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ABSTRACT Improving the signal-to-noise ratio and suppressing random noise in seismic data is critical for
high-precision processing. Although deep learning-based algorithms have gained popularity as denoising
methods, they suffer from poor generalization ability, resulting in high training set construction cost and
computation cost. To address this problem, we propose an unsupervised learning-based denoising method
that includes an improved denoising strategy based on local similarity and replacement, a corresponding
training method, and an improved network based on UNet. Our training method takes advantage of network
convergence and allows direct training on the test region, effectively solving the problems associated
with denoising methods using generalization ability while improving training performance. In addition,
our network is specifically designed for the training method and incorporates various improvements that
could further enhance the training effectiveness. Our method outperforms traditional denoising methods,
as demonstrated by tests on synthetic and field data, with superior performance in random noise attenuation
and reflection event reconstruction.

INDEX TERMS Seismic data, random noise, convolutional neural network, unsupervised learning.

I. INTRODUCTION
High precision seismic exploration requires a high signal-
to-noise ratio (SNR) of the seismic data as it has a strong
influence on the subsequent inversion and geological inter-
pretation of the data [1], [2], [3]. However, noise contam-
ination, which can be mainly categorized as coherent and
random noise, is unavoidable during the acquisition process.
The latter, random noise, has no fixed frequency or apparent
velocity and is usually caused by various types of environ-
mental disturbances during acquisition. This condition results
in a significant reduction in the SNR of the seismic data, thus
emphasizing the importance of random noise attenuation for
SNR improvement.
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At present, a variety of noise-reduction methods have
been proposed, including F-X deconvolution (FX) [4], [5],
t-x domain predictive filtering [6], [7], and their improved
methodologies [8], [9], [10]. These methods are based on
the principle that seismic effective signals are predictable
in the f-x or t-x domain, whereas random noise is unpre-
dictable. By taking advantage of the difference in predictive
properties, appropriate filter operators can be designed to
suppress random noise in the frequency domain, and the
corresponding clean data can be obtained through subsequent
inverse transformation. In addition, a growing number of
denoising methods that are based on the transform domain
have also gained traction. The curvelet transform [11], [12],
the wavelet transform [13], [14], the Fourier transform [14],
and the seislet transform [15], [16] are some of the most
popular methods. These approaches entail transforming the
seismic data into a specific transform domain and then
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implementing appropriate thresholds, which are designed
based on the discernible difference between effective signals
and random noise in the transform coefficients, to perform
denoising. Despite their effectiveness in attenuating random
noise, these transform-domain-based methods often fail to
eliminate noise, i.e., they will inevitably mix part of the noise
with valid data, resulting in residual noise. Signal processing
techniques havewitnessed significant advancements in recent
years, and decomposition-based algorithms have emerged as
a popular approach for noise attenuation and signal recon-
struction in seismic data analysis. These algorithms include
Empirical Mode Decomposition (EMD) [17], [18], Ensemble
EMD (EEMD) [19], [20], Complementary Ensemble EMD
(CEEMD) [21], [22], and Variational Mode Decomposition
(VMD) [23], [24]. By decomposing the seismic data into
several signal components, thesemethods aim to superimpose
the main signal components that represent the clean data,
thereby leading to effective signal reconstruction and random
noise attenuation. However, the decomposition process can
lead to the mixing of clean data and noise, resulting in mul-
tiple signal components with unknown mixing ratios, which
can cause partial effective signal loss and residual noise in
the denoising results. Additionally, rank-reduction methods
have also been widely used in noise attenuation tasks, such
as Cadzow Filtering [25], Multichannel Singular Spectrum
Analysis (MSSA) [26], [27], and Damped MSSA [28], [29].
These methods assume that the ideal clean data can be con-
structed as a low-rank matrix, and aim to eliminate the rank
increased by the random noise in the seismic signal matrix,
thereby leading to noise suppression.

In recent years, due to its exceptional performance in
processing large amounts of data, the field of machine
learning has gained significant attention in various indus-
tries [30], [31], [32]. These data-driven processing techniques
have become particularly appealing for their novel and effi-
cient processing way to data processing tasks. Among the
various machine learning techniques, deep learning-based
techniques, especially those employing convolutional neural
networks (CNNs), have experienced rapid development. The
seismic denoising field has also witnessed the development
of these techniques, as multiple denoising methods [33],
[34], [35] based on deep learning have been proposed to
suppress random noise effectively. Among these methods,
the generative adversarial network (GAN) [36], [37], [38],
feedforward denoising CNNs (DnCNNs) [39], [40], [41], and
their improved methodologies [42], [43], [44] have played
an important role in improving the SNR of seismic data
and attenuating random noise, thus facilitating subsequent
inversion and geological interpretation.

Compared to traditional denoising methods, CNN-based
algorithms enable the denoising model to establish nonlinear
mappings between noisy data and clean data, thereby achiev-
ing random noise attenuation and signal reconstruction [45].
Most methods aim to improve the generalization ability of
the denoising model by training on large datasets to enhance

denoising performance. However, this characteristic may lead
to the following four problems that cannot be ignored. First,
the generalization capability of CNNs often performs poorly,
thereby restricting their ability to accurately process seismic
data. However, the potential convergence ability of CNNs has
been largely overlooked and underutilized. Second, under the
above training strategy, the inconsistency of the bias degree
between the training set and the test set to various geological
features may limit the denoising performance to some extent,
which imposes higher requirements on the composition cost
of the training set. Third, the methods that aim to improve the
generalization ability of denoising models require an increase
in the diversity of training samples, which in turn significantly
heightens the training difficulty of the network. As a result,
the acquisition of the desired denoising model necessitates a
greater number of training samples and training time. And
these together lead to the high computational cost. Finally,
repeated training is often employed to evaluate the denoising
performance of denoising models, resulting in significant
non-negligible training costs, encompassing both the com-
position cost of the training set and the training time cost.
Consequently, reducing the training cost and improving the
generalization ability of the network have emerged as two key
research areas in this field.

This paper investigates the application of unsupervised
deep learning in the context of seismic random noise attenu-
ation, presenting a novel denoising method that comprises an
improved denoising strategy and its corresponding training
method, as well as an enhanced CNN based on the UNet
architecture. We begin by improving the denoising theory
proposed by Lehtinen et al. [46] and presenting an improved
denoising strategy for seismic random noise suppression.
This strategy leverages the local similarity of the data and a
replacement-based approach to generate labels for the train-
ing set, enabling the labels to be directly derived from the
original seismic data. In comparison to deep denoising algo-
rithms that rely on generalization ability, our strategy fully
utilizes the convergence ability of the network, effectively
addressing the problems faced by such algorithms. We also
introduce the corresponding training method aligned with our
denoising strategy, along with an improved CNN based on
the UNet architecture. This network utilizes the U-shaped
processing path, connection layer cancellation, and enhanced
feature final processing to optimize the training effect under
our proposed method. To assess the effectiveness of our pro-
posed method in random noise attenuation, we applied it to
both synthetic and field data. Detailed comparisons were also
conducted between our approach and traditional algorithms,
including the FX, the MSSA, and the EMD, to evaluate their
respective attenuation capabilities. Our experimental results
demonstrated that the proposed method outperforms these
traditional algorithms in terms of signal reconstruction and
noise attenuation.

The rest of this paper is organized as follows.
Section II presents the proposed denoising strategy and its
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corresponding training method. Section III introduces the
improved CNN. In Section IV, experiments are conducted
on synthetic and field data to demonstrate the effectiveness
of the proposed method in attenuating random noise and
reconstructing signals. Finally, Section V concludes this
paper.

II. METHODS
A. DENOISING STRATEGY
As we know, the seismic data y can be expressed as follows:

y = x + noise (1)

where x denotes the clean data; noise denotes the Gaussian
white noise. To achieve random noise attenuation and effec-
tive signal reconstruction, deep learning denoising methods
usually take noisy data y and clean data x as input and label
of the network, respectively. In this way, the corresponding
trained network can have good performance in noise reduc-
tion and data reconstruction. The training process is described
as follows:

θn2c = argmin
θ

∑
i

Loss (fθ (yi) , xi) (2)

where θn2c denotes the parameter of the trained network in the
noise-clean training task; (yi, xi) denotes a pair of samples of
the training set; fθ (·) denotes the processing of the network
using the parameter θ ; and Loss denotes the loss function.
If we use a specific replacement strategy sim (·) for the pro-
cessing of the seismic data y, we will get the processed noisy
data ysim which is described as follows:

ysim = sim (y) . (3)

Then, we set y and ysim as the input and the label of the net-
work, respectively, and train the network. The corresponding
training process can be written as follows:

θn2n = argmin
θ

∑
i

Loss
(
fθ (yi) , ysimi

)
(4)

where θn2n denotes the parameter of the trained network in
the noise-to-noise training task. According to the denoising
theory of Lehtinen et al. [46], if the conditional expectation
E

[
ysimi |yi

]
= xi is satisfied, the parameter θn2n can be

regarded as equivalent to the parameter θn2c. In other words,
the network using θn2n can perform as well as θn2c in random
noise suppression. To satisfy the condition, a large number of
samples is required. In addition, to make the condition easier
to implement, we decompose the condition as follows:

E
[
ysimi |yi

]
= E

[
xsimi + noisesimi |yi

]
= E

[
xsimi |yi

]
+ E

[
noisesimi |yi

]
(5)

where xsimi and noisesimi denote the clean data and ran-
dom noise of ysimi , respectively. In this way, we can use
E

[
xsimi |yi

]
= xi and E

[
noisesimi |yi

]
= 0 to replace the

condition. This transformation of the condition can be written
as follows:

E
[
ysimi |yi

]
= xi ⇒

E
[
xsimi |yi

]
= xi

E
[
noisesimi |yi

]
= 0

. (6)

If ysim processed by sim (·) can satisfy the condition shown
in (6), the trained network can have a good performance in
random noise attenuation and effective signal construction,
as follows:

fθn2n (y) = fθn2n (x + noise) = fθn2c (x + noise) ≈ x. (7)

B. REPLACEMENT STRATEGY
To better satisfy the condition in (6), we use the data replace-
ment method to generate ysim. First, except for the elements in
the last row or column of the 2D seismic data, which remain
unchanged, all other elements in the matrix are processed
individually using a specific replacement method. The pro-
cessing of the seismic data can be written as follows:

ysimm,n =

{
sim

(
ym,n

)
, m ∈ [1,M − 1] , n ∈ [1,N − 1]

ym,n, otherwise
(8)

where M and N denote the dimensions of the seismic
gather. For each element ym,n(m ∈ [1,M − 1] ; n ∈

[1,N − 1]) to be replaced, a 2 × 2 matrix Ym,n
=[

ym,n ym,n+1
ym+1,n ym+1,n+1

]
(m ∈ [1,M − 1] ; n ∈ [1,N − 1]) is con-

structed with the element ym,n in the upper left corner.
Use this matrix Ym,n and all other 2×2 matrices Y i,j =[
yi,j yi,j+1
yi+1,j yi+1,j+1

]
(i ̸= m; j ̸= n) in the seismic data for simi-

larity comparison, and obtain the matrix Âm,n with the highest
similarity. Then randomly select an element from the matrix
Âm,n as the replacement element âm,n of ym,n, as follows:

âm,n
= rand

(
Âm,n

)
(9)

where rand (·) stands for randomly returning an element from
the matrix. Note that the elements ym,n in y are not changed
during the replacement process, and the obtained replacement
elements âm,n would replace ym,n in the end of the process,
thereby leading to a new matrix ŷ, as follows:

ŷm,n =

{
âm,n, m ∈ [1,M − 1] , n ∈ [1,N − 1]
ym,n, otherwise.

(10)

It is also important to note that the vast majority of reflec-
tion events in ŷ after the replacement processing present
polarity reversal. In order to ensure that the conditionE

[
xsimi |yi

]
= xi

E
[
noisesimi |yi

]
= 0

of (6) is satisfied, we will perform

additional processing on ŷ by (11) to generate ysim. Equa-
tion (11) is expressed as follows:

ysimm,n =
1
2

(
3ym,n − ŷm,n

2

)
. (11)
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In this way, we consider that the condition E
[
xsimi |yi

]
= xi is

satisfied. Assessing the presence of large-scale polarity rever-
sal amidst the random noise in ŷ is challenging. Nonetheless,
given that random noise is typically considered to be Gaus-
sian white noise, we can assume that any polarity reversal
would have a negligible effect on the random noise. In other
words, the random noise in ŷ can be considered unchanged
regardless of the polarity reversal, as follows:

noisem,n = n̂m,n (12)

where n̂m,n denotes the random noise of ŷm,n. This also means
that the amplitude of the randomnoise in ysim would be halved
after the processing shown in (11), as follows:

noisesimm,n =
1
2

(
3noisem,n − n̂m,n

2

)
=

1
2
noisem,n. (13)

Although the amplitude of the random noise changes,
considering that the random noise is Gaussian white
noise, the processed noisesim still satisfies the condition
E

[
noisesimi |yi

]
= 0.

C. SIMILARITY CALCULATION
We adopt Bray-Curtis distance [47], [48] to evaluate the
similarity between Ym,n and Y i,j. The distance can be written
as follows:

Dist(A,B) =

R∑
i=1

C∑
j=1

∣∣Aij − Bij
∣∣

R∑
i=1

C∑
j=1

Aij +
R∑
i=1

C∑
j=1

Bij

(14)

where Dist (A,B) represents the Bray-Curtis distance
between the matrix A and the matrix B; R and C denote
the number of rows and columns of the matrix, respectively.
By computing the dissimilarity between the elements of
the matrix relative to their sum, the Bray-Curtis distance
effectively constrains the distance metric to a smaller range.
Consequently, this feature makes the Bray-Curtis distance
more robust to outliers than the conventional Euclidean
distance for matrix similarity calculations.

D. TRAINING METHOD
Based on the denoising strategy proposed above, we propose
the corresponding training method as shown in Fig. 1. The
training method can be described in detail as follows:
Step 1: Select a raw seismic data y for noise attenuation.

Then process y with the specific replacement strategy to
get ysim.
Step 2:Generate a set of positions ([pos1, pos2, . . . , posn])

to compose a position sequence Spos by randomly selecting
in y, where Spos = [pos1, pos2, . . . , posn], and n is the
number of samples in the training set. According to each
position posi (i ∈ [1, n]) in the position sequence Spos, gen-
erate the corresponding 64×64 patches (Pyi (i ∈ [1, n]) and

Py
sim

i (i ∈ [1, n])) from the two data (y and ysim), and compose
these two patches as a training sample tsi (i ∈ [1, n]).

FIGURE 1. Random noise attenuation process based on the improved
CNN.

Step 3: Compose the training samples (tsi (i ∈ [1, n]))
obtained in step. 2 as a training set. The training set can
be divided into two parts, i.e., the input patch sequence
PInput =

[
Py

1
,Py2, . . . ,P

y
n
]
and the label patch sequence

PLabel =

[
Py

sim

1
,Py

sim

2 , . . . ,Py
sim

n

]
.

Step 4: The sequences (PInput and PLabel) are used as the
input and label of the network, respectively. Train the network
and stop training at the appropriate epoch to get the well-
trained network.

The mean square error (MSE) is a commonly employed
metric to evaluate the effectiveness of network training.
In this study, the loss function can be expressed as follows:

L (θ) =
1
2W

W∑
i=1

∥∥∥fθ (yi) − ysimi
∥∥∥2
F

(15)

where W represents the number of samples in the training
set; ∥·∥F represents the Frobenius norm.

From the perspective of training strategy, the proposed
method has an obvious advantage over the denoising methods
based on generalization ability. Specifically, this method can
construct a training set directly from the original data, instead
of constructing a training set with similar seismic properties
in accordance with the characteristics of the original data.
It can free us from the problem of limiting the denoising
performance due to the inconsistency of the degree of bias
between the training set and the test set to different geological
features. This results in lower requirements and costs for the
training set construction.
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FIGURE 2. Architecture of the improved CNN.

III. OUR CNN ARCHITECTURE FOR SEISMIC DENOISING
In pursuit of superior performance in random noise suppres-
sion and signal reconstruction, we engineered an upgraded
end-to-end convolutional neural network (CNN) based on
UNet [49], as shown in Fig. 2. Under the proposed train-
ing method, the highest-level features primarily comprise
the features of the valid data. Simultaneously, the lower the
feature level, the higher the proportion of features from ran-
dom noise. Consequently, to effectively utilize the high-level
features and enhance the performance of the trained network,
the CNN employs a U-shaped processing path similar to that
of UNet. Note that the CNN cancels the concatenation layers,
resulting in a strong bias towards the highest-level features
in the network’s output. This mechanism holds promise for
improving denoising performance. The encoding process of
the CNN involves a series of layers including convolution
layers (conv), rectified linear unit layers (ReLU), batch nor-
malization layers (BN), and max-pooling layers (max pool).
In the corresponding decoding process, the conv, the ReLU,
the BN, and the deconvolution layers (deconv) are utilized
for data reconstruction. Different from the processing mod-
ule employed in UNet, i.e., conv+ReLU, our CNN utilizes
conv+BN+ReLU as the processing module for each feature
map. The BN can suppress the offset of the covariant [50] to
some extent to reduce its bad impact on the network training
efficiency. Simultaneously, the BN can also decrease overfit-
ting to a certain extent. Overfitting occurs when a network
‘‘memorizes’’ the training data instead of learning general
features that allow it to make accurate predictions on new
data. To prevent overfitting and promote generalization, it is
crucial to employ the BN. Furthermore, the BN can address
the problem of gradient vanishing that often arises during
network training, while the activation function used in con-
junction with BN can effectively prevent gradient explosion.

In addition, a common practice in feature map processing
is to insert a 1 × 1 convolutional layer at the end of the
network, which is intended to transform the multi-channel
feature map into a single-channel feature map [51], [52].
In our CNN, we replace this 1×1 conv with a processing
module, i.e., multiple 1×1 conv, to achieve better denoising
performance. The number of filters in each 1 × 1 conv is
successively reduced from the anterior to the posterior layers
until it reaches a single filter. Compared to using only a
single convolutional layer, the selection of this processing
module offers the following advantages: (1) the module with

a gradually decreasing number of filters can preserve the
features obtained by the CNN as much as possible, thereby
reducing the degree of feature loss after the convolution
operations; (2) the transformation plays amore important role
in network training. The module can increase the number
of selectable parameters and expand the selected parameter
range. This enhances the resilience of the module to parame-
ter selection, thus promoting feature learning by the network.
In addition, the improvement of the network learning ability
means the improvement of the network utilization rate to sam-
ples in the training set. This results in an effective reduction in
the number of samples required to achieve a denoising effect.
In this paper, the processing module is composed of three
1 × 1 conv, whose convolutional kernel sizes are set to 16,
4, and 1 in order from the front to the back.

IV. NUMERICAL RESULTS
In this section, we begin by introducing the evaluation met-
rics utilized in our experiments. Subsequently, we outline
the hyperparameter configurations employed during training.
Finally, we apply the trained denoising model to both syn-
thetic and field data. All experiments were conducted on a
PC with an Intel Core i5-12400F 2.50 GHz CPU, 16 GB of
memory, and an NVIDIA GeForce RTX 3060 GPU.

A. DATA ANALYSIS
To quantitatively evaluate the denoising performance of
various methods, we employed the signal-to-noise ratio
(SNR) [53] as a metric for assessing the denoised results. The
SNR is a widely adopted indicator for evaluating the efficacy
of denoising methods, measuring the ratio of signal power to
noise power in a given dataset. A higher SNR value usually
indicates superior denoising performance. Mathematically,
the SNR is expressed as follows:

SNR = 10log10
∥x∥22∥∥x − x̂

∥∥2
2

(16)

where x̂ and x represent the denoising result and the clean
data from the noisy data, respectively.

B. HYPERPARAMETER SETTING
This study employed the following hyperparameter settings
for training: first, the Adam optimizer was selected as the
solver. This widely used solver dynamically adjusts the learn-
ing rate and utilizes momentum to prevent the network from

48928 VOLUME 11, 2023



J. Gao et al.: Unsupervised Seismic Random Noise Suppression

FIGURE 3. Synthetic example. (a) Clean data. (b) Random noise. (c) Noisy
data.

getting trapped in suboptimal solutions with limited general-
ization.Moreover, theAdamoptimizer’s oscillation reduction
feature enhances the noise suppression effectiveness of the
denoising model. The initial learning rate was set to 0.001,
and a batch size of 32 was chosen. The smaller batch size
has a positive impact on training accuracy, while the choice
of a batch size that is a multiple of 8 aligns with computer
hardware data storage, thereby reducing the time cost of
accessing data and ultimately improving the training speed of
the network. For patch size, we opted for 64×64, which has
been widely used in previous works and balances computa-
tional complexity with spatial resolution. Finally, the network
was trained for 38 epochs to ensure convergence to a stable
solution.

In summary, the hyperparameters chosen in this study have
been demonstrated to be effective. These choices enhance the
denoising model’s robustness to noisy input data, accuracy,
and computational efficiency.

C. EXPERIMENTS ON SYNTHETIC DATA
To demonstrate the exceptional performance of our proposed
method in suppressing random noise, we conducted exper-
iments on a section of the post-stack data from the Mar-
mousi2 model [54]. This particular area, shown in Fig. 3(a),
is comprised of 384 traces and 256 sampling points and
features two substantial faults, a portion of a salt mound,
and a segment of an anomalous body with both high and
low velocity. As a result, this region contains a diverse range
of reflection events that serve to comprehensively evaluate
denoising methods. To generate synthetic noisy data for test-
ing purposes, we added 0dB Gaussian white noise to the
region, which is shown in Fig. 3(b), while the resulting noisy
data is presented in Fig. 3(c). It is evident that due to the
presence of random noise, the significance and coherence of
the reflection events’ amplitude in the noisy data were lost to
varying degrees.

FIGURE 4. Comparisons for denoising results and removed noise.
Denoising results: (a) CNN (19.25dB); (b) FX (4.42dB); (c) MSSA (4.62dB);
(d) EMD (3.14dB). Removed noise: (e) CNN; (f) FX; (g) MSSA; (h) EMD.

We created a training set comprising 384 samples and a test
set from this region, evaluating the efficacy of the proposed
method. As shown in Fig. 4(a), our proposedmethod achieved
a denoising result with an SNR of 19.25 dB. The corre-
sponding loss curve is exhibited in Fig. 5(b), and the training
time totaled 97 seconds. We can observe that our approach
successfully attenuated the most of random noise present
in the denoising result, and reconstructed part weak reflec-
tions previously covered by the noise. Notely, the proposed
method performed with high denoising proficiency, despite
the presence of complex geological structures such as faults
in the test region. To better demonstrate the effectiveness of
the proposed method, we evaluated the FX, the MSSA, and
the EMD on the synthetic data. Compared with our proposed
method, the denoising results of the FX, the MSSA, and the
EMD showed obvious random noise pollution, with SNRs of
4.42 dB, 4.62 dB, and 3.14 dB, respectively (Fig. 4(b)-(d)).
Among the three methods, the EMD incurred the most severe
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FIGURE 5. SNR comparison at different noise levels and training loss in different epochs. (a) SNR comparison of CNN, FX, MSSA, and EMD.
(b) Training loss of CNN.

noise pollution, followed by the MSSA. Comparatively, the
denoising result of the FX was better, but some slight noise
persisted. The corresponding noise profiles for the methods
are shown in Fig. 4(e)-(h). We can observe that the profile
from the proposed method had some slight continuous reflec-
tion signals, indicating that our approach caused a minor loss
of effective signals. However, the degree of loss was less than
that incurred by the MSSA (Fig. 4(g)) but greater than that of
the FX (Fig. 4(f)).

In addition, we applied these methods to the synthetic data
with seven different levels of random noise and analyzed the
SNR of their denoising results, as shown in Fig. 5(a). The red
line corresponds to the proposed method, and the black line
denotes the noisy data. The blue, purple, and green lines rep-
resent the FX, the MSSA, and the EMD, respectively. We can
observe that the proposed method consistently achieved a
significantly higher SNR than the other methods across all
noise levels. Notably, the SNRs of the FX, the MSSA, and
the EMDwere very close at each noise level, with amaximum
difference of only 2.5 dB.

To further investigate the effectiveness of the proposed
denoising method, we conducted a comparative analysis of
the FK spectra of the denoising profiles using different
approaches, as shown in Fig. 6. The FK spectra of the
noisy data and the clean data are shown in Fig. 6(a) and
Fig. 6(b), respectively. Fig. 6(d) reveals that the FK spectrum
obtained by the FX contained significant low-energy noise in
the entire frequency and wavenumber domains, especially in
the 16-35 Hz range. Moreover, there was also a discernible
energy loss in the effective signals, indicating that the FX
did not perform well in random noise suppression. The FK
spectrum of the MSSA, as shown in Fig. 6(e), revealed no
residual random noise only in the 10-40 Hz range, and the
valid data also experienced severe energy loss similar to that
observed in the FX, with only weak signals exhibiting less
energy loss than those from the FX. Additionally, the FK

FIGURE 6. F-K domain analysis for the processing results. (a) Noisy data.
(b) Clean data. (c)-(f) Denoising results for CNN, FX, MSSA, and EMD,
respectively.

spectrum of the EMD is shown in Fig. 6(f). We can observe
that the valid data suffered from the same level of energy loss
as observed in the MSSA, and the residual noise was even
more apparent than that in the FX and the MSSA. In contrast,
as shown in Fig. 6(c), our proposed method could eliminate
random noise obviously while retaining the reflection events
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FIGURE 7. Amplitude comparisons for the 155th trace record. (a) CNN.
(b) FX. (c) MSSA. (d) EMD.

effectively, as its FK spectrum was highly similar to that from
the clean data.

The effectiveness of the proposed denoising method in
preserving the amplitude and frequency characteristics of
seismic data was evaluated through amplitude and spectral
comparisons. To perform the analysis, the 155th trace of the
synthetic data was selected as the test trace. The respective
amplitudes of the clean data, the noisy data, and the denoising
results from the proposed approach as well as three other
methods (the FX, the MSSA, and the EMD) were compared
in Fig. 7. The results reveal that the denoising waveforms
obtained from the proposed method presented greater resem-
blance to the original clean waveforms than those from the
other three methods. To further evaluate the performance of
the proposed method, the frequency spectrums of the denois-
ing data from the methods were also compared. As shown
in Fig. 8, the proposed approach surpassed the other three
methods in suppressing random noise and reconstructing
effective signals, especially for frequency components rang-
ing from 50 to 100 Hz. These findings demonstrate the effec-
tiveness of the proposed method in attenuating random noise
while preserving the amplitude and frequency features of the
original clean data.

D. EXPERIMENTS ON FIELD DATA
In the process of denoising field data, the identification of
complex and uncertain factors, such as the noise level and the
velocity field, is a challenging task. As a result, the perfor-
mance of traditional denoising methods often falls short of
expectations. To further demonstrate the effectiveness of our
proposed approach, we have selected a region consisting of
384 traces and 256 sampling points from marine seismic data
(http://cotuit.er.usgs.gov/Data/1978-015-FA/SE/001/38/) for
testing, as shown in Fig. 9. We constructed a training set of

FIGURE 8. Spectral comparisons for the 155th trace record. (a) CNN.
(b) FX. (c) MSSA. (d) EMD.

FIGURE 9. The field seismic data.

384 samples from this region, and the training time was 97 s.
The denoising results obtained from the CNN, the FX, the
MSSA, and the EMD are shown in Fig. 10(a)-(d), and the
corresponding noise profiles are shown in Fig. 10(i)-(l). As a
whole, the CNN, the FX, and the MSSA were effective in
attenuating the random noise and reconstructing the reflec-
tion events, whereas the EMD retained a certain amount of
noise.

To better demonstrate the attenuation capacity of the
proposed method, we conducted an experiment using a
64×64 zoomed-in portion of the field data, as shown in
Fig. 10(e)-(h). By zooming in, we are able to discern intri-
cate details of the seismic profiles and observe the differ-
ences between the results obtained from different methods in
more detail. The seismic profile processed by our proposed
method exhibited clear reconstruction of reflection events,
with almost complete attenuation of random noise, leading
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FIGURE 10. Denoising performances of field seismic data. Denoising results: (a) CNN; (b) FX; (C) MSSA; (d) EMD. Zoomed-in portion of field
data: (e) CNN; (f) FX; (g) MSSA; (h) EMD. Removed noise: (i) CNN; (j) FX; (k) MSSA; (l) EMD.

to a more precise and accurate presentation of the subsurface
structure. Although the FX was able to reconstruct reflection
events effectively, it left behind a small amount of noise
compared to our proposed method. Such residual noise could
cause difficulties in interpreting and analyzing the seismic
data, thereby affecting the overall accuracy of the subsurface
model. Similarly, the MSSA was able to reconstruct effective
signals, but the residual noise in the denoising result was
more obvious than the FX. In contrast, the EMD failed to
completely reconstruct the reflection events, leaving notice-
able noise that could significantly affect the interpretation
and analysis of the seismic data. Overall, these comparisons
demonstrate that our proposed method outperformed the FX,
the MSSA, and the EMD in terms of noise reduction and
reconstruction of reflection events in the subsurface structure.

V. CONCLUSION
In this study, we present an improved method for attenu-
ating seismic random noise based on unsupervised learn-
ing. Our proposed method includes an improved denoising
strategy that utilizes the local similarity of the data and the
replacement strategy, along with its corresponding training
method and an improved CNN based on UNet. Specifically,
our denoising strategy utilizes local similarity to identify
the most similar part for each element in the matrix and
obtains the replacement elements from these similar parts
using the replacement strategy. These replacement elements

would then replace the original element to construct a new
matrix, which serves as the label of the training set. This novel
approach allows the corresponding training method to gen-
erate training labels directly from the test region, thus over-
coming the limitations of denoising methods that rely solely
on generalization capability and presenting better training
performance. Furthermore, we propose an improved CNN
based on UNet, which is specifically designed for the training
method to improve the training effect. In the proposed CNN,
the improvement in output bias for different level features
can effectively enhance denoising performance. Additionally,
the improvement in the final processing of feature maps
can effectively increase the utilization rate of samples in
the training set, resulting in a reduction of the number of
samples needed to achieve a denoising effect. Our experi-
mental results on synthetic and field data demonstrate that our
proposed method outperforms traditional denoising methods,
showing excellent performance in random noise attenuation
and seismic signal reconstruction. However, we note that
the denoising ability of our proposed method may degrade
under extremely low signal-to-noise ratio (SNR) conditions.
Moreover, the reasons for the polarity reversal of most
reflection events after the replacement processing remain
unknown and require further investigation. Despite these
limitations, our proposed method has promising applications
in complex random noise attenuation and seismic signal
processing.
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