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ABSTRACT In today’s leaf disease detection, the accuracy of recognition has never been of such importance
as it is now. In this aspect, leaf disease recognition method based on machine learning relies heavily on the
size of the region of interest and the dispersion of lesions. Professional instrument for leaf disease detection
remains a challenging task in accuracy and convenience. A new lightweight model based on advanced
residual network and attention mechanism for extracting more accurate region of interest and the lesion,
SE-VRNet, was proposed. The proposed SE-VRNet incorporated deep variant residual network (VRNet)
and a squeeze-and-excitation (SE) module with attention mechanism, in order to solve the problem that the
feature extraction was difficult due to the dispersed location of the leaf disease. The accuracy of top-1 and
top-3 obtained by the model SE-VRNet on NewData is 99.73% and 99.98%, respectively, and the accuracy
of top-1 and top-3 obtained by the model on SelfData is 95.71% and 99.89%, respectively. The experimental
results on the datasets of PlantVillage, OriData, NewData and SelfData were better than other state-of-the-
art methods, demonstrating the effectiveness and feasibility of the proposed SE-VRNet in identifying leaf
diseases with mobile devices.

INDEX TERMS Leaf disease, identification, deep variant residual network, attention mechanism, squeeze-
and-excitation module.

I. INTRODUCTION

Crop leaf diseases are an important biological disastrous
problem in agricultural production in the world. For example,
plants infected with brown spot will initially have circular
brown spots of varying sizes on their leaves. Later, the spots
will grow black molds, which will cause the plants to wilt if
not treated properly. Only experienced farmers can accurately
identify the characteristics of leaf diseases, and then choose
the appropriate medicine, and finally use the least amount of
pesticides to achieve the therapeutic effect. However, due to
the large number of disease types and high outbreak probabil-
ity, many Chinese farmers are unable to detect the disease in
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time [1]. At present, China’s input of pesticide is still increas-
ing, while European countries began to reduce in the 1980s.
Therefore, farmers in China should timely use portable instru-
ments to accurately identify crop leaf diseases at the early
stage. Advanced mobile leaf disease detection equipment can
reduce pesticide use and increase crop yields. Image process-
ing technology based on deep learning (DL) can provide a
new solution for crop leaf disease identification [2]. In recent
years, various DL-based network model architectures have
been designed and applied to different tasks. For example,
Geoffrey Hinton and Alex Krizhevsky designed AlexNet and
won the prestigious ILSVRC (ImageNet Large Scale Visual
Recognition Challenge) Challenge in 2012. VGGnet was
proposed by the Computer Vision Group at Oxford University
and DeepMind in 2014 and won the first prize in the location
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project at the ILSVRC Challenge that year [3]. DL technol-
ogy has also been widely used in intelligent agriculture fields
such as plant and fruit recognition, crop and weed detection
and classification. Kamilaris et al. [4] summarized the devel-
opment and application of DL technology in the field of agri-
culture in recent years, and believed that the performance of
DL was better than traditional methods such as support vector
machine and random forest classifier. Compared with tradi-
tional algorithms based on scale-invariant feature transform,
histogram, statistics, texture, color and shape, the automatic
feature extraction of DL model is more effective [5], [6].

In the field of crop leaf disease identification, various
scholars have achieved much. For example, Mukhtar et al. [7]
proposed a wheat disease recognition network based on one-
shot learning. The model requires only a limited number of
images for training and achieves more than 92% accuracy,
84% precision, and 85% recall. Brahimi et al. [8] used an
improved AlexNet and GoogLeNet network model to identify
nine kinds of tomato leaf diseases, and finally achieved an
accuracy of 99.18%. DeChant et al. [9] used a convolutional
neural network (CNN) to design the maize dead leaf dis-
ease identification system, which overcame the limitations
of missing data and irregular crop images in the field, and
finally achieved the maximum accuracy of 96.7% with better
robustness. Gandhi et al. [10] first used a generative adver-
sarial network to enhance the leaf disease dataset, trained
two different pre-trained models, Inceptionv3 and MobileNet,
on PlantVillage dataset, and embedded the trained model into
the mobile application for leaf disease recognition. Finally,
the classification accuracies of Inceptionv3 and MobileNet
were 88.6% and 92%, respectively.

Despite the great progress in DL-based leaf disease iden-
tification, there are still numerous challenges and issues
to be addressed. Due to the different sizes and scattered
locations of leaf lesions, the traditional DL algorithms need
to be improved to extract accurate disease feature infor-
mation in mobile terminals. For example, Elhassouny and
Smarandache [11] developed a method using an advanced
CNN to recognize tomato leaf diseases, but the overall sample
number of this work was small, with less than 1,000 images
for each disease type, and the classification accuracy was
less than 90% for each optimization method. Manso et al.
[12] developed an algorithm to classify coffee leaf rust, and
Piconet et al. [13] expanded Manso’s work using an adapted
deep residual neural network (ResNet)-based algorithm to
deal with the detection of multiple plant diseases from infield
acquired images. In this study, three diseases were identified
by using ResNet from 8178 images, achieving 87% clas-
sification accuracy. However, there is still much room for
improvement in classification accuracy. At the same time,
smartphone applications have been developed to identify
leaf diseases using the DL methods. Toseef and Khan [14]
developed a fuzzy inference system for diagnosis of crop
leaf diseases with smartphone. Mobile terminal applications
of lightweight DL model are still a relatively new research
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Residual Block

FIGURE 1. The basic architecture of residual block.

area in leaf disease identification. Loey et al. [15] pro-
posed a hybrid deep-learning and image-classification-based
model to detect leaf disease in 2020. However, the research
work had several challenges. Geetha et al. [16] proposed a
k-nearest neighbors algorithm to detect tomato leaf disease.
But the accuracy of this method depended very much on leaf
segmentation.

In recent years, more and more deep learning methods
have been applied to leaf disease detection [17]. For example,
in 2021, Chen et al. [18] proposed a hybrid transfer learn-
ing and image-processing-baded model to detect leaf dis-
ease. Chen improved leaf disease recognition and forecasting.
However, data preparation in the method was very complex
and not easy to generalize. In 2022, Harakannanavar et al.
[19] proposed an improved deep-learning-based model to
predict leaf disease in his research. This method adopted a
variety of techniques to extract image features which were
not easily transferred to mobile devices.

In this study, we aimed to overcome these shortcomings
in two aspects: (1) in order to improve the expression abil-
ity of the network model, the deep variant residual net-
work (VRNet) is proposed to replace the original ResNet;
(2) in order to enhance the feature extraction ability of the
network, the squeeze-and-excitation (SE) module integrates
the attention mechanism to construct the deep SE variant
residual network (SE-VRNet); (3) In order to be general-
ized in mobile devices, the method in this paper emphasizes
lightweight.

The remainder of this manuscript is organized as follows.
Section II reviews some fundamentals and related work.
Section III describes the proposed method in detail.
Section IV explains the extended dataset and the method of
image preprocessing. Simulation results and evaluation are
presented in Section V. Finally, the conclusions are drawn in
Section VI.

Il. FUNDAMENTALS AND RELATED WORK

Deep ResNet and SE module with attention mechanism
are the important components of the proposed model in
this study. A brief review of these frameworks is given
below.
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FIGURE 2. The specific structure of ResNet18.

A. DEEP RESIDUAL NETWORK

The deep ResNet was proposed by He et al. [20] in 2015.
They trained a deep ResNet with 18 to 152 layers by adding a
residual cell structure to the neural network, and won the 2015
ILSVRC image classification task competition. ResNet man-
aged to outperform the 2014 network models VGGNet and
GoogleNet while having fewer parameters than VGGNet.
The unique residual unit structure in ResNet can also effec-
tively improve the training speed of the network, which plays
a very important role in improving the performance of the
network.

The ResNet algorithm makes excellent use of the idea of
Highway Network [21] and adds multiple skip connection
layers to the network, so that the original input information
can complete nonlinear transformation and transfer down-
ward from the original structure.

For the residual part, the network is linear in the forward
propagation process, and the upper branch road (see Fig. 1)
is used for learning the residual map (f (x)), and another road
carries the input map (x) to the end for recovering the maps
(x + f(x)). The basic architecture is illustrated in Fig. 1.

Compared to the convolution operation in a general neu-
ral network, the residual block network can not only avoid
the vanishing and exploding gradients, but also acceler-
ate the convergence of the network. In general, different
ResNet network can be constructed with different numbers
of residual structural units and different convolution struc-
tures. For example, ResNet18 and ResNet34 were designed
respectively based on different residual structural units, and
their convolutional structures were fine-tuned and improved.
In this work, the ResNet18 network stacked by residual struc-
tural units is shown in Fig. 2.

B. ATTENTION MECHANISM

Attention plays an important role in selecting critical infor-
mation. Therefore, the CNN integrated with the attention
mechanism (AM) can focus on more abstract feature infor-
mation. For example, Woo et al. [22] proposed an advanced
attention module that derives attention maps to refine the
features in the input feature map. Experimental results
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showed a consistent improvement of classification perfor-
mance. In 2021, Gan et al. [23] proposed a global attention
mechanism (GAM) for brain tumor segmentation, and exper-
imental results showed that the segmentation accuracy of the
model based on GAM was considerably improved. In recent
years, AM has made significant breakthroughs in areas such
as target detection and image classification, and it has been
proven to be beneficial in improving model performance in
many applications. Therefore, in order to improve the feature
extraction capability of the model, the AM was also intro-
duced into the residual network model.

The attention mechanism introduced in this paper is mainly
channel attention module, whose structure can be imple-
mented in a special way. The specific implementation is
shown in Fig.3. The attention block adopts the method of
feeding the composite values of statistical data (mean value,
maximum value, standard deviation and mean square error)
of each channel to ReLU. Finally the four feature data were
concatenated to the channel attention diagram with the size
of 1 x 1x1.

ill. THE PROPOSED METHOD

In this paper, a new Squeeze-and-Excitation Variant Resid-
ual Network (SE-VRNet) was proposed by integrating the
improved convolution module, SE and attention mechanism.
The SE-VRNet is shown in Fig. 3.

Inspired by the channel separation in ShuffleNetV2 [24],
we changed the convolution structure of residual block, so as
to overcome the defect of ResNet model caused by the reduc-
tion of feature number in the network during down-sampling.
We divided the original channel into two channels, and used
the combination of 1 x 1 convolution and average pooling
layers to replace the original 3 x 3 convolution, and finally
obtained the new VRNet. The improved convolution structure
in VRNet is shown in the convolution module of Fig. 3.
In the convolution structure, the pooling layer can compress
the output size and reduce the resolution of the feature map.
The 1 x 1 convolution in each channel can make a linear
combination of multiple feature maps, realize the informa-
tion integration of this channel, reduce the dimension of the
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FIGURE 3. The structure of SE-VRNet.

network, and add a nonlinear excitation through the activation
layer to improve the expression ability of the network. There-
fore, this approach can increase the number of channels in the
network and compensate for the information loss caused by
the low resolution of the feature map. We added the Batch
Normalization (BN) layer [25] and Rectified Linear Unit
(ReLU) layer after each 1 x 1 convolution layer in the VRNet.
Among them, BN layer can keep the data distribution within
a certain range to accelerate the convergence of the network.
The fusion of BN and ReLU can effectively increase the spar-
sity of the network, reduce the interdependence between the
parameters of the network model, improve the generalization
performance of the network, and suppress the occurrence of
over-fitting.

In order to solve the problem that it is difficult to accurately
extract crop leaf disease features, the SE module was added
into the VRNet to get the improved SE-VRNet.

The SE module can be embedded in neural network
models to form a new network structure. The SE mod-
ule is originally found in the SE-Net structure proposed
by Momenta team [26]. This module focuses on the rela-
tionship between the feature channels and introduces AM
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on the feature channels. Therefore, SE-Net can indepen-
dently obtain the importance degree of each feature chan-
nel and further improve the feature expression based on the
obtained importance degree, while suppressing the unim-
portant features. The key point is that the network model
learns the feature weight values according to the loss func-
tion, which leads to better feature extraction ability and
obtain better training results. In summary, SE-Net does all
the work via the SE module. The SE module is shown
in Fig. 3.

In the SE module, F, refers to the convolution operation of
input X. Through the convolution layer, a three-dimensional
HxWx C matrix U was obtained. Fy, and Fex refer to squeeze
and excitation operations, respectively. F.4ze is the weighting
operation of the original features of each channel.

The SE module realizes the feature extraction function
through the following three operations.

1) The module compresses features along the dimension
of space by extruding, so that all two-dimensional
feature channels become a real number. That is, the
HxWxC input is converted into a simple 1 x 1xC
output, which is calculated using the formula shown in
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TABLE 1. Types and quantities of samples in oridata (original plantVillage dataset).

Types of sample Quantity Types of sample Quantity Types of sample Quantity
Healthy apple leaf 1645 Scab of apple 630 Rust of apple 275
Healthy blueberry leaf 1502 Black rot of apple 621 Powdery mildew of cherry 1052
Healthy cherry leaf 854 Gray spot of corn 513 Rust of corn 1192
Healthy maize leaf 1162 Leaf blight of corn 985 Black rot of grape 1180
Healthy soybean leaf 5090 Blackpox disease of grape 1383 Leaf blight of grape 1076
Healthy grape leaf 423 Spot disease of peach 2297 Yellow dragon disease of orange 5507
Healthy peach leaf 360 Spot disease of pepper 997 Late blight of potato 1000
Healthy pepper leaf 147 Early blight of potato 1000 Powdery mildew of pumpkin 1835
Healthy potato leaf 152 Tipburn of strawberry 1109 Spot disease of tomato 2127
Healthy strawberry leaf 456 Early blight of tomato 1000 Late blight of tomato 1909
Healthy tomato leaf 1591 Leaf mildew of tomato 952 Spot blight of tomato 1771
Healthy raspberry leaf 371 Leaf acariasis of tomato 1676 Ring spot of tomato 1404

Mosaic of tomato 373 Yellow smut of tomato 5357

Equation 1.

1 W H
2= Fog () = 7 >0 > uelin) (1)

i=1 j=I

2) As shown in Equation 2, after excitation operation, W
is used to generate weight values for each feature chan-
nel, where W is used to learn the correlation between
feature channels.

§ =Fex(z, W) = 0(g(z, W) = 0 (W28 (W12)) (2)

where z is the result from squeeze in the previous
step, (z, W) represents a fully connected layer. § and
o represent ReLU and sigmoid activation operations,
respectively.

3) The last operation is the reweight calibration. The
weight value of the output represents the importance
of each feature channel. The value is weighted to the
previous feature through the multiplicative channel to
complete the re-calibration of the original feature in the
dimension of the feature channel. The process is shown
in Equation 3.

g = Ficole (Uc, S¢) = S¢ X U 3)

where u. represents the cth channel feature map in U. s, is
the feature weight of the cth channel.

Combining the advantages of the above two modules and
attention mechanism, a comprehensive block diagram of leaf
disease recognition model SE-VRNet was proposed in this
paper, as shown in Fig. 3. The early characteristics of leaf
diseases in many kinds of crops are not obvious, the lesion
area is small and the location is scattered. The learning ability
of traditional machine learning models cannot accurately
extract the characteristics of these leaf diseases.

With the improved convolution module, SE and attention
mechanism, the proposed SE-VRNet can not only focus on
the relationship between multiple channels of the image, but
also obtain the importance of each channel feature. Therefore,
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it can resolve the difficulty of extracting the early characteris-
tics of leaf disease. In this paper, a large dataset will be used to
train the model, and then real field data will be used to verify
its accuracy. Finally, the model will be optimized to have the
best performance.

This paper mainly studied the classification of various leaf
diseases, so softmax activation function and cross entropy
loss function were used. Cross entropy describes the dif-
ference between two probability distributions. However, the
output of the model network in this paper was a vector, not a
probability distribution, so this paper used softmax activation
function to normalize the vector into a probability distribu-
tion, and then used cross entropy loss function to calculate the
loss. In addition, the mean square error loss function was also
used in the study. This loss function is simple and effective,
which is suitable for mobile terminal devices.

IV. DATASET AND PREPROCESSING

The experimental data used in this study are respectively
the original dataset OriData, the augmented dataset New-
Data from PlantVillage, and the self-built leaf disease dataset
SelfData. The image acquisition methods of OriData and
SelfData are various, and some images are deformed, out of
focus, motion blurred, distorted and non-standard due to the
influence of different factors.

To mitigate the negative impact of the lack of standardiza-
tion of the dataset on the recognition model, the statistical
analysis and corresponding pre-processing of the images in
the dataset is performed before the model training.

The data preprocessing includes image enhancement,
image denoising and normalization to enable better general-
ization performance of the model.

A. PLANTVILLAGE DATASET
Crop leaf disease images in PlantVillage dataset includes
38 disease types of 14 crop categories, with a total of 54,305

leaf images. The types and quantities of the dataset are shown
in Table 1.
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Gray spot of corn Healthy grape leaf

Healthy pepper leaf Mosaic of tomato

Yellow dragon diease of
orange

Spot disease of peach

FIGURE 4. The partial leaf types in the OriData.

We find from Table 1 that the following problems mainly

exist in the original PlantVillage dataset.

1) The distribution of disease categories in the dataset is
particularly uneven. Tomato has the largest number of
images, containing 15,569 images for 9 diseases, while
potato healthy leaf and apple rust have the smallest
number of images in the dataset, with only 152 and
275 images, respectively. In this case, the accuracy of
the trained model tends to be somewhat biased, with
higher accuracy for certain disease types with more
image data.

2) The images dataset is of low quality and the image’s
background is not uniform. The shooting method, light-
ing conditions, and background are different for all
images, and the difference between the leaf disease
image and the background image is evident.

To address the issue of imbalanced data distribution in Ori-
Data, we first clean them, and then use data enhancement
method to obtain the augmented dataset NewData. After data
cleaning and enhancement, the NewData dataset has a total of
87,867 image samples, with an average of about 2,300 disease
images per category. Compared with OriData, NewData has
a higher balanced distribution of disease categories.

VOLUME 11, 2023

Powdery mildew of pumpkin Healthy blueberry leaf

TABLE 2. Types and quantities of samples in SelfData dataset.

Types of sample Quantity  Types of sample  Quantity
Gray spotofcorn 5193 Rice blast 5089
disease

Healthy corn leaf 5161 Spot disease of 5340
apple

Leaf blight of corn 5206 Brown spot of 5653
apple

Rust of corn 5077 Gray spot of 4809
apple

Brown spot of rice 5053 Mosaic of apple 4874

Healthy rice leaf 5124 Rust of apple 5692

Dicladispaarmigera 5131

The images of partial leaf diseases are shown in Fig. 4.

B. SELFDATA DATASET

To enrich the diversity of the data and verify the appli-
cability of the model in real-world scenarios, the SelfData
dataset was constructed in this study according to the rele-
vant data standards. This dataset is a combination of open
datasets for apple, maize and rice, and contains images of
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FIGURE 5. The change diagram of Loss curve.
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13 diseases in three crop groups. The apple dataset was pro-
duced by Northwest A&F University and collected at Baishui
apple orchard, Luochuan apple orchard and Qingcheng apple
orchard of Northwest A&F University. The datasets of corn
and rice were taken from the corn data in PlantVillage and the
Kaggle data platform, respectively. Due to the small number
of corn and rice samples in the original dataset, this study
carried out data amplification for the original images of rice
and maize by means of data enhancement. The total sample
size of the SelfData dataset reaches 67,642, and the average
number of images for each category is about 5,000. The
information of the SelfData dataset is summarized in Table 2.

The Table 2 shows that the distribution of disease cate-
gories in SelfData is relatively balanced. The total number
of apple image samples was the largest, accounting for 26,
368 of 5 diseases, while corn and rice images both contain
4 diseases, with 20,637 and 20,397 samples, respectively.

V. RESULTS AND DISCUSSION

A. DEVELOPMENT ENVIRONMENT AND EXPERIMENTAL
SETTINGS

The proposed SE-VRNet was implemented under Windows
10 with an 17-8700 CPU, 32 GB of RAM, and two GeForce
RTX 2080Ti GPUs. Pytorch 1.3.0 was chosen as the deep
learning library.

The image input size was normalized to 256 x 256 and the
batch size(BatchSize) was 128. The optimizer uses a phased
learning descent method with an initial learning rate set to
0.025 and a weight decay set to 0.1. The learning rate decay
strategy adopted the fixed decay strategy, which is one tenth
of the previous stage after every 15 training epochs. The total
number of training epochs was 60.

The datasets used in the work were the original
PlantVillage (OriData), NewData and SelfData. PlantVillage
is an open dataset commonly employed in the area of crop
pest and disease identification. NewData was established by
cleaning and expanding the PlantVillage database by the
Author. SelfData contains leaf images taken from three apple
orchards in order to improve the applicability of the model in
the real-world scenarios.
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FIGURE 6. The change diagram of Top-1 accuracy curve.

B. THE INFLUENCE OF BATCH SIZE ON MODEL TRAINING
During the training of DL models, the batch size was an
essential parameter that affects model optimization and train-
ing speed, which referred to the number of samples read
each time during network training [27]. Therefore, in order
to explore the impact of BatchSize on model training, this
study first built a ResNetl8 model based on the residual
structure, and then set the batch size to 32, 64, 128, and
256, respectively. The loss and Top-1 accuracy curves as they
changing during training are shown in Fig. 5 and Fig. 6,
respectively.

They show that in the training process, the increase of
the BatchSize can effectively improve the training speed
and accelerate the convergence of the network, but this will
also consume additional computing resources, and when the
network training reaches a certain level, the overall perfor-
mance of the network tends to be stable. Therefore, Batch-
Size is set to 128 in a compromise that not only efficiently
saves the computational cost, but also speeds up model
training.

C. CROSS VALIDATION

In this study, permutation tests were conducted for each group
test dataset, and then the accuracy of all leaf diseases was
computed by using cross validation (CV). Result of permu-
tation tests showed that the order of test dataset almost did
not affect the accuracy of the detection. According to the
results of previous studies and the amount of dataset, this
study selected a 10 fold CV.

In the 10 fold CV, firstly, the datasets (such as Ori-
Data, NewData and SelfData) are randomly partitioned into
10 groups. Of the 10 groups, 9 groups are chosen as the
training set, and the remaining one is used as the test data. The
validation is repeated 10 times such that each group is used
exactly once as test data. The final estimation is produced by
averaging the 10 results during the validation. The classifier
predicted the label of the subjects that were left out, and the
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TABLE 3. Comparative results of different training methods on different datasets.

Method Dataset Model P R F, Top-1 Top-3  Model size
& OriData ResNetl8  97.20% 97.19% 97.18% 97.19% 99.67%  64.2 MB
g. o ResNet34 97.23% 97.21% 97.20% 97.21% 99.73%  122.0 MB
a%' E NewData ResNetl8  98.52% 98.50% 98.49% 98.50% 99.88%  64.2 MB
ResNet34 98.48% 98.46% 98.46% 98.46% 99.90%  122.0 MB
(-? OriData ResNetl8  98.02% 98.00% 98.00% 98.00% 99.85%  64.2 MB
& ResNet34  98.03% 98.02% 98.02% 98.02% 99.87%  122.0 MB
S NewData ResNetl8 98.84% 98.82% 98.82% 98.82% 99.95%  64.2 MB
o ResNet34 98.50% 98.49% 98.49% 98.51% 99.93%  122.0 MB
TABLE 4. Comparison of classification results for different models.
NewData SelfData
Models Model size Execution time Running memory
Top-1 Top-3 Top-1 Top-3
GoogLeNet 91.19% 91.83% 84.26% 94.49% 050.3 MB 73.54 ms 603 MB
AlexNet 95.64% 99.66% 89.74% 99.44% 333.7 MB 350.21 ms 2880 MB
VGG16 98.74% 99.92% 95.61% 99.82% 790.5 MB 700.78 ms 6000 MB
Xception39 92.12% 93.10% 90.26% 96.23% 039.0MB 49.62 ms 480 MB
Xception145 98.68% 99.56% 94.32% 99.50% 145.0MB 185.12 ms 1740 MB
ResNetl8 98.02% 99.87% 94.17% 99.65% 064.2 MB 78.34 ms 769 MB
VRNet18 99.10% 99.95% 95.07% 99.87% 064.6 MB 82.11 ms 780 MB
SE-VRNetl8 99.38% 99.98% 95.20% 99.88% 065.0 MB 86.89 ms 798 MB
ResNet34 98.17% 99.93% 93.21% 99.45% 122.0 MB 126.17 ms 1464 MB
VRNet34 99.49% 99.97% 94.29% 99.66% 125.3 MB 129.25 ms 1512 MB
SE-VRNet34 997305  99.98%  9571%  99.89% 119.8 MB 113.38 ms 1016 MB

accuracy of detection was assessed. Finally, total accuracy
was computed for each leaf disease category.

D. COMPARATIVE RESULTS

In this study, the ResNetl8 and ResNet34 models were
used to perform comparative experiments on OriData and
NewData. The performance of ResNetl8 and ResNet34
for different datasets were evaluated by Precision (P),
Recall (R, Sensitivity), F; and accuracy. They are defined
as:

P
P=—"— @)
TP + FP
TP
R=—— 5)
TP + FN
_ 2PR ©)
'"TPIR
TP + TN
Accuracy = + @)

TP+ FN + FP+ TN

where TP (True positive) is the number of successfully
detected diseased leaf, TN (True negative) is the number of
successfully detected healthy leaf, FP (False positive) is the
number of healthy leaf that were mis-detected as diseased
leaf, and FN (False negative) is the number of diseased leaf
that were mis-detected as healthy leaf. Top-1 accuracy is the
accuracy of the top predicted category consistent with the
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actual category, and Top-3 accuracy is the accuracy of the top
three predicted categories that contain the actual category. P
is the ratio of true positives over all predicted positives and
R is the ratio of true positives over all positives. Ftakes both
P and R into account and is usually a better measure to use
when one of P and R is high and the other is low, as it balances
both parameters.

To verify the performance of the transfer learning [28]
from pre-trained model, extensive tests were conducted using
OriData and NewData, and the comparative results were
presented in Table 3.

The pre-training in Table 3 was the transfer learning of the
pre-trained model on ImageNet using ResNet.

By analyzing the results in Table 3, it can be seen that the
model accuracy was improved to a certain extent by using the
pre-training for network migration learning. The performance
of the model was further effectively improved by using the
augmented dataset NewData and adopting a more balanced
sample distribution.

Therefore, in the subsequent comparative study for dif-
ferent network algorithms, this paper directly used the
augmented dataset NewData and applied the pre-training
method to train the proposed network. We proposed
the modified model VRNet and SE-VRNet on the base
of ResNet.
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Model performance comparison diagram
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FIGURE 8. The scatter plot of model performance.

To validate their performance and lightweight class [29],
we compared them with AlexNet, VGG, Xception and
GoogLeNet models.

Table 4 shows their comparisons of different models on the
NewData and SelfData. The results such as execution time
and running memory are obtained on the basis that the image
input size of leaf disease after normalization processing is
256 x 256 and the experimental hardware. The above results
will vary with different input size and hardware platform.

The model performance comparison diagram of size, exe-
cution time and running memory is shown in Fig. 7. In order
to show the comparison between the models’ sizes and model
accuracy more vividly, we use the scatter diagram for visual-
ization, as shown in Fig. 8

As can be seen from Table 4, the GoogLeNet model has the
worst performance, followed by AlexNet. The performance
of VGG16 on the NewData is better than that of ResNet, and
the performance of VGG16 on the SelfData is the best, but
its size is 790.5 MB, and its running memory is the largest.
The good news is that the SE-VRNet34 has the best overall
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performance. Compared to ResNet34, SE-VRNet34 shows
significant improvement on both crop disease datasets. The
best accuracy of the NewData was 99.98% and the Top-1
accuracy of the SelfData increased by 2.5 percentage points.
Meanwhile, the size of the SE-VRNet34 model is 119.8MB.
Compared to other models, such as VGG16 and Xception145,
SE-VRNet34 is lightweight and can be easily transplanted
to mobile terminals. There are a few promising lightweight
design methods [30], [31] that have been proposed. Some
improvement works of such methods are left for our future
research.

For the tests of NewData and SelfData, the accuracy of
SE-VRNet proposed in this manuscript is superior to the
ResNet model in Top-1 accuracy and Top-3 accuracy, and the
advantage of SE-VRNet model is outstanding.

VIi. CONCLUSION
Compared with articles [32], [33], [34], our experiments

demonstrated the effectiveness and versatility of the crop leaf
disease recognition model SE-VRNet. This model proposed
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in the paper improves the recognition accuracy on crop leaf
disease with the NewData and SelfData datasets. Due to the
addition of a large number of orchard infield leaf images to
the training data, the model also improves the accuracy of
infield leaf disease detection. In addition, the model size is
only 119.8MB, so it is lightweight and is more suitable for
mobile terminals and convenient for crop leaf disease detec-
tion. The method proposed in this paper not only improves
the recognition accuracy, but also realizes the lightweight of
the model. Therefore, compared with the traditional model,
this model has the significance of popularization.
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