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ABSTRACT We analyse a cell of Cognitive Radio Network (CRN ) as the multiline queueing system
supplying service to twoMarkovian arrival flows of users. Primary (or licensed) users called as High Priority
Users (HPUs) have a preemptive priority over the secondary (cognitive) users called as Low Priority Users
(LPUs). The HPUs are dropped upon the arrival only if all servers are occupied by HPUs. If at the arrival
epoch all servers are busy but some of them provide service to LPUs, service of one LPU is immediately
interrupted and service of the HPU begins in the released server. A LPU is accepted only if the number
of busy servers at arrival epoch is less than the defined in advance threshold M . Otherwise, the LPU is
permanently lost or becomes a retrial user. A retrial user repeats attempts to receive service later after random
time intervals. The LPU whose service is interrupted is either lost or transferred to a virtual place called as
orbit. The users placed in the orbit may be impatient and can renege the system. The service time follows
an exponential probability distribution with the rate determined by the user’s type. After loss of a HPU ,
admission of LPUs is blocked. LPUs are informed that their access is temporarily suspended and do not
generate new requests until blocking expires. The purpose of the research is the optimization of threshold
M and admission blocking period duration. Behavior of the system is described by a multidimensional
continuous-time Markov chain. Its generator, ergodicity condition and invariant distribution are derived.
Expressions for performance indicators are given. Numerical results demonstrating usefulness of blocking
and significance of account of correlation in arrivals are presented. E.g., in the presented example of cost
criterion optimization blocking gives 18 percent profit comparing to the system without blocking.

INDEX TERMS Cognitive radio system, Markov arrival process, preemptive priority queueing system,
servers reservation.

I. INTRODUCTION
A multiline queueing system with many different types of
users and priority may be used effectively for modeling and
performance assessment, capacity planning, and optimization
of numerous real-world systems, see, e.g., recent paper [38].
In particular, these systems are now popular for description of
emergency rooms, see, e.g. [1], [18], [21], and cognitive radio
networks, see, e.g., surveys [2] and [36] and papers [9], [10],
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[11], [12], [23], [25], [29], [30], [31], [32], [34], [40], [42],
[44], [45], [47]. There are many different possible variants of
information transmission in CRN s which require considera-
tion of different queueing systems as their descriptors, see,
e.g., [36]. Here we impose the following assumptions about
the scenarios of operation of CRN .

A. ASSUMPTIONS ABOUT THE MODEL OF A CELL OF CRN
We assume that the bandwidth of the cell of the network is
divided to equal sub-bands (channels) each of which can be
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used by either HPU or LPU . The number of channels may
be more than one. The case of one server, which is very
popular in the literature, is hardly relevant to real CRN s.
There is no buffer for waiting in case if the bandwidth is
completely occupied. Spectrum sensing is ideal: LPUs are
able to exactly determine/estimate the channel occupancy by
HPUs or other LPUs. The cell operates in the overlay mode.
This means that the service of one LPU has to be interrupted
in case of HPU arrival when all channels are busy. There is
a spectrum handoff: once the channel being used by a LPU
is re-occupied by a HPU , the LPU can immediately occupy
another idle channel if it is available. If idle channel is not
available, the LPU can try to enter the service later on, after
some random time interval. In addition to the given above
assumptions, we suggest that in this cell there is an opportu-
nity to broadcast to all users the status of the bandwidth. This
status has two possible states: the bandwidth is available for
sensing by LPUs or it is temporarily unavailable (blocked) for
LPUs. This suggestion looks non-restrictive for radio access
networks.

Thus, it is suggested in our model that the HPUs have
absolute priority over the LPUs. AHPU is lost only if during
his/her arrival epoch all servers are busy by processing of
HPUs. If all servers are busy but some are satisfying requests
of LPUs, the service of one LPU is interrupted and the
server is occupied by the HPU . Forced cutoff of LPU ’s
service may have negative implications, including LPU ’s
discontent with the quality of service and waste of throughput
owing to the loss of work previously done for the interrupted
user’s service. Thus, to mitigate these consequences, it is
desirable to control the admission of LPUs. For example,
it appears that it makes sense to temporarily halt LPUs
admittance when the number of occupied servers exceeds
some set level and, as a result, the risks of forced termination
of SPU service are significant. The known in the literature
policy of LPUs admission is described in the following
subsection.

B. POLICY OF CHANNELS RESERVATION
The admission restriction policy via channels (servers) reser-
vation was offered in the paper [46]. In this paper, the admis-
sion strategy assumes that any arriving LPU is admitted for
service only if the occupied servers number is less than the
fixed in advance integer number M , such as 0 < M ≤ N
whereN is the servers number. It is numerically demonstrated
in [46] that the good choice of the number N −M of reserved
servers leads to improvement of system performance.

In paper [39], themodels considered in [46] and in themost
part of the published papers devoted to the study ofCRN were
essentially generalized by assuming that:

• HPUs and LPUs arrive according to a Marked Markov
Arrival Process (MMAP). It is the generalization of well
known versatile Markov Arrival Process (MAP), see [6],
[7], [8], [13], [33], [41], to the case of many types of
users. The stationary Poisson arrival processes of HPUs
and LPUs suggested in the most part of the relevant

literature is the very simple case of the MAP. Its disad-
vantage is that it does not allow to take into consideration
the possible correlation and possible high variability of
intervals between arrivals that are common in modern
communications networks and other real-world systems.
This leads to huge under-estimation of the required
amount of resources for service (bandwidth) under the
fixed requirements to the quality of users service, e.g.,
HPU ’s dropping probability, LPU ’s blocking and forced
termination probability, traffic throughput, etc.;

• the LPU , which is not admitted for service, may decide
either to abandon the system or to transit to the orbit,
a virtual place, and attempt to get access after a random
time. The repeated attempts (retrials) are an inherent
phenomenon of many telecommunication networks, see,
e.g., [3], [19];

• the LPUs can be not absolutely persistent (can leave the
system after any retrial failure) and (or) impatient (can
depart from the system without receiving service after a
certain random time of residing in orbit).

It is worth noting that because the HPUs have an abso-
lute priority over the LPUs, the purpose of reservation of
certain number of servers for service of only HPUs creates
better conditions for service of LPUs, not HPUs. This is
important because the phenomenon of forced termination
of service (expelling from service) is very unpleasant for
LPUs. Frequent expelling of LPUs from service may lead to
their permanent refusal from service in the queueing system.
This, in turn, reduces the system throughput and its economic
revenue.

C. CONTRIBUTIONS OF THIS PAPER
The main contributions of this paper are as follows.

• We supplement the known in the literaturemechanism of
LPUs protection via reservation of some part of servers
for service of onlyHPUs by the mechanism of temporal
blocking of admission of LPUs after each occurrence of
the loss of HPU . During the blocking time, information
about unavailability of service is broadcasted and arriv-
ing LPUs do not even try to sense the channels. They can
retry after an interval having a random length. Duration
of blocking time is also random having exponential
distribution and the rate of this distribution should be
properly chosen based on the results of the presented
analysis. After the blocking time expires, information
about availability of service is broadcasted and arriving
or retrying LPUs can try to sense the channels to get
access.

• The proposedmechanism of blocking admission of LPU
after the loss of HPU is novel in the literature and can
be applied simultaneously with the servers reservation
or separately. Its separate usage significantly simplifies
control by LPUs admission comparing to the servers
reservation. It is not necessary to permanently keep track
on the number of busy servers. A LPU does not sense the
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channels if the signal about admission blocking is sent.
If the blocking is not currently imposed, the LPU can
sense the channels and occupy any idle channel. If all
channels are busy, the LPU departs from the system or
retries later on. As it is shown in the numerical example
in our paper, the blocking is helpful also in the situation
when the reservation is not applied.

• We assume MAP flows of both types of users what
is essential advantage over the vast majority of
existing research, except the papers [10], [12], [14],
[32], [38], [39].

• Consideration of possibility of LPU retrials in case of
unavailability of servers or service interruption. This
possibility is realistic in the majority of CRN s but is
rarely considered in the literature. E.g., it is stated in
paper [31] published in 2016 that retrial multi-server
queueing models of CRN are not previously considered
in the literature. This is not true because such a model
was considered in 2014 in [39]. But indeed, there are
only a few papers considering retrial multi-server queue-
ing models of CRN . The reasons of such a situation
consist of mathematical difficulty of analysis of the
corresponding random process describing behavior of
the queueing system.

D. CHALLENGES ASSOCIATED WITH CONSIDERATION
OF THE MODEL
The main challenges are as follows.

• The first, albeit non-principal but essential, difficulty
of analysis of the model consists of the necessity
of consideration of a six-dimensional continuous-time
Markov chain (MC) describing behavior of the con-
sidered model. Corresponding experience of work with
structured matrices, entries of which, in turn, also are
matrices with several nesting levels (like nesting dolls),
is required during this analysis. In particular, it is
required for derivation of explicit expression for the
generator of theMC . The use of operations of Kronecker
product and sum of the matrices and knowledge of their
properties is very helpful at this stage of analysis.

• The second, principal, difficulty of analysis of the model
consists of the necessity of the: (i) derivation of the
constructive conditions for existence of the stationary
probabilities of the states of the constructed MC and
(ii) solution of an infinite system of equilibrium equa-
tions for these probabilities. For the corresponding
system without retrials (with buffers), this difficulty
drastically reduces through the use of famous results
by M. Neuts for so called level independent Quasi-
Birth-and-Death (QBD) processes, see [35]. The station-
ary distribution of these processes is computed in the
matrix geometric form. The account of retrials makes
the considered six-dimensional process be level depen-
dent QBD process. Such processes are complicated and
not enough well investigated in the existing literature.

As popular reference to the methods of analysis of
such processes, usually the paper [4] is cited. How-
ever, indeed this paper does not give the solution of
the problem. Presented solution is given in terms of an
infinite sequence of some matrices say, Ri, i ≥ 1, of
a finite size computed as a solution of some infinite
system of recursive matrix equations. But, even in the
case of level independentQBD processes solution of the
corresponding equations exists only under fulfillment of
so called ergodicity condition. Thus, definitely in the
case of level dependent QBD processes fulfilment of
ergodicity condition is also mandatory for existence of
the sequence of matrices Ri, i ≥ 1. Such a condition
is given in [4] in terms of these matrices. Therefore,
to verify ergodicity of the considered process, one needs
to compute the sequence of matrices Ri, i ≥ 1. But to
compute these matrices, one needs to be sure that the
QBD process is ergodic. There is a vicious circle.
In such a situation to avoid the described diffi-
culty, researchers usually either make certain unrealis-
tic assumptions about the system like ‘‘the total retrial
rate does not depend on the number of retrying users’’
or ‘‘the number of retrying users is finite’’ (the later
assumption is imposed in [31]) or make the rough or
soft truncation of the state space of the MC . In this
paper, we successfully derive ergodicity condition and
compute the stationary distribution of the constructed
MC using our experience of application of results from
[26] relating to so called Asymptotically Quasi-Toeplitz
MC and more recent enhancements of these results.

• The third, technical but unpleasant, difficulty consists of
the necessity to operate with infinite size matrices con-
sisting of infinitely many matrices of a finite, but large
size. E.g., in the considered below numerical example of
the system with N = 20 servers, without servers reser-
vation andMAP processes ofHPU and LPU determined
by the matrices of size two the size of the finite blocks
is 1848. Thus, careful realization of numerically stable
algorithm from [26] is required.

E. ORGANIZATION OF THE PAPER
The paper is organized as follows. The mathematical model
is reported in detail in section II. In section III, a multi-
dimensional continuous-time MC with space heterogeneous
transitions that describes the dynamics of the system is con-
structed. Necessary notation is introduced and the generator
ofMC is obtained as the blockmatrix there. The requirements
to system parameters sufficient for ergodicity (stability) of
MC are presented in section IV. Information relating to the
invariant distribution of the system states calculation is given
in brief and the expressions for key performance indicators
are derived in section V. Section VI contains some numerical
results. Section VII contains conclusion. Possible directions
for generalization of the considered model are outlined in
Section VIII.
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II. DETAILED DESCRIPTION OF THE SYSTEM OPERATION
We analyse a queueing system characterized by N servers
and no waiting space. High priority (Type-1 or HPUs) and
low priority (Type-2 or LPUs) users arrive to the system
according to Markov Arrival Process MAPr , r = 1, 2,
respectively. Such a process is governed by continuous-time
MC ν

(r)
t , t ≥ 0, having a state space {0, . . . ,Wr }. The

transitions rates of the process ν
(r)
t within its state space are

given by the components of D(r)
0 and D(r)

1 matrices. The off-
diagonal components of the matrix D(r)

0 define the rates of
jumps that are not accompanied by Type-r user arrival. The
diagonal components of the matrix D(r)

0 define the departure
rate of the process ν

(r)
t from its states, while the D(r)

1 entries
define the transitions rates at which arrivals of Type-r users
occur.

The matrix

D(r)(1) = D(r)
0 + D(r)

1

is the generator of the MC ν
(r)
t . It is supposed to be

irreducible. The average intensity of Type-r users arrival
(fundamental rate) λr is calculated as

λr = θ (r)D(r)
1 e,

where θ (r) is the (row) vector of the invariant probabilities of
the MC ν

(r)
t . It is the unique solution to the system

θ (r)D(r)(1) = 0, θ (r)e = 1

where e is a column vector of 1’s with suitable size and 0 is a
row vector of zeroes with suitable size.

Formulas for computation of the coefficient of variation
of inter-arrival times and the coefficient of correlation of
neighboring inter-arrival times as well as their derivation can
be found in [13]. The values of these coefficients for the
stationary Poisson arrival process are equal to 1 and 0, cor-
respondingly. If these coefficients for the real-world arrival
process are essentially different from the values 1 and 0,
application of results obtained under assumption that the flow
is the stationary Poisson can lead to significant errors in com-
putation of performance measures of the system. The error
is especially huge when the coefficient of variation is much
more than 1 and (or) the coefficient of correlation is positive
and greater than, say, 0.1. This is easily explained intuitively
because the flows with such values of the coefficients of
variation and correlation are bursty. Periods of time when
the users arrive often and the system becomes congested
alternate with periods of rare arrivals when the servers may
stay idle and the throughput of the system is under-utilized.
This motivates analysis of queueing systems with theMAP.
Various methods for the estimation of MAPr parameters,

depending on the set of observed user arrival moments (time
stamps) in a real-world system, are pretty well developed, see,
e.g., the paper [5].

Probability distribution of Type-r users service time is of
exponential type having service rate µr , r = 1, 2.

We suppose that HPUs have absolute priority over LPUs.
If at the arrival moment of a HPU all servers are occupied
by HPUs the arriving HPU is not admitted to the system.
In this case, HPU is dropped without receiving service (is
lost). In the opposite case, HPU is admitted. If all servers are
occupied, one of LPU is expelled from service.

By analogy with [39], we suppose that the policy of LPUs
admission is of a threshold type. An integer threshold M is
assumed to be fixed in advance such that 0 < M ≤ N .
If M = N the system is without reservation. The arriving
LPU is admitted for service only when the number of idle
servers is greater than N −M .

If LPU is accepted to the system, he/she starts service.
If LPU is not accepted, he/she abandons the system (is lost)
with probability 1 − q, 0 ≤ q ≤ 1. LPU will repeat
attempts to receive access later on from so-called as orbit,
with probability q.
Each user residing in the orbit makes the trials to receive

access, independently of other users staying in the orbit.
Individual inter-trials times are exponentially distributed with
rate α, α > 0. The total retrial rate is iα when i LPUs stay in
the orbit, i > 0. A trial is successful if the number of servers
that are not in use is larger than N − M . In this case, the
user immediately starts service. If the trial has no success,
the LPU leaves the system forever with probability 1 − q or
returns back to the orbit for further retrials with probability q.

Any LPU may be expelled from service due to HPU
arrival. In such a case, LPU either departs from the system
with probability 1 − p, 0 ≤ p ≤ 1, or moves to the
orbit with probability p. The users residing in the orbit may
show impatience and depart without service when a random
patience time expires. The cumulative distribution function
of this time is

1 − exp {−γ t}, t ≥ 0, γ ≥ 0.

If γ = 0 the users are completely patient and can leave the
system only after the service.

As it has been noted above, the rejection of LPU upon
arrival may be less offensive than the expelling from the
ongoing service. This is because in the former case the user
has an opportunity to immediately move for service to some
alternative system or try to enter to the system later on when it
will be less congested. While in the latter case he/she wastes
some amount of time during the failed service. In turn, the
owner or the manager of the system has a loss of some share
of the system resource that was dedicated to supplying the
failed service. Therefore, as an additional precautionary mea-
sure, we extend admission control strategy with the following
feature.

Let the loss of an arbitraryHPU occur. This happens when
at his/her arrival moment all servers provide service toHPUs.
At this moment the admission blocking time starts. This
time finishes after an interval length which has cumulative
distribution function

1 − exp {−σ t}, t ≥ 0, σ ≥ 0.
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When the blocking is imposed, the LPUs receive announce-
ment that their admission is temporarily suspended and do not
try to enter to service. They are not counted as the rejected
ones. During the blocking time, all transitions of the under-
lying process ν

(2)
t of the MAP2, including the ones governed

by the matrix D(2)
1 , do not lead to new arrivals. Note that we

do not make any assumption about prolongation or resuming
from the early beginning of the blocking time in case of
a loss of the new HPU during the ongoing blocking time.
This is due to the memoryless property of the exponential
distribution of blocking time.

For easier understanding, the processing of HPUs
and LPUs in the system is schematically illustrated in
Figures 1 and 2.

FIGURE 1. Scheme of processing of HPU .

FIGURE 2. Scheme of processing of LPU .

To analyse the described queueing model of operation of
the cell of CRN , in the next section we describe the dynamics
of this model in terms of Markovian stochastic process.

III. RANDOM PROCESS OF THE SYSTEM STATES
Denote

• it , it ≥ 0, the number of users placed in orbit,
• nt , nt = 0,N , the number of busy servers,
• lt , lt = 0,min{nt ,M}, the number of LPUs receiving
service,

• ν
(r)
t , ν

(r)
t = 0,Wr , the state of the MAPr , r = 1, 2,

underlying process,
• ζt the blocking indicator: ζt = 0 if admission of LPUs
is blocked and ζt = 1, otherwise

at an arbitrary epoch t, t ≥ 0.
It can be verified that the stochastic process having one

countable component and five finite components

ξt = {it , nt , lt , ν
(1)
t , ζt , ν

(2)
t }, t ≥ 0,

is an irreducible continuous-timeMC .
The states of the chain ξt are counted in the components’

(i, n, l, ν(1), ζ, ν(2)) direct lexicographic order. A sub-level
(i, n) is the set of states with the value (i, n) of two initial com-
ponents and a level i is the set of sub-levels ((i, 0), . . . , (i,N )).

Let Q be the MC ξt , t ≥ 0, generator. It is formed by
the blocksQi,j, which, in turn, contain the matrices (Qi,j)n,n′

consisting of the chain ξt transition rates from the sub-level
(i, n) to the sub-level (j, n′), n, n′

= 0,N . The matrices Qi,i
have negative diagonal elements. The diagonal entrymodulus
specifies the rate of the MC’s departure from the respective
state that belongs to level i.

The following assertion is correct.
Lemma 1: Generator Q of the MC ξt has the following

block-tridiagonal form:

Q =


Q0,0 Q0,1 O O . . .

Q1,0 Q1,1 Q1,2 O . . .

O Q2,1 Q2,2 Q2,3 . . .
...

...
...

...
. . .

 (1)

with blocksQi,j, i, j ≥ 0,which are not equal to zero, defined
as follows:

• The diagonal block Qi,i is the sum of the matrix

(1 − q)Ĩ ⊗ (IW̄1
⊗ D̃(2)

1 ) + IK ⊗ (D(1)
0 ⊕ D̃(2)

0 )

and the block-tridiagonal matrix having the diagonal
blocks A(n)

i , n = 0,N , given by formula

A(n)
i =



−(µ2�n + µ1�̄n + i(α + γ )In+1) ⊗ IW̄ ,

n = 0,M − 1,
−(µ2�M + µ1�̃n + i((1 − q)α + γ )IM+1)

⊗ IW̄ + δn,N

[
(1 − p)E−

⊗ (D(1)
1 ⊗ I2W̄2

)

+ Î⊗(D(1)
1 ⊗

(
1 0
1 0

)
⊗IW̄2

)
]
, n = M ,N ,

the up-diagonal blocks B(n), n = 0,N − 1, given by
formula

B(n)
=


E+
n ⊗ (IW̄1

⊗ D̃(2)
1 )

+ Ê+
n ⊗ (D(1)

1 ⊗ I2W̄2
), n = 0,M − 1,

IM+1 ⊗ (D(1)
1 ⊗ I2W̄2

), n = M ,N ,

VOLUME 11, 2023 44429



C. D’apice et al.: Admission Control in Priority Queueing System

and the sub-diagonal blocks F(n), n = 1,N , given by
formula

F(n)
=

{
(µ2�nÊ−

n +µ1�̄nE−
n ) ⊗ IW̄ , n = 1,M ,

(µ2�ME−
+ µ1�̃n) ⊗ IW̄ , n=M+1,N ,

• The up-diagonal block Qi,i+1 = Q+ is a diagonal
matrix with diagonal blocks H(n), n = 0,N , defined
by formula

H(n)
=


O, n = 0,M − 1,

qIM+1 ⊗ (IW̄1
⊗D̃(2)

1 )

+ δn,NpE−
⊗(D(1)

1 ⊗ I2W̄2
), n = M ,N ;

• The sub-diagonal block Qi,i−1 is a block two-diagonal
matrix with diagonal blocks L(0)

i , n = 0,N , defined by
formula

L(n)
i =

{
iγ In+1 ⊗ IW̄ , n = 0,M − 1,
i(γ + (1 − q)α)IM+1 ⊗ IW̄ , n = M ,N ,

and up-diagonal blocks V(n)
i , n = 0,N − 1, given by

formula

V(n)
i =

{
iαE+

n ⊗ IW̄ , n = 0,M − 1,
O, n = M ,N − 1.

where we use the following notation:
• I represents the identity matrix, while O represents a
zero matrix. The suffix indicates the dimension of a
matrix if it is not evident from context. E.g., IW̄r

means
the identity matrix of size W̄r = Wr + 1;

• 0T represents the column vector generated by transpos-
ing the row vector 0;

• ⊗ and ⊕ denote matrices Kronecker product and sum,
respectively, see [20], [22], and [43] and they are highly
handy for determining the transition rates and probabil-
ities of numerous independent MCs at the same time.

• δn,N are the Kronecker delta. If n = N it is equal to 1,
otherwise it is equal to 0;

• diag{. . .} are the diagonal matrix with diagonal ele-
ments given in parentheses;

• �l, �̄l and �̃l are the diagonal matrices defined as:

�l = diag{0, 1, . . . , l}, l = 0,M ,

�̄l = diag{l, l − 1, . . . , 0}, l = 0,M ,

and

�̃l = diag{l, l − 1, . . . , l−M+1, l−M}, l = M ,N ;

• E+

l and Ê+

l , l = 0,M − 1, are the matrices obtained
by attaching to the identity matrix Il+1 the zero column
from the left and from the right, respectively;

• E−

l and Ê−

l , l = 0,M − 1, are the matrices obtained
by attaching to the identity matrix Il the zero row from
below and from above, respectively;

• E− is the matrix obtained by attaching to the matrix Ê−

M
the zero column from the right;

• Ẽ is the matrix obtained by attaching to the matrix E−

M
the zero column from the left;

• Î is the diagonal matrix of size M + 1 defined as Î =

diag{1, 0, . . . , 0};
• K = (M + 1)(N + 1 −M/2);
• Ĩ is the diagonal matrix of size K with the first M (M+1)

2
diagonal components equal to 0 and the rest (M+1)(N−

M + 1) diagonal components equal to 1;
• W̄ = 2W̄1W̄2;

•

D̃(2)
0 =

(
−σ IW̄2

+ D(2)
0 + D(2)

1 σ IW̄2

O D(2)
0

)
,

D̃(2)
1 =

(
O O
O D(2)

1

)
.

The validity of Lemma 1 is demonstrated by doing a
comprehensive study of the transitions of the MC ξt within
an infinitesimally tiny interval while taking into considera-
tion the probabilistic meaning of the relevant matrices. The
proof’s sketch is below reported.

The block-tridiagonal form of the generatorQ is explained
by the fact that during a very short time the users number in
the orbit may remain the same or change (either decrease or
increase) by one.

The diagonal components of the diagonal blocks A(n)
i ,

n = 0,N , of the matrices Qi,i added to the modules of the
corresponding components of the blocks of the matrix

(1 − q)ĨK ⊗ (IW̄1
⊗ D̃(2)

1 ) + IK ⊗ (D(1)
0 ⊕ D̃(2)

0 )

define the processes’ {nt , lt , ν
(1)
t , ζt , ν

(2)
t } departure rates

from their states which are not accompanied by the transition
of the component it into another state. Such exits are possible
due to:

(i) finish of service of one HPU or LPU . The respective
rates are determined by the elements of the matrices

µ2�n + µ1�̄n when n < M

or by the matrices

µ2�M + µ1�̃n when M ≤ n ≤ N ;

(ii) departure of one user from the orbit due to impatience
or successful retrial or the failed retrial after which the user
returns to the orbit but does not depart from the system (the
respective rates are given by the value i(α + γ ) when n < M
or the value i((1 − q)α + γ ) whenM ≤ n ≤ N );
(iii) arrival of LPU which is rejected due to the supposed

admission strategy. The respective rates are given by the
elements of the matrix

(1 − q)ĨK ⊗ (IW̄1
⊗ D̃(2)

1 );

(iv) exit of the process {ν
(1)
t , ζt , ν

(2)
t } from its states. The

respective rates are given by the diagonal elements of the
matrix

IK ⊗ (D(1)
0 ⊕ D̃(2)

0 ).
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Here, D̃(2)
0 and D̃(2)

1 describe the process of LPUs arrival
defined by the two-dimensional MC {ζt , ν

(2)
t }. Their form,

presented above, is explained as follows. Given the state 1 of
the process ζt , arrivals of LPUs occur with the rates defined
by the elements of the matrix D(2)

1 . Given the state 0 of the
process ζt , arrivals of LPUs are blocked and all transitions of
the underlying process ν

(2)
t defined by the matrix D(2)

0 +D(2)
1

do not cause arrival of LPUs. Transition of the process ζt
from the state 0 to the state 1 occurs with the rate σ when
the blocking time expires. It is worth noting that the return of
the process ζt from the state 1 to the state 0 occurs when the
loss of HPU happens.

If n = N , there is also an additional option (v): arrival of
HPU when all servers are occupied by service of HPUs and
the arriving user is lost. The respective rates are given by the
diagonal elements of the matrix

Î ⊗ (D(1)
1 ⊗ IW̄2

).

The off-diagonal elements of the matrices Qi,i have
the meaning of transition intensities of the components
{nt , lt , ν

(1)
t , ζt , ν

(2)
t } without any jump of the component it of

the MC ξt . They are defined by the off-diagonal elements of
the blocks A(n)

i as well as the corresponding elements of the
blocks of the matrix

(1 − q)ĨK ⊗ (IW̄1
⊗ D̃(2)

1 ) + IK ⊗ (D(1)
0 ⊕ D̃(2)

0 ).

The non-zero off-diagonal elements of A(N )
i are given by

the off-diagonal elements of the matrix

(1 − p)E−
⊗ (D(1)

1 ⊗ I2W̄2
) + Î ⊗ (D(1)

1 ⊗

(
1 0
1 0

)
⊗ IW̄2

).

The first summand corresponds to situation when HPU
arrives when all N servers are busy but some of them are
occupied by LPUs. This service is interrupted and LPU
does not join the orbit but abandons the system. The second
summand reflects the situation when HPU arrives when all
N servers provide service to HPUs. The arriving user is
lost and simultaneously the state of the process ζt , which is
responsible for keeping track whether or not arrivals of LPUs
are blocked, admits the value 0 corresponding to the blocking
state.

The up-diagonal blocks B(n), n = 0,N − 1, of the matri-
ces Qi,i contain transition rates of the process ξt that do not
change the value of the component it but cause the increase
of the number of busy servers. If n < M , this happens
when HPU or LPU arrives to the system. The rates of the
corresponding transitions are given by the elements of the
matrices

E+
n ⊗ (IW̄1

⊗ D̃(2)
1 ) + Ê+

n ⊗ (D(1)
1 ⊗ I2W̄2

).

The first summand here corresponds to LPU arrival. In this
case, the component lt of the MC ξt (the number of LPUs
in service) increases by one as well as the component nt
(the total number of users in service). The second summand
corresponds to HPU arrival. In this case, the component lt

does not change but the range of its possible values increases
by one. If M ≤ n ≤ N − 1, the increasing of the occupied
servers number can occur only due HPU arrival.
The sub-diagonal blocks F(n), n = 1,N , of the matrices

Qi,i contain rates of jumps of the process ξt that do not cause
value change of the component it but imply the decrease
of the number of occupied servers. Different form of these
blocks in the cases 1 ≤ n < M and M ≤ n ≤ N stems from
the fact that in the former case the number of LPUs in service
admits any value from the range {0, . . . , n}. In the latter case
this range is {0, . . . ,M}.

The up-diagonal blocksQi,i+1 of the generatorQ are diag-
onal matrices. This follows from the fact that the increasing
of the users number in the orbit never occurs simultaneously
with the occupation or release of servers. The increase can
occur only due: (i) arrival of LPU when the occupied servers
number is not less than M and this user joins the orbit but
not permanently leaves the system. The respective rates of
transitions are given by the elements of the matrix

qIM+1 ⊗ (IW̄1
⊗ D̃(2)

1 )

or (ii) arrival of HPU when all servers are occupied, but
some of them provide service to LPUs. One of these users is
pushed out and decides to join the orbit. The respective rates
of transitions are given by the elements of the matrix

pE−
⊗ (D(1)

1 ⊗ I2W̄2
).

The sub-diagonal blocks Qi,i−1 of the generator Q have
the diagonal blocks L(n)

i , n = 0,N , and up-diagonal blocks
V(n)
i , n = 0,N − 1. The former blocks contain the rates of

users departure from the orbit due to impatience (the rate is
equal to iγ ) or a failed retrial which are possible only when
the number n of occupied servers is not less thanM (the rate is
equal to i(1− q)α). The up-diagonal blocks contain the rates
of successful retrials which lead to the increase by one in the
number of serviced HPUs.

Lemma 1 is proven.
Remark 1: While the pair of matrices (D(2)

0 ,D(2)
1 )

describes the MAP2, which defines the arriving flow of
LPUs under control of the underlying process ν

(2)
t , it is

tempting to say that the pair of matrices (D̃(2)
0 , D̃(2)

1 ) defines
the MAP flow of unblocked LPUs under control of the two-
dimensional underlying process {ζt , ν

(2)
t }.However, although

the matrix D̃(2)
0 + D̃(2)

1 is the generator, this would be not
correct because the conventional definition of a MAP sug-
gests that the underlying process does not have absorbing
states. But the generator D̃(2)

0 + D̃(2)
1 is reducible and the

states {1, ν(2)}, ν(2) = 0,W2, are the absorbing ones. In the
considered queueing model, the exit from these states can
occur only at the moments of the HPU ’s loss.
Remark 2: The discipline of finishing the blocking can be

modified as follows. Admission of LPUs is resumed after
expiration of this random blocking time or the decreasing of
users number in the system to the valueM1 − 1 whereM1 ≤

M , whatever occurs first. In the case of such a modification,
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only a small change of the generator is required. The block
F(M1) should be defined by

F(M1) = (µ2�M1 Ê
−

M1
+µ1�̄M1E

−

M1
) ⊗ IW̄1

⊗

(
0 1
0 1

)
⊗IW̄2

.

Remark 3: The complete blocking of LPUs admission
during the blocking time can be replaced with their partial
(randomized) blocking. With the fixed probability u, 0 ≤

u ≤ 1, an arbitrary LPU is admitted for the trial to receive
service and with the complementary probability he/she is
blocked. When u = 0, we have the model considered in this
paper. When u = 1, we obtain the model studied in [39]. All
the presented results remain valid in this case if expressions
for the matrices (D̃(2)

0 , D̃(2)
1 ) given above are replaced with the

formulas

D̃(2)
0 =

(
−σ IW̄2

+ D(2)
0 + (1 − u)D(2)

1 σ IW̄2

O D(2)
0

)
,

D̃(2)
1 =

(
uD(2)

1 O
O D(2)

1

)
.

Having derived the explicit form of the generator Q of
the MC ξt we can implement probabilistic analysis of the
stationary behavior of this MC . As the first step in such
an analysis, usually it is required to formulate conditions
sufficient or necessary and sufficient for existence of the
stationary (ergodic, invariant) distribution of the states of
MC . We implement this step in the next Section.

IV. CONDITION OF EXISTENCE OF ERGODIC
PROBABILITY DISTRIBUTION OF THE SYSTEM STATES
General methodology for analysis of multi-dimensionalMCs
with state inhomogeneous transitions suitable for analysis of
MC ξt was elaborated in [26] in discrete and continuous
time settings. In contrast to the mentioned above paper [4],
generator ofMC in [26] may be not triblockdiagonal matrix,
but more general block-upper-Hessenberg matrix. In [4],
no assumptions were imposed on the form of dependence
of the blocks Qi,j on i and j. Likely, this is the main reason
why paper [4] does not present a constructive ergodicity
condition for the considered chain. In [26], it is imposed a
natural assumption about the asymptotic form of these blocks
when i tends to infinity. We call this assumption natural
because it is automatically fulfilled for MCs describing a
wide range of retrial queues, queues with impatient users,
tandem queues with infinite-server stations, etc. The class
of the MCs introduced in [26] is called as asymptotically
quasi-Toeplitz MCs (AQTMCs). To use results from [26] for
derivation of ergodicity and non-ergodicity conditions ofMC
ξt and construction of the algorithm to compute its stationary
distribution, firstly we have to verify that MC ξt belongs to
the class of AQTMC .

Let us denote Ri = −Qi,i ◦ I , i ≥ 0, were A1 ◦

A2 denotes Hadamard product (entrywise product or Schur
product) of matrices A1 and A2. For definition and properties

of Hadamard product of matrices see, e.g., [22]. This indi-
cates that Ri is a diagonal matrix whose diagonal elements
are supplied by the moduli of the matrix Qi,i, i ≥ 0 corre-
sponding diagonal components.

The presence of the following limits can by checked:

Z0 = lim
i→∞

R−1
i Qi,i−1, Z1 = lim

i→∞
R−1
i Qi,i + I ,

Z2 = lim
i→∞

R−1
i Qi,i+1. (2)

The values of the matrices Zk , k = 0, 1, 2, distinguish
here in two cases depending on the parameters of the system
defining persistency and patience of users. These cases need
a different treatment.

The Case 1 suggests that at least one of two relations is
true: γ > 0 or q < 1, what means that some part of LPUs
admitted to the system can leave it without receiving service.
Case 2 suggests that γ = 0 and q = 1. This means that all
LPUs admitted to the system must receive service.
In Case 1, it is possible to find that the limits Z0, Z1 and

Z2 are defined by:

Z0 = Z̃0 ⊗ IW̄ , Z1 = O, Z2 = O

where the matrix’s Z̃0 blocks are given as follows.
The diagonal block (Z̃0)n,n of thematrix Z̃0 equals

γ
γ+α

In+1

for n = 0,M − 1 and to IM+1 for n = M ,N .

The up-diagonal block (Z̃0)n,n+1 equals α
γ+α

E+
n for n =

0,M − 1 and to OM+1 for n = M ,N .

In Case 2, the limits Z0, Z1 and Z2 are defined as follows.
•

Z0 = T−1(Ẑ0 ⊗ IW̄ )

where

T = diag{I1, . . . , IM ,T (M ), . . . ,T (N )
},

the matrices T (n), M ≤ n ≤ N , are defined by

T (n)
= (µ2�M+µ1�̃n) ⊗ IW̄ +IM+1⊗60−δn,N Î⊗61

where

61 = −(D(1)
1 ⊗ I2W̄2

) ◦ I ,

60 = −(D(1)
0 ⊕ D̃(2)

0 ) ◦ I .

The blocks of the matrix Ẑ0 are zero blocks except the
up-diagonal blocks (Ẑ0)n,n+1 = E+

n for n = 0,M − 1.
•

Z1 =Ĩ ⊗ IW̄ + T−1

×



O. . . O O O . . . O O
...
. . .

...
...

...
. . .

...
...

O. . . O O O . . . O O
O. . .F(M ) A(M ) B(M ) . . . O O
O. . . O F(M+1) A(M+1) . . . O O
...
. . .

...
...

...
. . .

...
...

O. . . O O O . . . A(N−1) B(N−1)

O. . . O O O . . . F(N ) A(N )


.
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•

Z2 = T−1diag{OM (M+1)
2 W̄ ,H(M ),H(M+1), . . . ,H(N )

}

where

A(n)
= −(µ2�M + µ1�̃n)⊗IW̄ +IM+1⊗(D(1)

0 ⊕ D̃(2)
0 )

+ δn,N

[
(1 − p)E−

⊗ (D(1)
1 ⊗ IW̄2

) + Î ⊗ (D(1)
1

⊗

(
1 0
1 0

)
⊗ IW̄2

)
]
,

M ≤ n ≤ N .

From existence of the limits Zk , k = 0, 1, 2, it follows
that MC ξt , t ≥ 0, belongs to the class of continuous-
time AQTMC defined in [26]. As a consequence, the results
obtained in [26] may be utilized to deduce the ergodicity
condition for theMC ξt and compute its invariant distribution.
According to [26], the sufficient requirement for ergodicity

of the AQTMC ξt , t ≥ 0, is the achievement of the relation

zZ0e > zZ2e, (3)

where the row vector z is the unique solution to the system of
linear algebraic equations

z(Z0 + Z1 + Z2) = z, ze = 1. (4)

It is easy to check that in Case 1 inequality (3) reduces to
inequality 1 > 0 which is trivial. Therefore, the following
assertion is valid.
Theorem 1: The fulfilment of at least one of the inequali-

ties q < 1 or γ > 0 is sufficient for ergodicity of the MC ξt
for any values of the system parameters.

In Case 2, the following statement is true.
Theorem 2: If q = 1 and γ = 0, then theMC ξt is ergodic

under fulfilment of condition (3) in which z is the unique
solution to the equations (4) where the explicit expressions
for matrices Zk , k = 0, 1, 2, are given above.
If

zZ0e < zZ2e,

the chain is not ergodic.
The proof immediately follows from [26].
Remark 4: Verification of fulfilment of ergodicity con-

dition can be performed via solution of the system (4) on
computer and substitution of this vector to (3). Size of the
vector z, giving the solution of system (4), is equal to KW̄ .

This size may be pretty large. In the case σ = ∞, i.e.,
blocking of arrival of LPUs is not performed, solution to
equation (4) is found in [39] practically analytically as the
Kronecker product of some vector of size (N−M+1)(M+1),
which gives the steady-state distribution of the number of
servers satisfying requests of HPUs and LPUs when the
system is overloaded, by the invariant probability vector θ (2)

of underlying process of LPUs arrival.
In the model under study, further simplification of condi-

tion (3) - (4) by analogy with [39] is not possible due to the

complex stochastic dependence of behavior of the underlying
process of LPUs arrival {ζt , ν

(2)
t } on the number of users in

the system. This dependence is caused by the forced transition
of the process ζt to state 0 after any loss of aHPU . Recall that
such a loss occurs when HPU arrives and the component nt
of theMC ξt has the value N while the component lt is equal
to 0.
Remark 5: Because a smaller fraction of LPUs will suc-

cessfully receive service in the considered model comparing
to the one from [39] under the same values of the system
parameters, the following is intuitively clear. The relatively
simple sufficient ergodicity condition obtained in [39] is
sufficient for the considered model as well. However, the
opposite inequality in that condition can be not mandatory
necessary for non-ergodicity ofMC ξt .

V. COMPUTATION OF STEADY-STATE DISTRIBUTION OF
THE MC AND PERFORMANCE INDICATORS
OF THE SYSTEM
Suppose that the derived stability condition is satisfied. Then
there are the following invariant probabilities of the MC ξt
states:

p(i, n, l, v(1), ζ, v(2))

= lim
t→∞

P{it = i, nt =n,lt = l, ν(1)t =v(1),ζt =ζ, ν
(2)
t =v(2)},

i ≥ 0, n = 0,N ,

l = 0,min{n,M}, v(1) = 0,W1, ζ = 0, 1, v(2) = 0,W2 .

Let us form the steady-state probabilities row vectors
pi as follows: vector p(i, n, l) combines the probabilities
p(i, n, l, v(1), ζ, v(2)) enumerated in the lexicographic order,

p(i, n) = (p(i, n, 0), p(i, n, 1), . . . , p(i, n,min{n,M})),

n = 0,N ,

pi = (p(i, 0), p(i, 1), . . . , p(i,N )), i ≥ 0.

The probability vectors pi, i ≥ 0, satisfy the following
system of linear algebraic equations:

(p0, p1, . . . )Q = 0, (p0, p1, . . . )e = 1 (5)

where the matrix Q is the generator of theMC ξt , t ≥ 0.
Note, that in the case q = 0, p = 0 we have the

model where the users never visit the orbit, i.e., a LPU is
immediately lost if it arrives when the number of idle servers
is less or equal to N − M or its service is interrupted due
to HPU arrival. In this case, instead of the infinite size
generator Q one has the finite block Q0,0 and, thus, system
(5) is finite. The probability vectors can be directly found via
solving equation (5) on computer or using stable algorithms
in [24] and [27].

In general case, the system (5) has infinitely many equa-
tions and unknowns and, therefore, cannot be solved directly
on a computer without its truncation. If truncation is imple-
mented, it is possible to obtain only an approximate solution
to this system. Because the matrix Q has a tri-blockdiagonal
structure, it is possible to recursively express all vectors
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pi, i ≥ 1, via the vector p0. However: (i) the recursion is
numerically unstable and (ii) it is not clear how to compute
the vector p0. In [26], it was proposed not to solve the systems
like (5) at all but to construct another system of equations
for the unknown vectors pi, i ≥ 0. Such a construction
is possible through the use of so called censored Markov
chains. Thus, to compute vectors pi, i ≥ 0, we use the
numerically stable techniques established in [16] and [26],
which are geared to a more broad version of the genera-
tor Q (whose blocks above the up-diagonal blocks can be
not equal to zero). A variant of the algorithm for a block-
tridiagonal form of the generatorQ is described, e.g., in [15]
and [17]. A modification of this algorithm is also briefly
reproduced in [14].

Having values of the vectors of the steady-state probabil-
ities pi, i ≥ 0, there is on opportunity to compute a variety
of characteristics of the system’s performance. Below we list
some of them.

The probability distribution of the number of the LPUs in
orbit is

lim
t→∞

P{it = i} = pie, i ≥ 0.

The mean number of the LPUs in orbit is

Lorbit =

∞∑
i=1

ipie.

The mean number of users in the system is

L =

∞∑
i=0

N∑
n=0

(i+ n)p(i, n)e.

The mean number of occupied servers is

Nserver =

∞∑
i=0

N∑
n=1

np(i, n)e.

The mean number of occupied servers supplying service to
HPUs is

N (1)
server =

∞∑
i=0

N∑
n=1

min{n,M}∑
l=0

(n− l)p(i, n, l)e.

The mean number of occupied servers supplying service to
LPUs is

N (2)
server =

∞∑
i=0

N∑
n=1

min{n,M}∑
l=1

lp(i, n, l)e = Nserver − N (1)
server .

The departure rate of HPUs is

λ
(1)
out = µ1N (1)

server .

The departure rate of successful LPUs is

λ
(2)
out = µ2N (2)

server .

The total departure rate of serviced users is

λout = λ
(1)
out + λ

(2)
out .

The probability of HPU ’s loss is

P(loss)1 = λ−1
1

∞∑
i=0

p(i,N , 0)(D(1)
1 ⊗ I2W̄2

)e = 1 −
λ
(1)
out

λ1
.

Remark 6: Indeed, here we have two different formulas
for calculation of the probability ofHPUs’ loss. One formula
accounts that the loss occurs when the HPU arrives when all
N servers are busy. Another formula accounts that this loss
probability is the ratio of the rate of the lost HPUs to their
arrival rate. Existence of two different formulas for calcula-
tion of the same probability is helpful for control of accuracy
of computer realization of the algorithm for computation of
the vectors of the stationary probabilities of the system states.

The probability of LPU ’s loss or blocking is

P(loss)2 = 1 −
λ
(2)
out

λ2
.

The probability of an arbitrary user loss is

P(loss) = 1 −
λout

λ

where λ = λ1 + λ2.

The probability of arbitrary arriving LPU loss due to the
reservation policy (the number of idle servers is not less
thanM ) is

P(ent−loss)

= (1 − q)λ−1
2

∞∑
i=0

N∑
n=M

p(i, n)(I(M+1)W̄1
⊗

(
0 0
0 1

)
⊗ D(2)

1 )e.

The probability that an arbitrary arriving LPU will join the
orbit is

P(ent−to−orbit)

= qλ−1
2

∞∑
i=0

N∑
n=M

p(i, n)(I(M+1)W̄1
⊗

(
0 0
0 1

)
⊗ D(2)

1 )e.

The probability of blocking of an arbitrary LPU is

P(ent−block)

= λ−1
2

∞∑
i=0

N∑
n=0

min{n,M}∑
l=0

p(i, n, l)(IW̄1
⊗

(
1 0
0 0

)
⊗ D(2)

1 )e.

The rate of the blocking LPUs is equal to

λ̃2 = P(ent−block)λ2.

The probability that an arbitrary LPU will be pushed out
of the service and transit to orbit is

P(term−to−orbit)
= pλ−1

2

∞∑
i=0

M∑
l=1

p(i,N , l)(D(1)
1 ⊗ I2W̄2

)e.

The probability that an arbitrary LPU will be pushed out
of the service and will abandon the system is

P(term−loss)
= (1 − p)λ−1

2

∞∑
i=0

M∑
l=1

p(i,N , l)⊗(D(1)
1 ⊗ I2W̄2

)e.
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The loss probability of an arbitrary LPU from orbit is

P(loss−from−orbit)
=P(loss)2 − P(ent−loss)

− P(termination−loss) − P(ent−block).

The probability that an attempt of an arbitrary orbiting user
will be not successful and he/she returns back to orbit is

P(return−to−orbit) = qα̃−1
∞∑
i=1

N∑
n=M

iαp(i, n)e

where α̃ = αLorbit .
The probability that an attempt of an arbitrary orbiting user

will be not successful and he/she leaves the system without
receiving service is

P(loss−from−orbit)
1 = (1 − q)α̃−1

∞∑
i=1

N∑
n=M

iαp(i, n)e.

The percentage of time, during which admission of LPUs
is blocked, is

Pblock =

∞∑
i=0

N∑
n=0

min{n,M}∑
l=0

p(i, n, l)(eW̄1
⊗

(
1
0

)
⊗ eW̄2

).

VI. OPTIMIZATION PROBLEM AND
NUMERICAL EXAMPLE
A. GOALS OF THE NUMERICAL EXAMPLES AND
INPUT DATA
The effectiveness of servers reservation for optimization of
the model of a cognitive radio network cell was already illus-
trated by the numerical examples presented in [14] and [39].
The threshold strategy of reservation considered in [39]
assumes that admission or rejection of a LPU is based on
current relation of busy servers number and the fixed in
advance threshold value. In [14], the hysteresis strategy was
applied according to two thresholds. If the number of active
servers rises beyond the upper threshold, admission of LPUs
is halted; admission resumes when it falls below the lower
level. The novel feature of the admission strategy considered
in this paper is the possibility of additional temporal blocking
of LPUs after the loss of a HPU .

The goals of this section are: (i) to show dependence of
the main performance measures on the control parameters
M and σ ; (ii) to illustrate the profound effect of correlation in
arrival processes; (iii) to show that the blocking can improve
system operation quality even without servers reservation.

We consider three sets of theMAPs having the same aver-
age arrival rates of Type-1 and Type-2 users, respectively
λ1 = 4/3 and λ2 = 8/3, but different values of the coefficient
of correlation.
Set 1: Let MAP1 be defined by the matrices

D(1)
0 =

(
−1.8266 0.024
0.06515 −0.12365

)
,

D(1)
1 =

(
1.7906 0.012
0.03257 0.02593

)
.

This arrival process has a squared coefficient of varia-
tion of inter-arrival times cvar = 2.7891, and a coeffi-
cient of correlation of two neighbouring inter-arrival times
ccor = 0.2874.

TheMAP2 is defined by the matrices

D(2)
0 =

(
−3.6174 0.012
0.03257 −0.14957

)
,

D(2)
1 =

(
3.5814 0.024
0.06515 0.05185

)
.

This arrival process has a squared coefficient of variation
cvar = 2.8781, and a coefficient of correlation ccor = 0.1780.
Set 2: Let MAP1 be defined by the matrices

D(1)
0 =

(
−4.687 0.122
0.0365 −0.183

)
,

D(1)
1 =

(
4.544 0.021
0.016 0.1305

)
.

This MAP has coefficient of variation of inter-arrival times
cvar = 2.982, and coefficient of correlation of two neigh-
bouring inter-arrival times ccor = 0.3993.
The MAP2 is defined by the matrices

D(2)
0 =

(
−9.231, 0.102
0.02 −0.3135

)
,

D(2)
1 =

(
9.088 0.041
0.0325 0.261

)
.

This MAP has the coefficient of variation of inter-arrival
times cvar = 3.0001, and the coefficient of correlation
ccor = 0.3830.
Set 3: The MAP1 and MAP2 are defined as the stationary

Poisson processes with rates λ1 and λ2 correspondingly.
They have the coefficient of variation of inter-arrival
times cvar = 1, and the coefficient of correlation
ccor = 0.
We set the number of servers N equal to 20. We vary the

values of the thresholdM from 16 to 20 and the values of the
rate σ in the interval from 0.05 till 4.5 with step 0.05. We do
not show the values for smaller values of σ which correspond
to very long blocking time by two reasons. One is that the
dynamics of the corresponding performance measures in this
case is more or less clear. The second reason is the desire to
avoid making the surfaces more flat due to the wide diapason
of values of these measures.
The other system parameters are chosen as follows. Service

rates are µ1 = 1/10 and µ2 = 1/3. Retrial and impatience
rates are α = 3 and γ = 0.05, respectively. The probabilities
of moving to the orbit in case when arriving LPU sees no
available to him/her server and returning to the orbit after
unsuccessful retrial are fixed as q = 0.7 and p = 0.3,
respectively.
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B. ILLUSTRATION OF DEPENDENCE OF PERFORMANCE
MEASURES ON CONTROL PARAMETERS M AND σ AND
IMPORTANCE OF ACCOUNT OF CORRELATION
IN ARRIVAL PROCESS
To evidently show high importance of account of correlation
on arrival processes, first we present the values P(loss)1 of
the probability of HPU ’s loss. Due to preemptive priority of
HPUs, this probability does not depend on control parameters
M and σ. This probability is equal to 0.0000157 for the Set
3 ofMAP (having zero correlation), 0.072379 for the Set 1 of
MAP (having coefficients of correlation 0.2874 forHPUs and
0.1780 for LPIs), 0.323423 for the Set 2 of MAP (having
coefficients of correlation 0.3993 for HPUs and 0.3830 for
LPUs). Let us stress again that the correspondingMAPs have
the same mean arrival rate but different values of the coeffi-
cients of variation and correlation of inter-arrival times. Huge
difference in values of the loss probability clearly motivates
analysis of queueing models withMAP arrival process.
Figures 3 - 5 show dependence of the average number

Lorbit of LPUs in orbit on M and σ for flows from Sets 1
- 3. Figure 3 for the MAPs with zero correlation illustrates
the evident fact that Lorbit decreases when the threshold M
increases and LPUs have better access to service. The value
of Lorbit is pretty small and is about 0.03 for M = 16, i.e.
four servers are reserved for service of only HPUs. For Sets
1 and 2, this value is essentially larger. The value of Lorbit
sharply decreases when σ is small, i.e., duration of blocking
period is long and many LPUs do not try to enter the system
and risk to go to the orbit.

FIGURE 3. Dependence of average number Lorbit of LPUs in orbit on M
and σ for flows with zero correlation.

Figures 6 - 8 show dependence of the average num-
ber Nserver of busy servers on M and σ for flows from
Sets 1 - 3. Figure 6 for the MAPs with zero correlation
illustrates the evident fact that Nserver increases when the
threshold M increases and LPUs have better access to ser-
vice and occupy servers. The value of Nserver varies in the

FIGURE 4. Dependence of average number Lorbit of LPUs in orbit on M
and σ for flows with correlation 0.2874 in HPU arrival process.

FIGURE 5. Dependence of average number Lorbit of LPUs in orbit on M
and σ for flows with correlation 0.3993 in HPU arrival process.

interval [10.5 − 10.65]. For Sets 1 and 2, again we observe
the decreases of the considered performance measure with
the decrease of σ. The value of Nserver sharply decreases
when σ is small, i.e., duration of blocking period is long and
many LPUs do not try to enter the system and do not occupy
servers. For the Set 2, the number of busy servers is essentially
larger than for Set 3, it varies in the interval [14.5 − 16.5].
It might be expected that the number of busy servers will be
larger for Set 2 with the highest correlation. However, this
is not true. The number of busy servers for Set 2 varies in
the interval [11.5 − 12.5]. Explanation of this fact follows
from the increasing of loss probability P(loss)2 of LPUs loss or
blocking for flows with higher correlation.
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FIGURE 6. Dependence of average number Nserver of busy servers on M
and σ for flows with zero correlation.

FIGURE 7. Dependence of average number Nserver of busy servers on M
and σ for flows with correlation 0.2874 in HPU arrival process.

Figures 9 - 11 show dependence of the probability
P(ent−block) of blocking and arbitrary LPU upon arrival on
M and σ for flows from Sets 1 - 3. It is clear from these
figures that the probability P(ent−block) is very small (of order
10−4 for Set 3 and is quite essential (up to 0.1) for the
Set 1. For the Set 2 it is twice larger. Therefore, as it is
anticipated, introduction of blocking period causes blocking
of some LPUs, while effect of blocking is small when the
arrival flow is described by the stationary Poisson process.

Figures 12 - 14 show dependence of the loss probabil-
ity P(loss) of an arbitrary user on M and σ for flows from
Sets 1 - 3. Loss probability decreases with increase of M
making easier access to service for LPUs. Again, loss prob-
ability P(loss) is very small (less than 0.02) for the case of

FIGURE 8. Dependence of average number Nserver of busy servers on M
and σ for flows with correlation 0.3993 in HPU arrival process.

FIGURE 9. Dependence of the probability P(ent−block) on M and σ for
flows with zero correlation.

the stationary Poisson arrival process and is essentially larger
(up to 0.5 for Set 1 and up to 0.55 for Set 2). The loss
probabilityP(loss) sharply increases when rate σ increases and
the system becomes blocked during a long time.

Figures 15 - 17 show dependence of the loss probability
P(ent−loss) of an arbitrary user upon arrival to the system on
M and σ for flows from Sets 1 - 3. Loss probability decreases
with increase ofM making easier access to service for LPUs.
Again, loss probability P(ent−loss) is very small (less than
0.015) for the case of the stationary Poisson arrival process
and is essentially larger (up to 0.2 for Set 1 and Set 2). Smaller
values of P(ent−loss) comparing to the probability P(loss) is
easily explained by the possibility of the users loss not only
at an arrival moment but also due to service interruption of
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FIGURE 10. Dependence of the probability P(ent−block) on M and σ for
flows with correlation 0.2874 in HPU arrival process.

FIGURE 11. Dependence of the probability P(ent−block) on M and σ for
flows with correlation 0.3993 in HPU arrival process.

LPU by HPU arrival and its immediate loss or loss after one
or several retrials from the orbit due to servers unavailability.

Figures 18 - 20 show dependence of the loss probability
P(loss)2 of an LPU on M and σ for flows from Sets 1 - 3.
Behavior of this loss probability is similar to the behavior
of the corresponding surfaces given on Figures 15 - 17.
But the loss probability P(loss)2 is essentially larger than loss
probability P(ent−loss) because the later probabilities relate to
the loss of bothHPUs and LPUs while, as we saw above, loss
probability P(loss)1 of HPUs is small, especially for the Sets
with low correlation in arrival process. Recall of one third of
arriving users are HPUs.

Based on the presented in this subsection numerical results,
we can summarize the following:

FIGURE 12. Dependence of the loss probability P(loss) on M and σ for
flows with zero correlation.

FIGURE 13. Dependence of the loss probability P(loss) on M and σ for
flows with correlation 0.2874 in HPU arrival process.

1) Correlation in arrival process drastically changes the
values of performance measures of the system.

2) Blocking of servers has small effect in the case of the
stationary Poisson arrival process and essential effect in case
of flows with high correlation and large variation of inter-
arrival times.

3) Long duration of blocking periods leads to the decrease
of congestion in the system (smaller average number of LPUs
retrying from the orbit) but leads to lower load of the servers
and smaller throughput of the system.

C. ILLUSTRATION OF POSSIBILITY OF OPTIMAL CHOICE
OF THE DURATION OF BLOCKING PERIOD
As it was stressed above, the main novelty of the considered
model is introduction of the blocking of acceptance of LPUs
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FIGURE 14. Dependence of the loss probability P(loss) on M and σ for
flows with correlation 0.3993 in HPU arrival process.

FIGURE 15. Dependence of the loss probability P(ent−loss) on M and σ

for flows with zero correlation.

after each loss of aHPU .The goal of the blocking is to reduce
the probability of interruption of ongoing service of LPU by
the arrival of HPU to the fully occupied system. As indicator
of a full occupation of the system, we consider the event of
the loss of a HPU (because he/she met all servers busy by
HPUs). It is intuitively clear that after this event occurrence
it makes sense to temporarily block arrival of LPU because
there is a high probability that new arriving LPUs will be lost.
Even if they will be not lost immediately upon arrival, there
is high chance that soon they will be lost due to the service
interruption by arrival of HPU .

The question, which has to be answered based on the
results of the implemented in this paper analysis is: ‘‘What
is the optimal value of the mean duration of a blocking

FIGURE 16. Dependence of the loss probability P(ent−loss) on M and σ

for flows with correlation 0.2874 in HPU arrival process.

FIGURE 17. Dependence of the loss probability P(ent−loss) on M and σ

for flows with correlation 0.3993 in HPU arrival process.

period?’’ Because HPUs have an absolute priority, service
of LPUs does not effect service quality of HPU . Thus, the
optimal duration of blocking period should be defined based
on the performance characteristics of service of LPUs. From
the point of view of the eventual result (access for LPU is
denied), blocking of access and rejection upon arrival have
the same effect. The difference between the blocking and
rejection is essential from the psychological point of view.
Blocking of LPUs access is assumed to be announced to
LPUs which know that they should not try to obtain access.
Existence of blocking periods can be directly indicated in
Service Level Agreement between the service provider and
LPU , if the LPU rents a channel along to the HPUs, as well
as the possible mean duration or frequency of occurrence of
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FIGURE 18. Dependence of the loss probability P(ent−loss) on M and σ

for flows with zero correlation.

FIGURE 19. Dependence of the loss probability P(ent−loss) on M and σ

for flows with correlation 0.2874 in HPU arrival process.

these periods. Therefore, the LPU must be tolerant to access
denial due to the temporal blocking. Conversely, occasional
rejection in access without the preliminary warning can have
an irritating effect and the LPU can permanently stop the use
of the service by a given provider.

It is clear that when the blocking period is short (this
corresponds to a large value of the rate σ ), more LPUs will
be rejected than blocked. With the increase of the blocking
period duration, the share of the blocked LPUs will increase.
When the blocking period is long, more LPUs will be blocked
than rejected.

To account the explained above different psychological
and economical impact of blocking and rejecting, we will
optimize the choice of the mean duration of the blocking

FIGURE 20. Dependence of the loss probability P(ent−loss) on M and σ

for flows with correlation 0.3993 in HPU arrival process.

FIGURE 21. Dependence of cost criterion E(σ ) values for the Set 1 of
MAPs for different values of M on σ .

period aiming to minimize the following cost criterion:

E(σ ) = c1P(ent−loss)(σ ) + c2P(ent−block)(σ ),

where c1 is the charge paid due to the blocking access to an
arbitrary LPU and c2 is the charge paid due to the rejection
of an arbitrary LPU . The values of the cost coefficients are
chosen as c1 = 400 and c2 = 30.
Below we illustrate behavior of the function E(σ ) for

Sets 1 and 2 of the MAPs having the same rates of arrival
of both types of users but different values of the coefficient
of correlation of successive inter-arrival times in the arrival
process.

Figure 21 illustrates the behaviour of cost criterion on the
parameter σ for the values of commonly available servers
M = 16, 17, 18, 19, 20 for the Set 1.

It is evidently seen from Figure 21 that the control by
the quality of service via variation of duration of blocking
period is more effective in case of small number N − M of
reserved servers. The most interesting case is M = N , i.e.,
permanent monitoring of the number of busy servers is not
performed and only temporal blocking of access is the tool
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FIGURE 22. Cost criterion E(σ ) values for the Set 1 of MAPs for
σ ∈ [0.001, 1].

FIGURE 23. Dependence of cost criterion E(σ ) values for the Set 2 of
MAPs for different values of M on σ .

to decrease probabilities of LPU loss upon arrival or due to
service interruption.

Figure 24 shows the behaviour of cost criterion on the
parameter σ for M = N = 20 for the Set 1 ofMAPs.
The minimum value of the criterion E(σ ) is 31.9256. It is

attained for σ = 0.14. The values of the criterion E(σ ) for
small and large values of σ are as follows:

E(0.001) = 39.4771, E(100) = 35.1811.

Figure 23 illustrates the behaviour of cost criterion on the
parameter σ for the values of commonly available servers
M = 16, 17, 18, 19, 20 for the Set 2.
Figure 24 shows the behaviour of cost criterion on the

parameter σ for M = N = 20 for the Set 2 ofMAPs.
The minimum value of the criterion E(σ ) is 38.4793. It is

attained for σ = 0.04. The values of the criterion E(σ ) for
small and large values of σ are as follows:

E(0.001) = 39.8614, E(100) = 45.4051.

Based on the presented in this subsection numerical results,
we can summarize the following:

1) When the average duration of the blocking period is
suitably chosen, the use of blocking LPU arrival provides for
a higher level of system operating quality. The profit might
be greater than 10 percent.

2) It is crucial to take into account correlation in the arrival
process. The MAPs from the second set have the same rates
as the MAPs from the first set. But they have higher corre-
lation. This implies worse quality of the system operation.

FIGURE 24. Cost criterion E(σ ) values for the Set 1 of MAPs for
σ ∈ [0.001, 1].

Minimal value of the cost criterion formore correlated second
set is essentially larger.

3) Correlation has significant impact on the optimal value
of σ (and average value σ−1 of duration period). For smaller
correlation, the optimal duration is about 7. For larger cor-
relation, the optimal duration is about 25. This is intuitively
explained as follows. Larger correlation implies more irreg-
ular, bursty, arrival of LPUs. Periods of rare arrivals, during
which the servers may be under-loaded and stay idle, alter-
nate with periods of very frequent arrivals when congestion
occurs. Therefore, to avoid many rejections during the peri-
ods of frequent arrivals it is reasonable to block the admission
during the longer time.

4) Among two, not optimal, options: to have very long or
very short blocking periods, in case of smaller correlation the
later option is more preferable. In case of larger correlation,
the former option is more preferable. Therefore, effectiveness
of blocking is especially high in case of flows with high
correlation of inter-arrival times. For the second set of the
MAPs, the profit is about 18 percent.

5) It is not possible to formulate some simple recommenda-
tion (so-called ‘‘rule of thumb’’) relating the optimal choice
of duration of blocking period. Such a choice can be made
only based on computation, under the fixed set of the system
parameters, with the use of the presented results.

VII. CONCLUSION
We have analyzed the priority retrial multiline queueing
model of MAP2/M2/N/N type with two types of users suit-
able for modeling, e.g., cognitive radio networks. The model
accounts possible dependence of inter-arrival times of users
and not equal service rate of two types of arriving users.
HPUs have absolute priority over LPUs. To prevent fre-
quent interruption of LPUs services, their access is restricted
via threshold mechanism, which is known in the literature
as servers reservation for HPUs, and temporal blocking of
LPUs arrival with the purpose to provide maximum effective
service to LPUs. The LPUs have an option to retry for service
later on in the case of access deny or service interruption.

Under the fixed value of the reservation threshold and
distribution of duration of an admission blocking period, the
dynamics of the system is described by a level dependentMC .
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ThisMC’s generator is derived. This chain’s sufficient condi-
tions for ergodicity and non-ergodicity are stated. The expres-
sions for primary system performance indicators via the
vectors defining the invariant distribution of the considered
multi-dimensionalMC are obtained.

Numerical results show the positive effect of using the
blocking period for improvement of service quality of LPU
even in absence of servers reservation. Essential effect of
correlation of inter-arrival times on the optimal choice of
duration of blocking period and preference of long and short
blocking periods is demonstrated.

VIII. POSSIBLE DIRECTIONS OF RESEARCH
As possible directions for generalization of the considered
model we suggest the following ones:

• consideration of possibility of the work in underlay
mode when the LPUs have some own share of a band-
width andmore flexible strategy of LPUs expelling from
the service similar to the one considered in [32];

• existence of more than two priority classes, e.g., separa-
tion to different classes of new and handover HPUs and
LPU , distinguishing cognitive users obtaining oppor-
tunistic access without any payment to service provider
and users that lease the channels and pay for service;

• possibility of temporal buffering of HPU arriving at the
moments when the bandwidth is exhausted;

• possibility of temporal buffering of SPU that arrive
at the moments the non-reserved servers are absent or
service of which is interrupted;

• account of possibility of using by LPUs for service not
channels but only sub-channels (like in [12]);

• batch arrival of HPUs and HPUs;
• phase type distribution of blocking times;
• processor sharing or limiting processor sharing disci-

pline of service of LPUs which represent the elastic
traffic;

• phase type distribution of service times (using the
approach by Ramaswami and Lucantoni [37] and results
from [25] and [28]);

• hysteresis strategy of servers reservation (using the
results from [14]);

• possible breakdowns or vacations of the servers or dis-
aster occurrence, etc.
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