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ABSTRACT Internet of Things (IoT) systems are beneficial to our daily lives and have become increasingly
important. A complete IoT system includes devices, sensors, networks, software, and other essential
components necessary for operation and interconnection. However, devices and sensors of this nature often
have low resource requirements and multiple security vulnerabilities from manufacturers. Moreover, edge
network areas of IoT systems exhibit several security weaknesses. Consequently, unauthorized hijacking of
sensors or denial-of-service attacks on edge network areas can have severe consequences for the system’s
operation. In this study, we propose a model that combines machine learning algorithms and principal
component analysis techniques to train and predict Distributed Denial of Service (DDoS) attacks. Principal
component analysis techniques were applied to reduce data dimensionality. We used accuracy, precision,
recall, and F1-Score as the evaluation metrics. We explain the True Positive, False Positive, True Negative,
and False Negative measures as basic parts of the above evaluation metrics. Unlike previous studies, we used
the Training Time to evaluate the training time of each model. We employed two datasets, CICIDS 2017 and
CSE-CIC-IDS 2018, to evaluate our proposed model. In general, the proposed models exhibited the best
performance and improved training time.

INDEX TERMS Machine learning, principal component analysis, Internet of Things, DDoS attack.

I. INTRODUCTION
Over the past decade, Industrial Revolution 4.0 has changed
the way of doing business and production as well as the ecol-
ogy of human life. IoT, Artificial Intelligence (AI), Cloud,
and Robotic Process Automation (RPA) are the four core
elements required for Industry 4.0 success [1]. Smart Home
applications with temperature and light sensors can commu-
nicate with the central controller in two ways to help auto-
mate tasks, such as controlling lights and electronic devices
in indoor areas, thereby improving quality of life [2], [3].
The IoT also appears in areas such as physically challenged
people, smart health, agriculture, and natural calamities [4].
There were over 13.8 billion IoT devices in 2021 and is
predicted to grow to 30.9 billion devices by 2025 [5].
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An IoT system is a network of devices and systems that
collaborate to collect, transmit, process, and analyze data
from the physical environment. The primary constituents of
a complete IoT system are edge devices, gateways, cloud
servers, data-analysis tools, and user interfaces. Edge devices
are physical devices equipped with sensors, actuators, and
controllers to gather and preprocess data and can perform
initial analysis before sending it to the cloud. Gateways pro-
vide connectivity and processing, acting as intermediaries
between edge devices and the cloud to reduce network traf-
fic and latency. Cloud servers store and process data from
edge devices and gateways, providing scalable computing
resources and storage capacity for handling large volumes of
data. Advanced analytics can also be used to obtain detailed
insights from the data. Data analysis tools employ machine
learning algorithms, statistical analysis, and visualization
techniques to identify patterns, trends, and anomalies in data.
User interfaces, such as web or mobile applications, enable
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FIGURE 1. Attack types on IoT.

users to interact with the IoT system, access and analyze data
from their devices, and receive alerts and notifications based
on collected data.

Furthermore, IoT systems are becoming potential targets
for cyberattack [6]. FromQ3 2019 to Q4 2020, attacks related
to IoT systems and the Mozi botnet increased by 3,000% and
74%, respectively. Ransomware, Server Access, and DDoS
are common types of attack, as shown in Figure 1 [7]. There
are multiple reasons why cyberattackers are increasingly tar-
geting IoT systems, with three main factors being the most
important: first, the security vulnerabilities present in sensor
devices, often originating from the manufacturer; second, the
edge network areas have insufficient protection against cyber-
attacks; and lastly, the high value of data in these systems
makes them attractive targets for attackers.

As a well-established method for bringing down systems
since 1973, DDoS continues to be a popular choice for
attackers. Since 2017, extensive research has been conducted
on DDoS attack methods and techniques in IoT, as well as
methods to detect and prevent them [8], [9]. The three main
DDoS attack types are volumetric, protocol, and application
attacks. These three classifications contain dozens of DDoS
attack types and their variants such as UDP, IMCP, IP, TCP,
and HTTP floods. SomeDDoS attacks fall outside these main
categories, and most attackers use a combination of methods
to make their attacks more difficult to detect.

The three main approaches for detecting DDoS attacks
are anomaly based, signnature-based, and hybrid-based.
Signature-based methods rely on specific flow characteristics
to build graphs and define a threshold for warning against
DDoS attacks [10], [11], [12], [13], [14], [15]. Important
features include requests per second, bits per second, and
packets per second. Anomaly based methods use machine
learning algorithms and training data models to make predic-
tions. However, each method has its own major limitations.
The problem of anomaly detection is false positives, whereas
that of signature-based detection is a constant change in the

attack methods or zero-day DDoS attacks [16]. This poses a
challenge to researchers attempting to detect DDoS attacks.

Recently, machine learning and deep learning have been
demonstrated to provide accurate predictions for DDoS
detection. However, these studies have mostly concentrated
on traditional computer networks with powerful servers,
which are not applicable to IoT systems that have limited
resources on edge devices. In addition, some studies have
emphasized only the precision of the algorithmwhile neglect-
ing the significance of the training time of the model. There-
fore, our motivation was to develop a model that could be
applied to edge devices. The model must meet two criteria:
first, it must have high accuracy in predicting DDoS attacks,
and second, it must have fast training time. This solution
aims to contribute to building a secure and reliable connection
environment for IoT devices, bringing about economic and
social benefits, and creating development opportunities for
future IoT technologies.

In this article, we are using a combination of Principal
Component Analysis (PCA) and Machine Learning (ML)
algorithms. The algorithms we used include the Support Vec-
tor Machine (SVM), Naïve Bayes (NB), Decision Tree (DT),
RandomForest (RF), and Extremely Randomized Trees (ET).
First, we evaluated five simple ML by using the original
dataset without PCA. We repeated the training and predicted
DDoS attacks but with data from PCA. We used the CICIDS
2017 and CSE-CIC-IDS 2018 datasets for evaluation. As a
result, our proposed system predicts DDoS attacks with high
performance and faster training time than without using PCA.

The remainder of this paper is organized as follows. In the
first section, we introduce the current state of cyberattack
challenges in IoT environments. Section II analyzes rele-
vant scientific studies. In Section III, we explore the ML
models we use. In Section IV, we describe the proposed
model. In Section V, we evaluate our model using two
datasets, CICIDS 2017 and CSE-CIC-IDS 2018. In Sec-
tion VI, we present our conclusions and directions for future
research.

II. RELATED WORK
In a survey conducted by Wehbi et al. [17], three strate-
gies for detecting DDoS attacks using ML were identi-
fied. Each strategy employs a distinct method of integrating
machine-learning techniques, including the use of IoT
network behavior (Approach 1), software-defined net-
work (SDN) architecture (Approach 2), and Apache Spark
(Approach 3). Ziadoon Kamil Masser et al. [18] evalu-
ated ten commonly used supervised and unsupervised ML
algorithms for their ability to identify effective and effi-
cient ML-based intrusion detection systems for networks.
Using the CICIDS 2017 dataset, this approach yielded
the best hyperparameters for each algorithm. Mohammad
Najafmehr et al. [19] combined supervised and unsupervised
algorithms to detect anomalies in the network traffic. Ini-
tially, a Density-Based Spatial Clustering of Applications
with Noise (DBSCAN) clustering algorithm was used to
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separate anomalous traffic from normal data. Then, DT, RF,
NB, and SVM machine-learning algorithms were utilized
to classify the clusters. The authors evaluated the proposed
model on the CICIDS 2017 dataset, and tested it on the
more recent CICDDoS 2019 dataset. The results indicate
that the Positive Likelihood Ratio of the proposed method
is approximately 198% higher than that of traditional ML
classification algorithms.

Erhan and Anarim [20] used a hybrid wavelet and match-
ing pursuit algorithm for DDoS detection. The methodology
suggested in this study uses a dictionary derived from the
network flow parameters. This approach produced over 99%
true positives and less than 0.7% false positives. Praseed
and Thilagam [21] leveraged a simple annotated Probabilistic
Timed Automata (PTA) and a suspicion scoring mechanism
to separate normal and anomalous user behavior in the con-
text of asymmetric application-layer DDoS attacks. In their
study of Sybil DDoS in the Internet of Vehicles, Li et al. [22]
developed a Fast Quartile Deviation Check and an entropy
theory-based algorithm to quantify the traffic distribution.
The LuST dataset shows that this approach has a detection
rate of 100%.

Currently, DDoS attacks with a low-rate bandwidth perfor-
mance are difficult to detect. Liu et al. [23] used a deep convo-
lutional neural to detect TCP low-rate DDoS attacks from the
Mirai botnet. Alsirhani et al. [24] proposed a dynamic solu-
tion for detecting DDoS attacks by combining four machine
learning algorithms and fuzzy logic. The fuzzy logic system
automatically selects the most effective algorithm from a
set of predefined classification algorithms to recognize dif-
ferent DDoS attack patterns. Alasmary et al. [25] proposed
a ShieldRNN with Recurrent Neural Network (RNN) and
Long Short-Term Memory (LSTM) models. This approach
achieved a 99.9% F1-Score. Sayed et al. [26] employed
LSTM and Autoencoder (AE) to address the issue of DDoS
attacks in SDNs using three datasets: InSDN, CICIDS 2017,
and CICIDS 2018. This approach achieved a high detection
rate and provided a more efficient method for establishing
a model. Beitollah et al. [27] presented an ML solution
that merges the Radial Basis Function (RBF) neural net-
work and the Cuckoo Search Algorithm (CSA) to detect
App-DDoS traffic. Deepa et al. [28] used embedded learn-
ing, combining the K-Nearest Neighbor (KNN), NB, SVM,
and Self-Organizing Map (SOM) algorithms to detect DDoS
attacks within an SDN controller. The authors evaluated their
proposed method on the CAIDA 2016 dataset, and the results
showed that the combined learning approach achieved an
accuracy of 97-98%, whereas traditional machine learning
methods without combination only achieved an accuracy of
75-84%. Soe et al. [29] used an Artificial Neural Network
(ANN) algorithm combined with the synthetic minority over-
sampling technique (SMOTE) to reduce data imbalance in
DDoS detection. Jia et al. [30] proposed an LSTM-based
FlowGuard model to detect DDoS attacks. The model was
evaluated on the dataset CICDDoS 2019 with an accuracy

of up to 98.9%. For instance, Khedkar and AroulCanessane
[31] used an SVM model to classify attacks, and achieved an
accuracy of 78%. Additionally, Zeeshan et al. [32] proposed
a protocol-based architecture and detected DDoS attacks
using a deep learning LSTM. The classification accuracy was
96.3% for the UNSWNB15 and Bot-IoT datasets.

In their research, Sharafaldin et al. [33] compared the
different datasets. The author pointed out four important
features for detecting DDoS attacks: Standard Deviation size
of Packet, Packet Size, Flow Duration, Standard Deviation
time between two packets in flow. The authors used the ML
algorithm on these four selected features and obtained a 98%
accuracy. Unlike previous works that concentrated mainly
on DDoS attacks launched from compromised IoT devices
towards servers, Tushir et al. [34] focused on the connectiv-
ity and energy consumption of IoT devices during attacks.
Key discoveries include buffer overflow and the group key
updating process of WiFi.

Deep learning (DL) algorithms have also been widely
applied in research related to network intrusion detection
systems (NIDS) or host intrusion detection systems (HIDS).
Vinayakumar et al. [35] utilized a Deep Neural Network
(DNN) algorithm to detect malware attacks on both HIDS
and NIDS. They used the KDDCup 99 dataset to iden-
tify optimal hyperparameters for the algorithm. They then
tested the algorithm with these hyperparameters on various
datasets, including NSL-KDD, UNSW-NB15, Kyoto, WSN-
DS, and CICIDS 2017, and demonstrated a good predic-
tive performance. Hnamte and Hussain [36] employed a
hybrid DCNNBiLSTM model that integrated CNN, LSTM,
and DNN. Their methodology was evaluated on the CSE-
CIC-IDS 2018 and Edge_IIoT datasets, resulting in accu-
racy rates of 100% and 99.64%, respectively. Additionally,
Okey et al. [37] proposed an embedded model called ELETL-
IDS, which was built using model averaging with three
preselected models: InceptionV3, MobileNetV3Small, and
EfficientNetV2B0. The proposed model was evaluated on
two datasets, CICIDS 2017 and CSE-CIC-IDS 2018, and it
achieved perfect results for all evaluation metrics, including
100% accuracy, precision, recall, and F-score. Wei et al. [38]
combined the AE model and multilayer perceptron network
(MLP) to evaluate DDoS attacks on the CICDDoS2019
dataset, obtaining an accuracy of 98%. To detect DDoS
attacks in SDN, Haider et al. [39] proposed four DL-based
architectures by using three DL algorithms (RNN, LSTM,
and CNN): embedded RNN (RNN + RNN), embedded
CNN (CNN + CNN), embedded LSTM (LSTM + LSTM),
and hybrid embedded (RNN + LSTM). Among these mod-
els, the embedded CNN architecture exhibited the high-
est performance, achieving an accuracy of 99.45% when
evaluated on the CICIDS 2017 dataset. Liu et al. [40]
tested the LSTM algorithm on an asynchronous feder-
ated learning platform utilizing the ISCX-2016-SlowDos
and 1999 DARPA datasets to combat low-rate DDoS attacks
and achieved a remarkable accuracy rate of 98.8%. In a
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previous study by Roopak et al. [41] evaluated DDoS attacks
on the CICIDS2017 dataset using four DL models: MLP,
1d-CNN, LSTM, and CNN+ LSTM. The results showed that
the LSTM+CNNmodel performed the best with an accuracy
of 97.16%.

In general, research works in recent years have shown pos-
itive results, but there are still some disadvantages; for exam-
ple, using individual datasets makes the model evaluation not
high fidelity, and many studies focus on accuracy, precision,
recall, or F1-Score quantities and ignore the training time
of algorithms, a factor that is also very important in attack
detection in the IoT environment, as detailed in Table 1.

III. BACKGROUND METHODOLOGY
We used five Simple Machine Learning algorithms: Naïve
Bayes (NB), Decision Tree (DT), Random Forest (RF),
Extremely Randomized Trees (ET), and Support Vector
Machine (SVM), in combination with the Principal Com-
ponent Analysis (PCA) technique for implementing DDoS
attack detection.

A. MACHINE LEARNING ALGORITHMS
1) NB
The NB algorithm assumes that the data features are indepen-
dent of each other. Instead of trying to find the label for each
data point, NB looks for the most likely label to be assigned
to the data point using the following formula:

c = argmax p (c|x) (1)

where p(c|x) is the probability of label c of data point x.
According to Bayes’ rule, the above formula can be
re-expressed as follows:

c = argmax
p (c | x) × p (c)

p(x)
(2)

where p(c) is calculated according to the method of
Maximum Likelihood Estimation (MLE) or Maximum A
Posteriori (MAP).

Owing to the assumption that the data features are inde-
pendent of each other, the algorithm can easily choose label c
for the data, making the training and testing times extremely
fast.

2) DT
TheDT algorithm is a supervised learning algorithm. The unit
of DT is the node, which is described as:

node = (xi, t i, ci) (3)

where xi is the data value at node i and ti is the criterion for
selecting the next node of node i. If i = 1, then it is the root
node. If ti ̸= 0, then node is a nonleaf node. If ti = 0, then that
node is leaf node. At the leaf node, the data are labeled ci. The
choice of the value of the ti criterion is based on the evaluation
index entropy and information gain. The DT architecture is
illustrated in Figure 2.

FIGURE 2. DT architecture.

FIGURE 3. RF architecture.

If the DT algorithm is sufficiently deep, the model will
easily encounter overfitting.

3) RF
The RF approach involves a multitude of individual DT
that together function as an ensemble. Each DT generates
a class prediction, and the prediction with the most votes
corresponds to that of the model. The wisdom of crowds
states that a committee of many uncorrelated models (trees)
will outperform a single model. Therefore, RF has full DT
properties and better solves the overfitting problem of DT.
The RF architecture is shown in Figure 3.

4) ET
Similar to RF, ET comprises many DT and is an ensemble
algorithm. Therefore, ET has full DT properties. However,
ET uses more random thresholds for each feature instead of
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TABLE 1. Comparison of other related techniques.

finding the best threshold, such as RF. ET usually has a faster
training time than RF because it saves time when finding
thresholds for features at nodes.

5) SVM
The SVM algorithm is based on the concept that data classes
are classified and laid out in linearly separable planes.We can
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now determine an infinite number of planes that divide these
data classes. The distance from the nearest data point to
the separation plane is the margin. The SVM looks for a
hyperplane such that the margin is at its maximum and the
margins of the data layers are the same. This hyperplane can
be described as follows.

wT x + b = 0 (4)

The SVM algorithm used to find the value (w, b) is repre-
sented by the following formula:

(w, b) = argmax{min(margin)} (5)

SVM algorithms face many challenges with data classes
with many outliers.

B. PRINCIPAL COMPONENT ANALYSIS
The PCA algorithm is based on the mathematical idea that
data are not normally distributed randomly but are instead
distributed according to a coordinate system. Assume that the
initial data have a characteristic D with D ∈ R. PCA projects
the data onto a new space, where the data are represented with
the characteristic K with K ∈ R and K ≪ D. K is also known
as the principal component.

The value of K is determined based on the level of infor-
mation that must be preserved. Here, the total information
is the sum of variances in all dimensions of the data. The
amount of data to be maintained is the total variance of the
new coordinate system. Therefore, to choose K , we can rely
on the following formula:

RK =

∑K
i=1 λi∑D
i=1 λi

(6)

where RK is the amount of data to be kept, and λ is the
variance of the data.

IV. PROPOSED SYSTEM
Our study presents the system depicted in Figure 4, which
comprises four main steps: raw data, data cleaning, pre-
processing, and detection.

A. RAW DATA
Raw data are collected from IoT devices in the form of
Events, Flows or Packets. In which:

An event represents a log of a specific occurrence, such as
a user login or VPN connection, which is documented at the
moment it occurs.

A packet refers to a piece of data traveling from the sender
to its destination, which moves from the source address to the
destination address via intermediate hops. The combination
of multiple packet segments results in a larger number of
messages at the receiver address.

Flow: Set of packets that share seven attributes. Once
any of these attributes changes, a new flow is established.
The seven attributes are incoming traffic interface, source
IP address, destination IP address, IP protocol, source port,
destination port, and IP service type.

FIGURE 4. Proposed system.

In many DDoS attacks, flow measurements are important
to the outcome. However, with the sophistication of attacks,
Event or Packet information also contributes to detection.

B. CLEANING DATA
In anymachine-learning project, raw data are often unsuitable
for direct use for several reasons, including the requirement
for numerical data by machine-learning algorithms, presence
of statistical noise, errors, missing values, and conflicting
examples, as well as the need to uncover complex nonlinear
relationships within the compressed raw data. In addition,
categorical data must be converted into numerical values to
ensure compatibility with machine learning algorithms.

Cleaning the data is a critical step. The success of a
machine learning algorithm depends on the quality of the
training data. In this study, we used the datasets CICIDS
2017 and CSE-CIC-IDS 2018. With this dataset, we removed
the data with little information and perturbed the model to
obtain a dataset with high value. The steps are as described in
Algorithm 1.

C. PRE-PROCESSING
The data were separated into a training set (70%) and

testing set (30%), and model training was conducted only on
the training set. The testing set was used solely for testing.

Scaling: Because the input variables of the data were dif-
ferent, we scaled the data to help the algorithms learn better.
A normalization technique was used to achieve this. Data
normalization involves scaling the data from their original
range to a new range, which is typically between 0 and 1.

y =
x − min
max−min

(7)

where the maximum and minimum values pertain to the
value x being normalized.
PCA: We implemented the PCA dimensionality reduction

technique to improve the performance and training time of the
model, which is more suitable for detecting DDoS attacks in
IoT environments. Incorporating PCA techniques also helps
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Algorithm 1 Cleaning Data Algorithm
Input: original_dataset: original dataset containing

features and samples.
threshold: a threshold for variance below
which features are removed.

Output: cleaning_dataset: dataset after cleaning.
1 Begin
2 for feature in original_dataset.features:
3 unique_values = count_unique_values(feature)
4 variance = calculate_variance(feature)
5 if unique_values == 1 or variance < threshold:
6 delete_feature(feature)
7 for sample in original_dataset.samples:
8 if duplicate(sample) or

missing_ infinite(sample):
9 delete_sample(sample)
10 elif sample.label == "Benign":
11 sample.label = 0
12 elif sample.label != "Benign":
13 sample.label = 1
14 Return: cleaning_dataset

15 End

where count_unique_values() is the function reporting
the number of unique values in each feature; calcu-
late_variance() is the function that calculates the variance
in each feature; duplicate() checks whether it is a duplicate;
missing_infinite() is the function that checks whether it
contains any missing or infinite values; delete_feature()
is the function to delete a feature; delete_sample() is the
function to delete a sample.

models avoid outliers that are commonly found in machine
learning data. We chose K principal components of the data,
based on the amount of variance retained. The pre-processing
steps are described in Algorithm 2.

D. DETECTION
After the cleaning and pre-processing steps, the data were

used to train the machine learning model. To help identify the
proposed model, we first trained and evaluated the machine
learning models using data obtained after cleaning and scal-
ing without PCA. Then, we continued to train and evaluate
the machine learning models with five cases of principal
component K with the amount of variance retained: 95%,
90%, 85%, 80%, and 75%, respectively. Therefore, using
five machine-learning models, we have done thirty times of
training and evaluation times to determine the best model for
our proposal. These steps are presented in Algorithm 3.

V. EVALUATION
A. DATASET
To evaluate our proposed system, we conducted experi-
ments on two datasets, CICIDS 2017 and CSE-CIC-IDS

Algorithm 2 Pre-Processing Algorithm
Input: cleaning_dataset: dataset after cleaning in

Algorithm 1.
n_components: the amount of variance retained:
95%, 90%, 85%, 80%, and 75%, respectively.

Output: X_Train_withoutPCA: training set features do
not include labels without PCA.
X_Test_withoutPCA: testing set features do not
include labels without PCA.
X_Train_withPCA: training set features do not
include labels with PCA.
X_Test_withPCA: testing set features do not
include labels with PCA.
Y_Train: training set labels.
Y_Test: testing set labels.

1 Begin
2 X_Train, X_Test, Y_Train, Y_Test

= train_test_split(cleaning_dataset, test_size = 0.3)
3 X_Train_Scaler=X_Train.minmaxscaler

(feature_range =(0,1))
4 X_Test_Scaler=X_Test.minmaxscaler

(feature_range =(0,1))
5 if not using PCA:
6 X_Train_withoutPCA =X_Train_Scaler
7 X_Test_withoutPCA =X_Test_Scaler
8 Return: X_Train_withoutPCA,

X_Test_withoutPCA,
Y_Train, Y_Test

9 if using PCA:
10 for K in n_components:
11 X_Train_withPCA = pca (X_Train_Scaler, K )
12 X_Test_withPCA = pca (X_Test_Scaler, K )
13 Return: X_Train_withPCA, X_Test_withPCA,

Y_Train, Y_Test
14 End
where train_test_split() is the function for splitting the
dataset into a training set and a testing set; the minmaxs-
caler() function is used to transform all feature values to a
range between 0 and 1; pca() is the function that reduces
dataset dimensionality.

2018. The CICIDS 2017 dataset was publicly released in
2017 by the Canadian Institute for Cybersecurity (CIC),
whereas the Communications Security Establishment (CSE)
and CIC jointly released the CSE-CIC-IDS 2018 dataset
in 2018. We chose these datasets for three reasons: First,
they are current network-based datasets that are appropriate
for appraising the detection of DDoS attacks, which is the
primary focus of this study [42]. Second, this dataset was
confirmed to meet 11 IPS dataset criteria: complete network
configuration, complete traffic, labeled data, complete inter-
action, complete capture, available protocols, attack diver-
sity, anonymity, heterogeneity, feature set, and metadata [43].
Finally, to construct this dataset, the author fully deployed
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Algorithm 3 Detection Algorithm
Input: X_Train_withoutPCA: training set features do

not include labels without PCA.
X_Test_withoutPCA: testing set features do not
include labels without PCA.
X_Train_withPCA: training set features do not
include labels with PCA.
X_Test_withPCA: testing set features do not
include labels with PCA.
Y_Train: training set labels.
Y_Test: testing set labels.
Algorithms: machine learning algorithm includes
NB, DT, RF, ET, SVM.
n_components: the amount of variance retained:
95%, 90%, 85%, 80%, and 75%, respectively.

Output: proposed_model.
1 Begin
2 if not using PCA:
3 for algorithm in Algorithms:
4 startTT = time. time()
5 algorithm. fit (X_Train_withoutPCA, Y_Train)
6 endTT = time. time()
7 Y_predict = algorithm.

predict (X_Test_withoutPCA)
8 accuracy = accuracy_score (Y_predict,Y_Test)
9 precision = precision_score (Y_predict,Y_Test)
10 recall = recall_score (Y_predict,Y_Test)
11 f1 = f1_score (Y_predict,Y_Test)
12 TrainingTime = (endTT – startTT)
13 Return: Algorithms_Performance_withoutPCA(

accuracy, precision, recall, f1, TrainingTime)
14 if using PCA:
15 for K in n_components:
16 for algorithm in Algorithms:
17 startTT = time. time()
18 algorithm.fit(X_Train_withPCA, Y_Train)
19 endTT = time. time()
20 Y_predict = algorithm.

predict(X_Test_withPCA)
21 accuracy = accu-
racy_score (Y_predict,Y_Test)
22 precision = precision_score

(Y_predict,Y_Test)
23 recall = recall_score (Y_predict,Y_Test)
24 f1 = f1_score (Y_predict,Y_Test)
25 TrainingTime = (endTT – startTT)
26 Return: Algorithms_Performance_withPCA(

accuracy, precision, recall, f1, TrainingTime)
27 Return: Algorithms_Performance_withPCA_for

_K( accuracy, precision, recall, f1, Training
Time)

28 proposed_model =
evaluate (Algorithms_Performance
_withoutPCA, Algorithms
_Performance_withPCA_for_K)

29 Return: proposed_model

Algorithm 3 (Continued.) Detection Algorithm
30 End
where time() is the function that gets the current time of
the system; fit() is the function that trains the model; pre-
dict() is the function that makes predictions using a trained
model; accuracy_score() is the function to evaluate the
accuracy measure of the trained model; precision_score()
is the function to evaluate the precision measure of the
trained model; recall_score() is the function to evaluate
the recall measure of the trained model; f1_score() is the
function to evaluate the harmonic mean of the precision
and recall measure of the trained model; evaluate() is the
function to evaluate the performance of machine learning
algorithms with and without PCA.

FIGURE 5. CICIDS 2017 topology.

modern attack techniques in the system, including firewalls,
routers, switches, and several different operating systems.
The victim and attacker zones were completely separated to
obtain data similar to real-world scenarios. The model used
to build the dataset is shown in Figure 5.

The proposed model was evaluated using the ‘‘Friday-
WorkingHours-Afternoon-DDoS.pcap_ISCX.csv’’ file from
the CICIDS 2017 dataset and the ‘‘02-21-2018.csv’’ file
from the CSE-CIC-IDS 2018 dataset to detect the DDoS
attacks. The CICIDS 2017 dataset contains 225,745 samples
and 79 features. After applying the cleaning data, the number
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of features was 44, and the number of samples was 221,125.
It included 128,014 DDoS and 93,111 benign records. The
CSE-CIC-IDS 2018 dataset consists of 1,046,845 samples
and 80 features. Following data cleaning, the dataset was
reduced to 559,651 samples with 21 features, comprising
198,861 DDoS records and 360,790 benign records. Note that
the number of features above includes the labels. The results
are presented in Table 2.

The features after cleaning the CICIDS 2017 and CSE-
CIC-IDS 2018 datasets are listed in Table 3.

B. EVALUATION METRICS
We measured the performance of the proposed system using
four metrics: true positives (TP), false positives (FP), true
negatives (TN), and false negatives (FN). In which:

TP: is the measure of the correct prediction of attack
samples.

FP: is the measure of the false prediction of attack samples
(i.e., benign samples that guess an attack).

TN: is a measure of the correct prediction of benign
samples.

FN: is a measure of the false prediction of benign samples
(i.e., an attack that guesses them as benign).

We evaluate the Accuracy of the model according to the
formula:

Accuracy =
TP+ TN

TP+ FP+ TN + FN
(8)

We also focused on the precision measure to evaluate the
model’s ability to accurately predict attacks, as well as recall,
to evaluate the omission of attack data:

Precision =
TP

TP+ FP
(9)

Recall =
TP

TP+ FN
(10)

We double check the comprehensiveness of the model with
F1-Score:

F1Score = 2 ×
(Precision+ Recall)
(Precision ∗ Recall)

(11)

Furthermore, we are particularly concerned with evaluat-
ing the amount of time each model takes to train using the
following formula:

TrainingTime(TT ) = endTT − −startTT (12)

To compare the results of our proposed model and ML
algorithmswithout PCA,we used a quantity called the change
magnitude C . The formula used was as follows:

CAccuracy

= 100 ×
AccuracyOurProposed − AccuracyAlgorithms

AccuracyAlgorithms
(13)

CPrecision

= 100 ×
PrecisionOurProposed − PrecisionAlgorithms

PrecisionAlgorithms
(14)

FIGURE 6. Performance comparison of the machine learning model
without PCA with CICIDS 2017.

FIGURE 7. Training time comparison of the machine learning model
without PCA with CICIDS 2017.

CRecall

= 100 ×
RecallOurProposed − RecallAlgorithms

RecallAlgorithms
(15)

CF1−Score

= 100 ×
F1 − ScoreOurProposed − F1 − ScoreAlgorithms

F1 − ScoreAlgorithms
(16)

CTT

=
TrainingTimeAlgorithms
TrainingTimeOurProposed

(17)

C. RESULTS WITHOUT PCA
As a first step in evaluating the proposed system, we per-
formed a DDoS attack detection assessment on the CICIDS
2017 dataset with 44 data features after data cleaning. The
DT, RF, and ET algorithms exhibited more than 99.9% per-
formance results, including Accuracy, Precision, Recall, and
F1-score. The SVM algorithm had 97% accuracy and the
NB algorithm had 87% accuracy. The performance results
are shown in Figure 6. The training time of the NB algo-
rithm gives the best results at 0.23 seconds; the DT, ET,
and RF are 1.79 seconds, 9.72 seconds, and 24.21 seconds,
respectively. The SVM algorithm had a training time of up to
1,190 seconds, as shown in Figure 7. We conducted a similar
evaluation on the CSE-CIC-IDS 2018 dataset; the results for
both datasets are presented in Table 5.

D. RESULTS WITH PCA
After that, we evaluated the ML algorithms, including DT,
RF, ET, NB, and SVM using the PCA technique. The retained
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TABLE 2. Comparison of data cleaning.

FIGURE 8. DT performance with PCA with CICIDS 2017.

FIGURE 9. DT training time with PCA with CICIDS 2017.

variances R were 95%, 90%, 85%, 80%, and 75%, respec-
tively. Table 4 presents the corresponding principal compo-
nents, K for each R. The best results for each algorithm are
highlighted in Tables 6–10. The criteria for evaluating the best
results were based on two conditions: firstly, achieving high
evaluation metrics and secondly, having a fast training time.

1) DT
The DT algorithm exhibited high levels of Accuracy, Recall,
and F1-Score on the CICIDS 2017 dataset, with values rang-
ing from 99.7% to 99.9%, which remained stable even when
R values were modified, as shown in Figure 8. Moreover,
the training time decreases as R decreases, with the fastest
training time of 0.6 seconds observed at R = 75%, as shown
in Figure 9. We also evaluated the performance of the model
on the CSE-CIC-IDS 2018 dataset. The detailed results for
both datasets are presented in Table 6.

2) RF
The RF algorithm produced similarly good performance
results, with metric values of approximately 99.9%, as shown
in Figure 10. However, the training time of the RF algorithm
does not improve. When R was 90%, the training time was

FIGURE 10. RF performance with PCA with CICIDS 2017.

FIGURE 11. RF training time with PCA with CICIDS 2017.

FIGURE 12. ET performance with PCA with CICIDS 2017.

the slowest, with a corresponding value of 35.1 seconds,
as shown in Figure 11. Although the training time is only
20.2 seconds when R equals 85%, we have observed that the
RF algorithm does not performwell in terms of Training Time
when PCA is applied. Table 7 lists the specific experimental
results for the RF algorithm.

3) ET
Weobtained good performance results when training and test-
ing the ET algorithm on both datasets, as shown in Figure 12.
The values of these metrics exceeded 99.9%. In addition, the
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TABLE 3. Features after cleaning data.
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TABLE 3. (Continued.) Features after cleaning data.

TABLE 4. Principal components.

FIGURE 13. ET training time with PCA with CICIDS 2017.

training time improved with an increase in R. The algorithm
only took 4.6 seconds to complete when R was 80% with
the CICIDS 2017 dataset and 8.4 seconds when R was 85%
with the CSE-CIC-IDS 2018 dataset, as shown in Figure 13.
Table 8 presents the evaluation results of the proposed model
using these two datasets.

4) NB
As mentioned in Section III, the NB algorithm typically has
a fast training time, which was also true in our experiments.

FIGURE 14. NB performance with PCA with CICIDS 2017.

FIGURE 15. NB training time with PCA with CICIDS 2017.

With the CICIDS 2017 dataset, the algorithm only took
0.05 seconds to complete the training of the model, as shown
in Figure 15. However, the accuracy of the algorithm was
low, with an accuracy of only 59% when R was 95%. The
highest accuracy for the NB algorithm was 71% when R was
85%, as shown in Figure 14. The measurement results for the
CICIDS 2017 and CSE-CIC-IDS 2018 datasets are presented
in Table 9. Both datasets exhibit the best model performance
when R is 75%.
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TABLE 5. Detail performance without PCA on CICIDS 2017 dataset and CSE-CIC-IDS 2018 dataset.

TABLE 6. DT algorithm performance on CICIDS 2017 and CSE-CIC-IDS 2018 dataset.

TABLE 7. RF algorithm performance on CICIDS 2017 dataset and CSE-CIC-IDS 2018 dataset.

TABLE 8. ET algorithm performance on CICIDS 2017 dataset and CSE-CIC-IDS 2018 dataset.

TABLE 9. NB algorithm performance on CICIDS 2017 dataset and CSE-CIC-IDS 2018 dataset.

5) SVM
The SVM algorithms provided Recall, Accuracy, Precision,
and F1-Score with R = 95%, R = 90%, R = 85%, and

R = 80%, respectively, with the same values of 96%. How-
ever, when R = 75%, the performance dropped sharply to
90%, as shown in Figure 16. The training time of the SVM

VOLUME 11, 2023 44331



N. T. Cam, N. G. Trung: Intelligent Approach to Improving the Performance of Threat Detection

TABLE 10. SVM algorithm performance on CICIDS 2017 dataset and CSE-CIC-IDS 2018 dataset.

TABLE 11. Our proposed comparison with DT, RF, ET, NB, SVM algorithm on CICIDS 2017 dataset and CSE-CIC-IDS 2018 dataset.

FIGURE 16. SVM performance with PCA with CICIDS 2017.

algorithm was the slowest compared to the rest of the algo-
rithms. At R = 90%, the algorithm required 270 seconds
for training. However, when R was set to 95% and 75%,
the training time significantly increased to 512 seconds and
505 seconds, respectively, as shown in Figure 17. The results
of the SVM algorithm are presented in Table 10.

Note that in Tables 6 through 10, we named our proposed
model A_PCA_R, where A being the name of the evaluated
algorithm and R is the amount of variance retained after PCA.

FIGURE 17. SVM training time with PCA with CICIDS 2017.

Example: SVM_PCA_95 indicates that our proposed model
uses the SVM algorithm with a retained variance, R of 95%
after applying PCA.

E. COMPARISON RESULTS
To aid in the evaluation of our proposed model, we com-
pared evaluation metrics such as Accuracy, Precision, Recall,
F1-Score, and Training Time between the best-performing
proposed model and the corresponding ML algorithms
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without applying PCA. We used a quantity called the change
magnitude C to demonstrate comprehensive improvement in
our approach, thereby helping us achieve the purpose of our
study. We conducted a thorough analysis of the results, and
the following details provided more specific information.

1) ACCURACY, PRECISION, RECALL, F1-SCORE
The proposed models achieved an accuracy of approximately
99.9%. Most of them showed a small reduction rate, ranging
from 0.01% to 0.34%, in evaluation metrics such as Accu-
racy, Precision, Recall, and F1-Score for both datasets. This
reduction rate indicates that the accuracy of our proposed
model is comparable to that of ML algorithms when PCA
is not applied. The CAccuracy for the DT, RF, ET, NB, and
SVM algorithms on the CSE-CIC-IDS 2018 dataset were -
0.05%, -0.01%, -0.01%, 0%, and -0.04%, respectively. One
notable case is the NB algorithm, which showed a signifi-
cant decrease of 17% in accuracy when evaluated using the
CICIDS 2017 dataset. We conducted a detailed comparison
of our proposed method, as shown in Table 11.

2) TRAINING TIME
The training time of the proposed model was significantly
improved. Specifically, the DT, RF, ET, NB, and SVM
algorithms were improved by factors of 2.7, 1.2, 2.1, 4.6,
and 4.4, respectively, when evaluated using the CICIDS
2017 dataset. For the CSE-CIC-IDS 2018 dataset, improve-
ments were made in the DT, RF, ET, and NB algorithms.
However, the training time of the SVM algorithm was
increased by a factor of 21. The evaluation metrics are
listed in Table 11. Note that the symbol (-) indicates a
decrease and the symbol (+) indicates an improvement
in the C evaluation metrics. DT_PCA_75, RF_PCA_85,
ET_PCA_80, NB_PCA_75, and SVM_PCA_90 were the
best models for the CICIDS 2017 dataset, whereas
DT_PCA_75, RF_PCA_90, ET_PCA_85, NB_PCA_75,
and SVM_PCA_75 were the best for the CSE-CIC-IDS
2018 dataset.

VI. CONCLUSION
The IoT is currently and will continue to be one of the
leading fields facilitating social development. Ensuring the
stability and security of IoT systems is the top priority. Pre-
vious studies have mostly focused on powerful servers in
traditional computer networks or overlooked the importance
of the training time for the model, only emphasizing its
precision. Consequently, these studies are not suitable for
IoT systems because of the limited resources available on
the edge devices. In this study, we develop a model that can
be deployed on edge IoT devices to detect DDoS attacks.
We combined the ML algorithms DT, RF, ET, NB, and SVM
with PCA. We then evaluated our proposed model on two
popular network-based datasets, CICIDS 2017 and CSE-
CIC-IDS 2018. The results showed that our proposed model
performed well in predicting DDoS attacks and improved
model training time. Specifically, we found that the proposed

models based on DT and ET algorithms achieved a prediction
accuracy threshold of 99.99% and training times three times
and two times faster, respectively, when compared to the
algorithms without PCA.

In the future, we plan to evaluate our proposed model on
real-world datasets and to develop it for practical IoT appli-
cations. We will continue to research an approach to improve
the multiclass classification capabilities of our model.
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