isogeny Diffie-Hellman (SIDH) method [3].
However, this also requires vast improvements to contend
with quantum capabilities.

The neural cryptography-based key exchange algorithm
[4] has been researched extensively as it provides an alter-
native to conventional public key exchange algorithms [5],
[6], [7]. It generates keys by sharing and synchronizing the
same neural network. The working principle of the neu-
ral cryptography-based key exchange algorithm includes the
generation of a random weight by two users. Next, the users
generate an output value using the same input value randomly
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generated and their respective weights. Then, the weight is
changed via machine learning according to the shared output
values. This is repeated until the weights of the two neural
networks are synchronized. Finally, a key is generated using
the synchronized weight.

The neural network used in this study is a tree parity
machine (TPM), which has a neural network structure with k
hidden layers and n inputs per hidden layer, and it generates
binary output values. The neural-network learning methods
of TPM include Hebbian, anti-Hebbian, and Random-walk
[8]. Among these, the randomwalk learningmethod is known
to have the highest security [9], [10]. Because the neural
cryptography-based key exchange algorithm does not depend
on the difficulty of a specificmathematical problem, it has the
advantage of maintaining the security of the exchanged key,
even when the difficulty of a specific problem is neutralized
by a new attack method or a quantum computer.

However, the learning-based synchronization method uses
considerable communication resources to generate output
values and share the results, and the communication rounds
for exchanging output values as well as the number of weight
learning rounds has a significant effect on the efficiency of
the proposed algorithm. Therefore, weight learning and com-
munication rounds must be reduced to increase the efficiency
of the neural cryptography-based key exchange algorithm.

In particular, conventional learning, wherein the change
in weight is fixed at ±1, requires a number of learning
iterations that are too large to be practical. Therefore, this
paper proposes a 1-h random-walk learning method that sets
the change of weight differently depending on conditions
improve the efficiency of the learning rules. The 1-h random-
walk learning method enables key exchange efficiency at
a level that is applicable to practical communication envi-
ronments. Moreover, shifting and changing random number
(SCRN) and error correction code (ECC) methods are pro-
posed to improve the efficiency of the batch scheme and its
algorithm, which collects and transmits learning results to
achieve higher efficiency.

Through experiments, this study demonstrates that the
proposed methods have higher efficiency while maintaining
the same levels of security as the baseline neural network
encryption-based key exchange algorithm.

The remainder of this paper is organized as follows.
Section II describes the neural cryptography-based key
exchange algorithm. Section III describes the proposed
1-h random-walk learning and batch schemes. Section IV
describes the implementation of the proposed TPM model,
including SCRN and ECC. Section V analyzes the security
and performance of the proposed model. Finally, conclusions
are presented in Section VI.

II. BACKGROUND
TPM, which is used for neural cryptography-based key
exchange, comprises a weight (wi,j), a hidden unit (σi), and
an output value (τ ), as shown in Figure 1, where three hidden
units (K = 3) and a TPM structure with 1,000 weights

TABLE 1. Definition of Symbols.

(N = 1000) per hidden unit are shown. The total number of
weights is K ×N = 3, 000. The input value used in learning,
xi,j is a random value newly generated whenever learning is
performed.

Each TPM initializes the random weight first and shares
the input value at every learning round. The output value, τ ,
is generated using the input value and weight and is shared
with other TPMs. The weight is learned if τ matches; other-
wise, learning is not performed. This process is repeated until
the weights are synchronized. See Table 1 for definitions of
symbols.

The learning-based neural cryptography-based key
exchange algorithm is described in detail as follows. Two
participants in the key exchange set up TPM(0) and TPM(1),
respectively, using the initially shared parameters. They
generate random weights w(0)

i,j and w(1)
i,j using a pseudo-

random function, and the component element range is −L ≤
w(p)

i,j ≤ L. Additionally, the two TPMs share a seed for
generating the same input value, xi,j, to generate xi,j using the
shared seed at each learning round. However, xi,j is 1 or −1,
and the two TPMs use the same xi,j during the same learning
round.

Next, for p = 0 or 1, TPM(p) consecutively adds xi,j
multiplied byw(p)

i,j to obtain σ (p)
i. If σ (p)

i is larger than zero,
it is replaced with one; if it is smaller than zero, it is replaced
with -1. This can be expressed as follows:

σ
(p)
i = sgn(

N∑
j=1

w(p)
i,j xi,j) (1)

The generated σ (p)
1σ

(p)
2 . . . σ (p)

K is multiplied to obtain
τ (p). TPM(0) and TPM(1) update the weight by learning
if the values generated by sharing τ (0) and τ (1) match.
For the weight-learning method, Hebbian, anti-Hebbian, and
random-walk learning methods are widely used. Among
them, random-walk is known to be more practical and secure
than Hebbian and anti-Hebbian methods [9]. With random-
walk learning, xi,j is added to the w(p)

i,j of the hidden unit,
where τ (p) and σ (p)

i match. The function g((w) replaces the
learned w(p)

i,j with −L if it is smaller than −L or with L if it
is larger than L to keep w(p)

i,j in the range of −L ≤ w(p)
i,j ≤ L.
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FIGURE 1. TPM structure with K = 3 and N = 1, 000.

The function, 2(x), replaces σ (p)
i with one if it is larger than

zero, and with 0 if it is smaller or equal than 0. This can be
expressed as follows:

w+i,j = g(w(p)
i,j + xi,j2(σ (p)

i τ (p))2(τ (0)τ (1)))

g(w) =

{
sgn(w)× L for |w| > L
w otherwise

2(x) =

{
0 x < 0
1 otherwise

(2)

To determine whether synchronization is completed, the
two TPMs agree in advance on the parameter MAX for
ending learning. Initially, the end counter is set to zero and
is increased in each learning round if τ (0) and τ (1) match,
and learning is performed. If the shared τ (0) and τ (1) do
not match, the end counter is reset to zero. When the end
counter reaches MAX , learning is completed, considering
that weight synchronization has been completed. Finally,

TPM(p) generates the secret key using the synchronized w(p).
In random-walk learning, parameters L and N are important
elements that influence the security and efficiency of the
TPM. If L and N are large, security increases, but more
computer resources are required because the number of learn-
ing rounds required for synchronization and the number of
communications used to replace τ increase. If L and N are
small, security problems can occur because attackers can
easily infer the weight of each TPM. Various attack meth-
ods for neural synchronization-based key exchange algo-
rithms have also been studied [4], [10]. Among them, the
most effective attack method for random-walk learning is
the majority attack, which uses the geometric properties of
the input value and weight vectors. The attacker sets up
M neural networks according to the initially set M value
and attempts to synchronize with one TPM using the input
value and the message between legitimate participants [7].

A previous study verified that the success probability of a
majority attack can be decreased to 10-4, but it was not
practical because the parameters used in the experiment were
K = 3,N = 1, 000, and L = 57, and the average number
of learning rounds required was 1.6 × 105 [9], [10]. This
suggests that synchronizing the weight while maintaining a
certain level of security has practical problems owing to the
use of excessive resources. Therefore, the algorithm must
be improved to reduce the number of learning and commu-
nication rounds while maintaining security. To address this
issue, we describe an improved neural cryptography-based
key exchange algorithm in the next section.

III. IMPROVED TREE PARITY MACHINE MODEL
A. 1-H RANDOM-WALK LEARNING
To maintain the security and efficacy of random-walk learn-
ing, it is necessary to choose an appropriate L value [11].
A larger L increases efficacy, but it requires many learning
rounds. In particular, according to the random-walk learning
rule, the change in weight is fixed at ±1 . Hence, if L is
large, a large amount of learning is required to reduce the
difference in the early learning process, in which the differ-
ence in weight between two users is large. Therefore, if the
amount of weight changes, learning can be performed more
efficiently than with the conventional random-walk method.
However, if the same weight change is set for each round,
an effect similar to reducing L in proportion to the weight
change appears, and this can interfere with synchronization
at a stage where synchronization has progressed significantly.
Therefore, we propose a 1-h random-walk learning algorithm
to improve efficiency while maintaining security by variably
setting the weight change depending on the situation. The
weight change of the conventional random-walk learning
algorithm is fixed at ±1 , but the weight change of the 1-h
random-walk learning algorithm alternates between ±1 and
±hop. Thus, if ±hop is changed, the weight is changed as
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FIGURE 2. Random-walks learning (K = 3, N = 10, L = 57, MAX = 3, 500).

FIGURE 3. 1–3 Random-walks learning (hop = 3, N = 10, L = 57, MAX = 3, 500).

follows:

w+i,j = g(w(p)
i,j + hop× xi,j2(σ (p)

i τ (p))2(τ (0)τ (1)))

g(w) =

{
sgn(w)× L for |w| > L
w otherwise

2(x) =

{
0 x < 0
1 otherwise

(3)

To verify the efficiency of the 1-h random-walk learn-
ing, we compare the number of learning rounds required
for weight synchronization with conventional random-walk
learning. To adjust the weight change, the weight is set to
±3 for even numbers and to ±1 for odd numbers. Figure 2
and figure 3 shows the weight match rate for each learning
stage of conventional and 1-h random-walk learning meth-
ods. The parameters for this experiment are set to K =

3,N = 10,L = 57, and MAX = 3, 500. In conven-
tional random-walk learning, the weight synchronization rate
is approximately 10%, even when the number of learning
rounds is 20,000. However, in 1–3 random-walk learning,
the weight synchronization rate becomes 100% when the
number of learning rounds reaches 15,490. This experiment
shows that the 1-h random-walk learning method is more
efficient in weight synchronization than the conventional
random-walk learning method. Analysis according to hop
value is described in Section V-A.

B. BATCH SCHEME
The neural cryptography-based key exchange algorithm con-
tinuously exchanges the output value. Hence, the communi-
cation time required for output value exchange can become
longer than the learning time, depending on the communica-
tion environment in the real-world environment. In particular,
owing to the nature of the neural cryptography-based key
exchange algorithm, which performs learning by receiving
the output value of the other party, network traffic is fre-
quently generated because it must wait until the other party
transmits the output value and determines whether to update
the output value by continuously sharing the output value.

This increases the time required for random-walk learn-
ing depending on the communication environment. Although
the number of learning rounds is decreased by the 1-h ran-
dom walk algorithm, more than 18,000 communications are
required at K = 3, L = 57, N = 10, and hop = 3. Therefore,
if the total number of communication rounds is reduced, the
efficiency can be improved by reducing the time required for
the neural cryptography-based key exchange algorithm.

To this end, we design a batch scheme, in which the con-
ventional algorithm shares the generated τ values during each
learning round and performs weight learning depending on
whether they match. However, the batch scheme generates τ

values as many as the previously defined parameters (B) in
advance, shares them with each other, and performs learning
only when they match.

45326 VOLUME 11, 2023



J. Kim et al.: Improvement of the Efficiency of Neural Cryptography-Based Secret Key Exchange Algorithm

FIGURE 4. Comparison of batch scheme and existing TPM protocol.

For example, if the batch value is B = 10, τ1 . . . τ10 are
generated and are shared with each other. Then, learning is
performed in the same manner as in the conventional learning
method by sequentially comparing τi.
The conventional random-walk learning algorithm increases

the end counter by one if the exchanged τ values match and
terminates learning if the preset end counter value is reached.
If the τ values do not match, the end counter is reset to zero.
Because the batch scheme sends and compares a set of τ ,
the end counter is increased by one only when the set of τ

matches, and it is reset to zero if any one element of the set
does not match. In other words, the conventional algorithm
sends only a single τ , but the batch scheme sends a set.

Figure 4 shows the difference between the conventional
TPM algorithm and that with the batch scheme. The con-
ventional TPM algorithm exchanges τ one by one during the
learning stage, but the batch scheme exchanges τ as many
times as the set batch number.

The following figures 5 and figures 6 compare the weight
match rate in each communication round of the conventional
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FIGURE 5. 1-h random-walks learning(K = 3, N = 1, 000, L = 57, MAX = 200).

FIGURE 6. Batch 1-h random-walks learning (K = 3, N = 1, 000, L = 57, hop = 3, MAX = 200, B = 10).

1-h random-walk algorithm and the batch-scheme 1-h ran-
dom walk algorithm. The parameters used in this experiment
are K = 3, N = 1, 000, L = 57, MAX = 200, and hop = 3.
Efficacy increases significantly compared with the previous
experiment. As a result, the conventional 1-h random-walk
algorithm shows a weight synchronization ratio of 99.1667%
in 39,292 communication rounds. By contrast, the batch
scheme 1-h random-walk algorithm shows a 100 % synchro-
nization rate in a total of 5,450 communication rounds; the
number of communication rounds after synchronization is
153. This experiment confirms that the difference in synchro-
nization rates between the conventional 1-h random walk and
the batch-scheme 1-h random-walk is insignificant. Rather,
the batch-scheme 1-h random-walk algorithm reduces the
number of communication rounds.

IV. FURTHER IMPROVEMENTS AND IMPLEMENTATION
A. SHIFTING AND CHANGING RANDOM NUMBER(SCRN)
The TPM must generate a random input value for each
round. If τ does not match, the generated random input value
becomes unnecessary. Although it varies according to the
parameter settings, the 1-h random-walk algorithm does not
use more than 30% of the total generated input values, owing

FIGURE 7. Shifting and changing random number (SCRN).

to the mismatch of τ . In particular, the batch scheme must
generate as many random input values as the set batch value,
but this causes performance degradation in the early stage
because the pseudo-random number function is frequently
called.

To solve this problem, we designed an SCRN(Shifting and
Changing Random Number) as shown in Figure 7, whose
working principle is described as follows. During the first
round, the input value set is generated at once using a pseudo-
random function. In the next round, the input value corre-
sponding to each hidden unit is moved to the right by one bit,
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and the newly generated bit is inserted at the end. Using this
method, we do not need to generate the entire random input
value set in each round. We only need K random numbers,
where K is the number of TPMs. Therefore, randomness
can be maintained while reducing the call frequency of the
pseudo-random function. The security of the SCRN is veri-
fied through an experiment described in Section V.

B. AMPLIFICATION OF WEIGHT SYNCHRONIZATION RULE
ECC can be used to reduce the number of learning rounds.
The neural cryptography-based key exchange algorithm can-
not check the mutual synchronization rate because it does
not share the state of the weight. Therefore, it performs
unnecessary and excessive learning to ensure synchroniza-
tion. Moreover, the 1-h random-walk algorithm continues to
generate and exchange τ to satisfy the condition of MAX =
3, 500, even though weight synchronization was completed
in 15,490 learning rounds, as shown in Figure 3. In the 1-h
random-walk experiment, a total of 18,622 learning rounds
was performed. Hence, 3,132 more communication rounds
were performed after the weights were fully synchronized.
This shows that approximately 17% of the total number of
communication rounds occurred after the weights were fully
synchronized. Therefore, the number of learning and commu-
nication rounds can be greatly reduced if the mutual weights
are corrected using the parity of the ECC after the weights are
synchronized above a certain rate.

The ECC application method proposed in this paper is
illustrated in Figure 8. TPM_A encodes ECC in the first
half of the weights and only sends the generated parities to
TPM_B. TPM_B encodes the second half of the weights and
sends the generated parities to TPM_A. This makes weight
synchronization difficult, even if the attacker obtains the
parities. The two TPMs perform weight synchronization by
decoding the received parities.

There are many ECC algorithms such as the Bose—
Chaudhuri–Hocquenghem (BCH) code, convolutional code,
and Reed–Solomon error correction [12]; however, this study
uses the BCH code, which has characteristics of original data
and parity being easily separated. Furthermore, it is difficult
to infer the original data only by the parity value. BCH
encoding is performed in the block unit. For example, if the
parameters of the BCH code are set to the message length of
ECCN = 511 and the original message length of ECCK =
229, the number of error corrections becomes ECCT = 38.
Hence, 38 errors in 229 bits can be correctedwhenever encod-
ing is performed once. This method can improve efficiency
to a great extent because the same level of synchronization
can be achieved, although a small MAX value is used in the
synchronization process.

C. IMPLEMENTATION
The proposed TPM learning-based key exchange algorithm
with 1-h random-walk learning, batch scheme, SCRN, and
ECC works as shown in the pseudocode of Algorithm 1.

The inputs of the key exchange algorithm are parameters
for the TPM learning, i.e., the threshold of the weight L, the
number of hidden units K , the number of input values for
each hidden unit N, the size of batch B, the maximum round
of learning MAX, the weight change hop, the parameters of
ECC, and the random seed. Note that, since the batch scheme
is included, output τ (0) and hidden unit σ (0) are the vector
values.

that, since the batch scheme is included, output τ (0) and
hidden unit σ (0) are the vector values. First, the TPM_A
initializes own weight to a random number from −L to
L, and hidden units, round, count to 0. Then, input val-
ues are randomly generated and TPM_A repeatedly calcu-
lates hidden units and output value for B times by using
Out[utGenerator function which shown in Algorithm 2.
As mentioned in Section II, TPM consecutively adds input
multiplied by weight w(0) to obtain hidden units σ (0) and
replace the hidden units as -1 or 1. The generated hidden units
are multiplied to obtain output τ (0). To update the weights,
TPM_A and TPM_B exchange the output value and update
the weights. In order to update the weights, RandomWalks
function is also performed B times as shown in Algorithm 3.
The 1-h random-walk learning is performed with hop = 1 in
even rounds and with the hop value set in advance in the odd
rounds. When the RandomWalks function is completed, τ (0)

and τ (1) are checked to see if they match. If so, the count is
increased; otherwise, the count is reset to zero. This process
is repeated until the count become MAX.

When the weight update is complete, the weight is cor-
rected using an ECC. TPM_A extracts the parity code by
encoding wfront (0) which is the first half of the weights. The
extracted code is sent to TPM_B, which extracts the parity
code by encoding wback (1) which is the second half of the
weights and sends it to TPM_A. Each TPM completes weight
synchronization by correcting the weight using the received
parity code.

V. ANALYSIS
A. SECURITY OF 1-H RANDOM-WALK
Attack methods for learning models include simple attacks
[4], geometric attacks [13], genetic attacks [13], [14], and
majority attacks [15]. Among them, majority attacks are
known to be powerful attacks against learning models [10].
In this section, the security of the 1-h random-walk learning
method is verified. Majority attacks have the characteristic
that the attack probabilities become lower as the L value
grows [10]. The number of neural networks available to
majority attackers is set to M . Table 2 shows the probability
of majority attacks according to hop value. The experiment is
considered to be successful if the weights of the attacker are
synchronized with 98 % or more of the sender and receiver
weights.

The experimental results showed that at L = 40 and
hop = 3, the attack probability of the 1-h random-walk
learning is not significantly different from that of the conven-
tional random-walk learning. Therefore, 1-h random-walk
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FIGURE 8. Weight synchronization using Error Correction Code (ECC).

TABLE 2. Comparison of the majority attack probability (%) according to
the HOP value, M = 100.

learning can be used as an alternative to conventionalmethods
because it can maintain a similar security level while decreas-
ing the number of updates compared with the conventional
random-walk at hop = 3 and L = 40. However, at hop = 4,
the attack probability becomes higher than that at hop = 3.
Thus, it is recommended to use a hop value of three or lower.

B. SECURITY OF SCRN
To verify the security of SCRN, an attack experiment was
conducted for the SCRN method while changing the L value.
In this experiment, majority attacks were performed for a
TPM to which the SCRN was applied to the 1-h random-
walk learning method with hop = 3 and for a TPM to which
the SCRN was not applied. The results are summarized in
Table 3.

It can be seen that at L = 25, the attack success rate when
the SCRN was applied with an increase of 25 % or more.
When L was sufficiently large, the difference between the

TABLE 3. Comparison of majority attack probability according to SCRN
(K = 3, N = 1, 000, M = 100, 10, 000 repetitions).

TABLE 4. Comparison of the majority attack probability of SCRN
according to the number of bits
(K = 3, N = 1000, L = 50, M = 100, 10, 000 repetitions).

two methods was insignificant. The security of the SCRN
according to the number of moving bits was also verified. The
parameters used in this experiment were K = 3,L = 50,
and N = 1, 000. The same parameters as in the previous
experiment were used, and the results are shown in Table 4.

The experimental results show that the SCRN is the most
secure at 1 bit, and the algorithm is more vulnerable against
majority attackers when the number of moving bits is larger.
Therefore, this experiment confirms that SCRN can be used
for the efficiency of using random numbers at L = 50.

C. PERFORMANCE
Because the initial input value and weight of the TPM are ran-
dom values, the communication rounds or execution times are
changed whenever the TPM is executed. Therefore, to verify
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Algorithm 1 TPM Learning-Based Key Exchange
1: Input L,K ,N ,B,MAX , hop,ECC_N ,ECC_K , seed
2: function NN:
3: w(0)

← Generate random numbers from −L to L.
Array size is K* B

4: σ (0)
← Initialize to 0. Array size is K* B

5: count, round ← Initialize to 0
6: input ← Generate random numbers from −1 or 1

using seed . Array size is K* B
7: while count < MAX do
8: for i← 1 to B do
9: τ (0), σ (0)

←

10: OutputGenerator(w(0), σ (0), input)
11: end for
12:

13: send τ (0) to TPM_B
14: receive τ (1) from TPM_B
15:

16: for i← 1 to B do
17: if round%2 == 0 then
18: if τ (0)[i] = τ (1)[i] then
19: RandomWalk(w(0), 1, τ (0)[i], σ (0),

20: input, 1)
21: end if
22: end if
23: if round%2 == 1 then
24: if τ (0)[i] = τ (1)[i] then
25: RandomWalk(w(0), hop, τ (0)[i],
26: σ (0),input, hop)
27: end if
28: end if
29: if τ (0) == τ (1) then
30: count++
31: else
32: count ← 0
33: end if
34: round ++
35: end for
36: input ← Using SCRN
37: end while
38:

39: parity(0)← ECC encoding w(0)
front and extracting par-

ity from encoded w(0)
front

40: send parity(0) to TPM_B
41: receive parity(1) from TPM_B
42: w(0)

back ← ECC decoding (w(0)
back concat parity

(1))
43: w(0)

← w(0)
front concat w

(0)
back

44: end function

the efficiency of 1-h random-walk learning by comparing it
with the conventional random-walk learning, we performed
the synchronization process 100 times and compared the
average values by the number of weight updates. The results
are summarized in Table 5.

Algorithm 2 Output Generator
1: function OutputGenerator(w, σ, input):
2: for i← 1 to K do
3: for j← 1 to N do
4: σ [i]← σ [i]+ (w[N ∗ K ∗ (i− 1)+ j]∗
5: input[N ∗ K ∗ (i− 1)+ j)
6: end for
7: end for
8:

9: for i← 1 to K do
10: if σ [i] > 0 then
11: σ [i]← 1
12: else
13: σ [i]←−1
14: end if
15: end for
16:

17: τ ← 1
18: for i← 1 to K do
19: τ ← σ [i] ∗ τ

20: end for
21:

22: return τ, σ

23: end function

Algorithm 3 1-h Random Walk
1: function RandomWalk(w, σ, τ, input, hop):
2: for i← 1 to K do
3: if σ [i] = τ then
4: for j← 1 to N do
5: w[N ∗ (i− 1)+ j]← w[N ∗ (i− 1)
6: +j]+ hop ∗ input[N ∗ (i− 1)+ j]
7: if w[N ∗ (i− 1)+ j] > L then
8: w[N ∗ (i− 1)+ j]← L
9: elseif w[N ∗ (i− 1)+ j] < −L
10: w[N ∗ (i− 1)+ j]←−L
11: end if
12: end for
13: end if
14: end for
15: end function

TABLE 5. Number of updates until weight synchronization ac-cording to
the hop value (K = 3, N = 1, 000, MAX = 3, 500).

The experimental results showed that at L = 40, the num-
ber of updates was approximately 830,000 for the random-
walk learning, and it could be reduced to approximately
20,000 times for hop = 3 and to approximately 12,000 times
for hop = 4.
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FIGURE 9. Communication round histogram.

TABLE 6. Result of key generation performance experiment of the
proposed TPM model (K = 3, N = 1, 000, MAX = 3, 500).

Based on the security and performance verified, the time
required for key generation was verified by the TPM sim-
ulator by applying the 1-h random walk, the batch scheme,
the SCRN, and the ECC, as proposed. The performance was
verified using the parameter values of K = 3,L = 57,
and N = 1, 000, which are practically difficult because of
the large number of updates in the conventional random-
walk method. With hop = 3 and B = 10, the simulation
finishes if the τ set matches 10 times in a row. The ECC
parameters were set to ECC_N = 511,ECC_K = 229, and
ECC_T = 38, and the experiment was repeated 1,000 times.
The experimental environment and its results are summarized
in Table 6.

The results show that the average number of communica-
tion rounds was 2,619, the minimum was 786, and the maxi-
mum was 7,016. The required time was 786 ms maximum,
102 ms minimum, and 274 ms on average. The average
synchronization rate before the ECC application was 98%.
In the experiment where only 1–3 random-walk was applied,
116,134 communication rounds were generated on average.
This result shows the effect of applying the batch scheme and
ECC on the reduction in the average number of communi-
cation rounds. Furthermore, in Figure 9, the distribution of
the number of communication rounds shows that the synchro-
nization rate was the highest in the 2000–3,000 sections.

VI. CONCLUSION
The conventional TPM model is secure under majority
attacks as L becomes larger, but it is practically difficult to
use, owing to the high number of learning rounds. Therefore,
to maximize practicality while maintaining security, this

paper proposed a 1-h random-walk learning algorithm and
batch scheme, and the application of SCRN and ECC was
used to reduce the execution time.

The experimental results showed that 1-h random-walk
learning greatly decreased the number of updates compared
with the conventional method while maintaining a similar
level of security. In particular, when L = 40, hop = 1,
and hop = 3, the number of updates was reduced 40 times
while maintaining a security level similar to that of conven-
tional random-walk learning. Furthermore, the communica-
tion rounds were reduced by using the batch scheme and ECC
compared with using the 1-h random-walk learning method
alone. Additionally, efficiency was improved by using SCRN
to reduce the input value generation time while maintaining
security.

However, additional studies are required to ensure the effi-
cient use of TPMs. In particular, it is difficult to implement a
parallel TPM model based on random-walk learning because
a change in weight affects the next round. Furthermore, it is
necessary to verify how an active change in the hop value
influences the number of up-date rounds and corresponding
security. Therefore, further research should focus on parallel
processing and TPM efficiency by further optimizing the 1-h
random-walk method.
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