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ABSTRACT As resource-constrained Internet-of-Things (IoT) devices become popular targets of various
malicious attacks, frequent updates to keep their software up to date are essential to their security. However,
state-of-the-art software delivery and payment systems incorporate multiple services in a client-server
structure requiring multiple transits of information between client and server, while also creating a wide
attack surface. We propose a blockchain-based end-to-end secure software update delivery framework for
Internet of Things (IoT) devices, which aims to ensure confidentiality, integrity, availability, efficiency, and
audit-ability for verified software delivery, while offloading the cryptographic computation from resource-
constrained IoT devices to a decentralized blockchain system. In particular, we leverage Ciphertext-Policy
Attribute-Based Encryption (CP-ABE) and design a customized authorization policy to not only ensure
that software updates can only be decrypted and installed on authorized IoT devices but also significantly
reduce the computational overhead for key generation and key delivery on the manufacturer side. Further-
more, secure and atomic software delivery and payments between IoT devices and the manufacturer are
assured through smart contracts. The authenticity of the delivered software is guaranteed by offloading
the computation-based signature validation to smart contracts. Compliance audits are satisfied through
immutable records on the blockchain’s public ledger, and the smart contracts efficiently guarantee the
delivery of software updates in exchange for payment. Security analysis and experiments are performed
to compare the proposed framework with state-of-the-art studies and validate its effectiveness.

INDEX TERMS Blockchain, Internet of Things, software update, secure software update, computer security,
CP-ABE, smart contract.

I. INTRODUCTION
Internet of Things (IoT) devices are devices with sensors and
processors that communicate over the Internet to perform spe-
cific tasks [1], [2]. Common examples of IoT devices include
wearable medical devices that monitor a patient, smart home
devices that control home systems, sensors in farming that
report temperature and weather conditions, and many more.
Due to broad consumer acceptance, in 2020, 749 billion USD
was spent worldwide on IoT devices. Spending will surge
to over 1,100 billion USD in 2023 [3], [4], [5]. There were
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22 billion connected IoT devices in 2018. The number of IoT
devices will double to over 50 billion by 2030 [5], [6].

However, due to their prevalent adoptions, while lack-
ing sufficient computing resources for sophisticated secu-
rity mechanisms, IoT devices can be easily compromised.
One of the most well-known attacks is the Mirai botnet
attack of 2016 which brought down large portions of the
Internet through a DDoS attack waged by IoT devices
[7], [8], [9], [10].

One essential protection approach to preventing such
attacks is to patch the software of IoT devices frequently to
ensure they are up to date. However, malicious attackers can
also launch attacks against the software update process itself
by, for example, providing manipulated software updates,
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or retrieving software updates without payment. An example
is an attack in 2016 that targeted the electric power grid
in Ukraine disabling power for 30 substations. The out-
age impacted approximately 230,000 residents by updating
firmware on IoT devices that controlled power systems with
malicious software [11], [12]. There have also been soft-
ware repository state attacks against package managers [13]
that provide software libraries and components. Therefore,
ensuring the confidentiality, integrity, and availability of the
software update process is critical.

To ensure confidentiality and integrity, current
cryptography-based solutions require that the manufacturer
can (1) encrypt their software updates and (2) efficiently
generate numerous decryption keys for all of the authorized
IoT devices to retrieve the software update files, which results
in heavy overhead on the manufacturer side. In addition, the
current industry standard for software delivery is achieved
through client-server-based architectures that by design cre-
ate a single point of failure [14]. On the other hand, IoT
devices need to perform authentication to ensure that the
received software is from the real manufacturer. The authen-
tication process is often computationally heavy and therefore
not suitable to be implemented on resource-constrained IoT
devices [14]. Furthermore, existing research assumes the
manufacturer is honest by default and thus does not provide
a guarantee of a valid software delivery transaction. In other
words, the payment can occur without software delivery or
vice-versa. Last but not least, in compliance-driven industries
such as health care, government, energy, and automotive,
having proof of software update and installation for auditors
is critical to the manufacturer keeping its business license by
maintaining compliance with regulations. However, current
software update records are kept in mutable databases that
can be manipulated intentionally during an attack or uninten-
tionally during normal business operations [15], [16].

The rest of this paper is organized as follows. We outline
the contributions in Section II, discuss the related work in
Section III, present the threat model and design goals in Sec-
tion IV and V, respectively. We further present the proposed
solution in Section VI, followed by evaluations in Section
VII, security analysis in Section VIII, and conclusions in
Section IX.

II. CONTRIBUTIONS OF THIS ARTICLE
A. RESEARCH PROBLEM
IoT devices need to receive current software updates to main-
tain confidentiality, integrity, and availability. Current tech-
nologies rely on a client-server-based software distribution
with mutable database records that can be changed. Main-
taining confidentiality and security for software distribution
systems is critical to system adoption.

Some recent research has proposed using blockchain
for software distribution but left several challenges unre-
solved such as efficient key generation, realistic threat con-
ditions, and guaranteed schemes for payment. In addition,

some research uses on-chain solution which is not practi-
cal for large software updates since blockchain data stor-
age is limited by the block size. The proposed framework
addresses these research problems and makes the following
contributions.

B. NOVEL CONTRIBUTIONS
To address these challenges, in this work, we propose a
novel blockchain-based distributed software update frame-
work with the following major contributions:

• We propose a distributed blockchain-based framework
to facilitate resource-constrained IoT devices to out-
source heavy computation-based authentications while
providing high availability and immutable records for
software updates.

• We adopt Ciphertext-Policy Attribute-Based Encryption
(CP-ABE) and design a customized authorization policy
to provide efficient and scalable key generation for large
numbers of authorized IoT devices.

• We design a cost-efficient smart contract that can guar-
antee atomic payment in exchange for the delivery of
software updates.

C. ADVANTAGES OVER EXISTING TECHNOLOGIES
Compared to existing client-server-based software update
delivery frameworks, the proposed framework provides three
distinct advantages.

1) DECENTRALIZED FRAMEWORK
Current centralized client-server architecture for software
update delivery is often vulnerable to single point failures.
Through blockchain, the proposed framework creates a dis-
tributed framework that provides resilience and high avail-
ability. In addition, compared to a regular database that can
be altered, blockchain records are immutable, producing a
record that can be audited, and not changed.

2) EFFICIENT KEY GENERATION
With existing technologies, the manufacturer needs to gener-
ate encryption keys and perform encryption per device and
per software update to maintain confidentiality. In addition,
the manufacturer needs to communicate with each device
separately for notifications. Through CP-ABE the proposed
framework significantly reduces the overhead of key genera-
tion and communications from O(n) to O(1).

3) PAYMENT WITHOUT THIRD-PARTY INVOLVEMENT
Current technologies use ‘‘webhooks’’ which are secondary
reverse channel communications to servers sent from third
parties that verify and report that payment has occurred.
The introduction of a third party requires additional trust
assumptions. Through smart contract, the proposed frame-
work ensures atomicity of the payment and delivery without
introducing a trusted third party.
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III. RELATED WORK
Recently, blockchain-related techniques have been proposed
for IoT software updates. Many of these studies focus
on some specific aspects of the software update process.
For example, some studies focus on leveraging blockchain
as a public ledger to ensure non-repudiation. In Huy’s
research [15], blockchain is adopted as a public ledger to
synchronize configurations across IoT devices. Samaniego
& Deters [16], [17] propose the use of blockchain to move
software-defined IoT virtualized resources from the device
to the fog. Some other works focus on the integrity of IoT
software updates. In [18], the authors propose Meta-key,
which ensures the integrity of software through blockchain-
based key exchange and management. Huh et al propose a
blockchain system to manage keys for IoT device configura-
tion [15]. Dorri, et al work focuses on smart-home IoT device
utilizing a trust based architecture focusing on trust to reduce
block validation time [19]. Placho et al’s research illustrates
the importance of managing software updates for a large
number of IoT devices since software updates far outnum-
ber software development version in the automotive indus-
try [20]. He et al. proposed to use a blockchain to validate the
integrity of firmware updates for IoT devices [21]. In addi-
tion, many studies focus on incentivizing the participation of
blockchain nodes. Leiba et al. propose an incentive-driven
blockchain framework for software distribution [22]. Arbari
and Shajari [23] propose to leverage a Nash equilibrium
micropayment mechanism to motivate nodes to participate
in the blockchain platform for IoT software updates. Fukuda
and Omote’s framework mainly focuses on incentives and
access control to reduce the computation complexity of IoT
devices [24]. Although these studies advanced the adoption
of blockchain techniques in the IoT software update scenario
from diverse aspects, they do not provide a holistic view of the
entire software update process and thus do not handle some
critical security issues, such as authenticity, secure delivery,
ensured payment, etc.

There is an existing body of research that explores the
idea of applying blockchain for the distribution of soft-
ware [25]. One category of such studies proposes to store
the software update on-chain, which may not be practical
due to the limited block space on blockchains. For example,
Boudguiga et al. [26] propose innocuous nodes to facilitate
software update verification. Lee & Lee provide an on-chain
solution for updating firmware on IoT devices [27]. Zhao
et al. preserves privacy for participants and provides software
updates for IoT devices with proof of delivery [28]. Similarly,
Yohan&Lo [29], [30] propose an on-chain blockchain frame-
work for firmware updates on IoT devices. Baza et al.’s frame-
work rely on autonomous vehicles to deliver the software
updates and adopts a trust-based system for authentication
and integrity of the firmware under a weak assumption of
vehicle proximity, storage, and bandwidth to deliver software
updates [31]. On-chain software updates using blockchain are

further analyzed in a proposal to move IETF SUIT (Software
Updates for Internet of Things) [32].

Therefore, some other studies propose off-chain solu-
tions by taking advantage of other storage mechanisms.
Yohan et al. [33] present an off-chain solution to distribute
software updates and has node operations off-loaded to IoT
fog gateways. But it lacks authenticity verification and there-
fore cannot handle malicious attacks injecting false software
updates. Pillai et al. [34] design an off-chain blockchain soft-
ware update solution using Ethereum [35] and InterPlanetary
File System (IPFS) [36] for digital goods. This solution, how-
ever, requires the creation and deployment of a smart contract
for each update, which can lead to significant overhead and
thus does not scale for a large number of IoT devices.

More importantly, most existing studies, regardless of on-
chain or off-chain solutions, control the authorized access
to the software/firmware updates while ignoring the over-
head. As a result, for every IoT device, a new key must be
generated and managed by the manufacturer, leading to a
linearly increasing overhead when the number of IoT devices
is growing, which significantly limits the scalability of the
system.

In summary, while the related research covers differ-
ent aspects of the software update process, there is a lack
of a holistic framework that jointly considers confidential-
ity, integrity, availability, authenticity, the atomic exchange
of payment for the value of digital assets, and the non-
repudiation of auditing records. In addition, due to the adop-
tion of CP-ABE and the design of a customized authorization
policy, the proposed framework in this work solves the scal-
ability issue when a massive amount of IoT devices require
software updates.

IV. THREAT MODEL
The proposed framework can defend against a wide variety
of malicious attacks. In this section, we discuss our base
assumptions, the roles of adversaries, the attack vectors, and
describe potential attacks against the proposed framework.

A. ASSUMPTIONS
In this study, we make the following assumptions for the IoT
software update scenario.

First, we assume that an IoT owner possesses one or mul-
tiple IoT devices and can connect to them through a private
and secure network.

Next, the inherent properties of the blockchain are assumed
to exist, such as non-repudiation and non-malicious majority
of blockchain nodes [37].

Third, softlifting is the piracy process whereby a legitimate
single license is purchased and then installed on multiple
devices. We assume that the manufacturer requires that only
authorized IoT devices can install software updates, which
aligns with their licensing agreements to prevent softlifting.

Lastly, data stored in the IPFS cloud storage system is
assumed to be secure from attackers.
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B. THREAT TYPES
In this work, we mainly consider possible attacks launched
by three different parties: (1) a general malicious attacker,
(2) a malicious IoT owner, who possesses one or multiple
IoT devices, or (3) a malicious manufacturer. In particular,
the major types of attacks considered in this study are sum-
marized below.

First, attacks from a general malicious attacker (MA):
• Software update notification attack: In this attack,
a malicious attacker aims to interrupt the software noti-
fication sent by the manufacturer to IoT owners, causing
delays/failures of software updates.

• Confidentiality attack: In this attack, a malicious
attacker attempts to retrieve the contents of a software
update during its delivery process with the aim of receiv-
ing a software update it should not have while also
avoiding payment.

• Invalid update attack: In this attack, a malicious attacker
attempts to send an invalid/damaged software update to
IoT devices aiming to damage the functionality of the
IoT device.

• Roll-back attack: In this attack, a malicious attacker
aims to send a valid old software with a known pre-
existing vulnerability that the attacker can exploit to
damage the functionality of the IoT device [38].

Second, attacks from a malicious manufacturer (MM):
• Non-delivery attack: A dishonest manufacturer receives
payment while not delivering the required software
updates aiming to receive payment without providing a
service.

• False update-record attack: A dishonest manufacturer
aims to manipulate the record of his/her software update
delivery services to avoid taxes, legal responsibili-
ties, etc.

Third, attacks from a malicious owner (MO):
• Payment-free attack: In this attack, a malicious owner
of IoT devices attempts to receive a software update
without payment.

V. DESIGN GOALS
The design goals of the framework are to prevent attacks in
the threat model to reduce the attack surface for software
updates through a secure distributed blockchain system that
provides:
• Confidentiality, integrity, and authenticity of software
updates for authorized IoT devices

• Efficient and scalable key-generation
• High availability
• Guaranteed payment and delivery of software updates
• Immutable software update records for auditing

A. CONFIDENTIALITY, INTEGRITY, AND AUTHENTICITY OF
SOFTWARE UPDATES FOR AUTHORIZED DEVICES
This design goal aims to provide end-to-end security for
the software update process. This is motivated by the

aforementioned software update attacks. In particular, we aim
to keep the software update confidential and only available
for authorized devices by encrypting the software update via
attribute-based encryption algorithms (i.e. more details in
Section IV-B). The integrity of the software update is main-
tained by verification using a SHA-3 cryptographic hash,
which ensures that any changes to the software update will
be detected [39]. We choose SHA-3 because it is a highly
configurable hash algorithm that is resistant to numerous
attacks [40]. The framework is designed to provide authen-
ticity by leveraging smart contracts and Elliptic Curve Digital
Signature Algorithm (ECDSA) to validate the manufacturer’s
identity [41]. ECDSA provides a space-saving small key size
for signatures that is suitable for IoT devices.

It is standard practice for software updates to be encrypted
before delivery to maintain confidentiality. This process is
commonly called encryption-at-rest. The encryption process
requires a key to be generated per software update per IoT
device. This key generation, however, can create a large
burden for themanufacturing side, especially when thousands
of IoT devices need to be updated frequently. Therefore,
it motivates the next design goal.

B. EFFICIENT AND SCALABLE KEY GENERATION
To enable numerous authorized IoT devices to decrypt soft-
ware updates, the manufacturer has to generate a large
number of keys, which will take significant computational
resources over time. In addition, the key management and
delivery scheme, an essential part of secure software delivery
systems, will be very complex for a large amount of IoT
devices with diverse properties. Therefore, an efficient and
scalable key generation process is critical.

To enable efficient access to a software update from only
authorized IoT devices, we propose to adopt attribute-based
encryption algorithms in which the decryption of a ciphertext
requires the set of attributes of the user key to match the
attributes of the ciphertext. One core component is the access
tree (i.e., authorization policy), which defines what types of
attributes are required for decryption.

In particular, Key-Policy Attribute-Based Encryption
(KP-ABE) and Ciphertext-Policy Attribute-Based Encryp-
tion (CP-ABE) are the two main attribute-based encryption
algorithms. In both cryptosystems, an authorization policy
is a set of rules created by the sender that must be satisfied
by the receiver’s attributes. The major difference is how they
generate the ciphertext and decryption keys (users’ secret
keys). In CP-ABE, the ciphertext is generated based on the
access tree, while the decryption key is generated based on the
attributes. KP-ABE [42] performs oppositely by generating
ciphertext over the attributes and decryption key based on the
access tree.

In the IoT software update scenario, the physical attributes
of IoT devices are not changing, while the access tree will
change for each new software licensing policy change from
the manufacturer. Therefore, the proposed framework adopts
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CP-ABE, as the decryption keys generated based on device
attributes do not need to change frequently. This property can
significantly reduce not only the key generation and delivery
overhead from the manufacturer side but also the key storage
space required on the resource-constrained IoT device side.

C. HIGH AVAILABILITY THROUGH A DISTRIBUTED
SOFTWARE UPDATE FRAMEWORK
The sheer amount of IoT devices requires a software update
platform to have high availability, which can be a challenging
issue for the current client-server model. To improve the
resiliency and availability of the software update process,
we propose a distributed platform, so that the encrypted
software update and the ciphertext of the corresponding key
can be delivered with high availability.

In the proposed framework, we propose to leverage
blockchain as the basis of the distributed software update
delivery platform. Furthermore, due to the high costs and lim-
ited storage to store large data on a blockchain, the proposed
design seeks to offload the encrypted software updates to the
IPFS, a peer-to-peer distributed file storage system, which
provides high availability and scalability [36].

D. GUARANTEED PAYMENT AND DELIVERY OF
SOFTWARE UPDATES
In addition to a manipulated software update, an attack can be
waged against payment. For example, a dishonest IoT owner
may try to retrieve the software updates without payment (i.e.,
a payment-free attack). Or on the other hand, a malicious
manufacturer may receive the payment while not delivering
the requested software update (i.e., a non-delivery attack).
In the current client-server-based structure, information is
often processed by RESTful communication, which cannot
guarantee the automaticity of transactions [43]. Therefore,
to guarantee both parties honestly execute the transaction,
we propose to execute a binding contract to ensure atomicity
of payment in exchange for delivery of the software update.

To achieve this goal, we leverage a smart contract, which
is a program that can be deployed on blockchains to ensure
that predefined protocols/actions can only be executed when
certain conditions are met. The adoption of a smart contract
can guarantee the atomicity of the transactions, meaning that
both the actions from the two parties (i.e., payment from the
IoT devices and the delivery of software updates from the
manufacturers) are successfully completed, or none of them
are completed.

Furthermore, the design of the smart contract can signifi-
cantly influence the cost of transactions. Therefore, we aim
to propose a cost-efficient design of a smart contract that can
achieve the goal of atomicity while minimizing transaction
costs without requiring a trusted intermediary.

E. IMMUTABLE SOFTWARE UPDATE RECORDS
FOR AUDITING
The design goal of auditing is motivated by two major needs.
(1) Current payment systems (PayPal, Stripe for example)

rely on ‘‘webhooks’’ to report auditing information back
to the manufacturer that is separate and distinct from the
transaction. The webhooks also typically work on a RESTful
framework and require transmission and periodic retransmis-
sions to ensure records are updated or received by the server
to settle payment balances. (2) The permanence of data for
auditing in compliance-driven industries is important for the
business to keep its licenses. Though true, software payment
systems that store data in databases can be manipulated and
changed by anyone with write permissions. In contrast, the
blockchain’s public ledger is immutable, providing an accu-
rate and permanent record for auditors.

VI. PROPOSED SCHEME
A. PRELIMINARY
The core technologies adopted in the proposed framework are
blockchain and CP-ABE. The working mechanisms of these
technologies are briefly summarized in this section.

FIGURE 1. Blockchain data structure.

1) BLOCKCHAIN
Established from BitCoin [44], blockchain-related technolo-
gies have attracted broad attention from the general public.
In this work, we propose to adopt a blockchain platform and
design a cost-efficient smart contract to offload the com-
prehensive cryptographic computations from the resource-
constrained IoT devices, ensure atomic payment in exchange
for delivery of software updates, and maintain an immutable
software update record for auditing [45], [46], [47].

In particular, each block contains a series of ordered
transactions, where each transaction represents certain inter-
actions among different parties. Both a manufacturer and
an IoT owner can obtain a unique ID and a pair of pub-
lic/private keys, and therefore, all their actions performed
on the blockchain (e.g., delivery of software, payment) will
be authenticated and reflected in transactions, which signifi-
cantly reduces the authentication overhead on the IoT device.
In addition, different blocks are linked together by including
the cryptographic hash value of the previous block in the next
block as seen in Fig. 1. In this way, no prior blocks can be
changed without altering all later blocks. This immutability
property enables the blockchain to serve as a public ledger
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FIGURE 2. CP-ABE authorization policy.

providing an auditable list of software updates. In addition,
the distributed nature of the blockchain provides availability
for software update encryption keys. The linked list structure
is common to many blockchains. Though true, Tangle pro-
vides a directed acyclic graph structure for its blockchain that
is compatible with the proposed framework [48].

2) CIPHERTEXT-POLICY ATTRIBUTE-BASED ENCRYPTION
Ciphertext-policy Attribute-based Encryption (CP-ABE) is a
cryptosystem that encrypts plaintext with a policy such that
the attributes that satisfy the policy are required to decrypt the
ciphertext [49]. CP-ABE ensures that devices with the correct
attributes are singularly able to decrypt and thus install the
software update.

In particular, authorization policy is determined by the
party generating the ciphertext. As shown in Fig. 2., CP-ABE
constructs the authorization policy as an access tree, which is
a binary tree of boolean functions defined as follows:

Li
(
tj, aj

)
∈

{
tj < aj, tj > aj, tj = aj

}
0 < i ≤ m,

aj ∈ Z, aj > 0,

0 < j ≤ n (1)

In equation (1), tj represents an attribute type, aj represents
the attribute value, and Li

(
tj, aj

)
is a boolean function com-

paring the value of tj with aj.
Next, we use an example to explain the authorization pol-

icy. For example, the authorization policy might be that the
receiver must be over 20 years old and be taller than 5 feet so
that he/she can decrypt the ciphertext.

authorization policy = (age > 20) ∧ (height > 5)

where ∧ represents the ‘‘and’’ boolean function.
This means any party that has attributes satisfying the

authorization policy can decrypt the message by using its own
secret key. Using equation (1), we have

L1 = L2 ∧ L3
f2 = L2 (age, 20) = age > 20

L3 (height, 5) = height > 5

where L2 and L3 are the ‘‘>’’ (i.e. greater-than boolean
operator).

In this study, wewill propose a customized CP-ABE access
policy to ensure that only authorized IoT devices can install
legitimate software updates.

B. SYSTEM OVERVIEW
In this section, we will provide an overview of the proposed
framework, and explain different roles and responsibilities as
shown in Fig. 3.

FIGURE 3. Overview of proposed architecture.

The first role is the manufacturer mi, who produces soft-
ware updates, posts notifications regarding the availability of
new updates, uploads the software update to the cloud data
storage [50], and delivers software update keys to IoT devices
through smart contracts.

An IoT owner manages a system or network that possesses
multiple pieces of IoT devices, for example, a university
campus or a smart home network. The owner ol manages
his/her IoT devices, decides if any device needs to install a
specific software update, and makes payment to the manu-
facturer regarding the software update services. The purpose
of introducing the IoT owner is to aggregate the interactions
between the manufacturer and a set of IoT devices to further
reduce the overhead.

The interactions between manufacturers and IoT own-
ers will be facilitated by a distributed blockchain network.
We model these interactions (e.g., notification, payment,
et cetera.) between the IoT owner and manufacturer as trans-
actions that are stored on the blockchain to maintain an
immutable and irrefutable record. For example, the notifi-
cations of software updates are sent to the blockchain by
the manufacturer. Once the IoT owner decides to make
a purchase, he/she can participate in the smart contract
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initiated by the manufacturer. The smart contracts are exe-
cuted by blockchain nodes, which includes verifying the
validity of the update, delivering the update keys to the IoT
devices, and enforcing the payments. In addition, the final
installation transaction provides an immutable record of soft-
ware installation. This is an especially important feature for
manufacturers in regulated industries, which are required to
meet industry compliance obligations. The blockchain public
ledger records all the transactions and guarantees they are
immutable. A copy of the records is stored by each blockchain
node pk in a decentralized way to ensure non-repudiation.
The IPFS Cloud storage is used to store the encrypted

software update file (i.e., bj) because blockchain storage is
limited by the block size and storing software updates on
blockchains can be very expensive. By adopting IPFS as the
off-chain storage, the proposed framework can significantly
reduce the overall cost.

C. MAJOR MODULES
As shown in Fig. 4, the proposed framework contains the fol-
lowing major modules: (A) Key generation, (B) notification
that a software update exists, (C) encryption and decryption
of the software, and (D) distribution and download of the
software update. In this section, we give a further analysis of
these components of the proposed framework. The notation
and terminology used to define each module are explained in
Table 1.

1) KEY GENERATION
To reduce the number of device-specific key generations
needed for current software update techniques, the proposed
framework uses CP-ABE. Instead of per-device key genera-
tions, only one key generation is needed for all devices with
attributes to satisfy the decryption CP-ABE policy.

The overhead related to using CP-ABE is very low com-
pared to the common technique of generating a unique key
for each IoT device. CP-ABE decryption runs in near-linear
time relative to the number of attributes as explained in
Bethencourt’s research [49]. Since in our framework, we only
runCP-ABE operations once for a group of g devices as deter-
mined by the manufacturer’s authorization policy, we reduce
the asymptotic time to generate keys from O(g) to O(1).
In addition to the reduction in cpu-time to generate keys,
we also reduce the space to store and manage keys from O(g)
to O(1).

In this work, we propose three key attribute types tj as
{model, serial number, and version}. In particular, the model
indicates the product type; and the serial number can be used
to uniquely identify each specific IoT device, so that only the
device with the specified serial number can perform decryp-
tion. The physical attributes of the IoT device are inherent to
the device’s hardware itself and are defined when the device
was manufactured. Last but not least, the version indicates
the version number of the software updates. The version
attribute provides fine-grained control so that only devices
with the correct attributes as described by the authorization

TABLE 1. Terminology and definitions.

policy can access the specific version of the software updates
for which they have paid. This provides a further guarantee
that a software update cannot be copied and used on another
device since the decryption occurs during the installation
process. The values of these attributes are determined by
the manufacturer by constructing the authorization policy for
each piece of software update as shown in Fig. 2.

In addition, the proposed attributes can be easily extended
to handle a group of IoT devices with similar attributes.
For example, a manufacturer could potentially specify two
models of a device with a specific range of serial numbers
and version range to update. Only these devices would be
able to decrypt the software update. Thereby, the private key
is only generated once for a large set of devices. This also
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has the advantage of applying to single-user license purchase
scenarios.

2) NOTIFICATION
The process starts with the manufacturer mi sending a notifi-
cation message to the blockchain. The notification message
contains version information and a description of the software
update [51]. As part of the description, in addition to version
numbers, we provide distinct categories of security, bug fixes,
features where each field contains a boolean variable for
existence and a short text description. This enables the man-
ufacturer to use a template for software update information
that clearly explains the purpose of the update for an owner’s
review and approval process.

The key that is needed to decrypt the software update is
encrypted with CP-ABE and signed using ECDSA by the
manufacturer. This key becomes part of the update message
that is stored on the blockchain by the manufacturer. Once
the update message with the key is received by the smart
contract, the identity of the manufacturer is verified via the
manufacturer’s signature, as shown in Fig. 4. Confidentiality
is maintained by preventing other parties from accessing
the decryption key by encrypting it through CP-ABE. The
integrity of the software update is maintained by the SHA-3
hash, which ensures that altering the software update will be
detected and prevented by the framework.

By notifying the blockchain, a permanent record of the
availability of the update is noted in the public ledger. This
prevents attacks targeting notifications and ensures even if
the device is temporarily unavailable, the notification will be
received once it is available.

In addition, the notification occurring through blockchain
provides a notification system that is both distributed and
resilient to software update notification attacks. Prevention
of notification abuse and notification attacks is an important
aspect of software delivery. Since the notification is encrypted
and delivered through a distributed, and resilient blockchain
framework, the proposed scheme is robust against software
update notification attacks that manipulate notification infor-
mation or carry malicious data.

D. KEY DISTRIBUTION, ENCRYPTION, AND
DECRYPTION PROCESS
The asymmetric and symmetric cryptosystems with key gen-
eration, encryption, and decryption functions are defined as
follows:

Asymmetric = {KeyGena (λ) ,Ea (χ, k) ,Da (c, k)

Symmetric = {KeyGens (λ) ,Es (χ, k) ,Ds (c, k)

where KeyGen,E,D represent the key generation, encryp-
tion, and decryption algorithms respectively. λ is the security
parameter, χ is the message (the software update bj or other
binary data), c is the encrypted message, and k is a key.
We define UID as a universal identifier for a unique

software version released by a manufacturer. UID =

{url∥version}, where url is a valid URL, such as

‘‘https://www.manufacturer.com/’’, and version follows the
unique version numbering scheme determined by the specific
manufacturer [52].

In particular, the key setup distribution, encryption, and
decryption steps are as follows:

1) KEY SETUP
The manufacturer mi runs KeyGena (λ) to generate a public
key PKmi and private key SKmi pair. The owner ol also gen-
erates a public key and private key pair. The key pair for mi
is

(
PKmi , SKmi

)
. The key pair for ol is

(
PKol , SKol

)
. The IoT

owner and manufacturer are now set up to communicate.

2) ENCRYPTION OF THE PAYLOAD BINARY
The manufacturermi runs CP-ABE Setupc (λ) to generate the
public parameters PKc and master key MKc, and then runs
CP-ABE encryption Ec

(
PKc, bj,A

)
, where A is the access

policy.
The access policy describes the terms, by which the file

can be decrypted. In the proposed scheme, the policy defines
a boolean formula containing the following attributes.
• serial number of the device
• model of the device
• version of software
For example, the access policy may target updating a spe-

cific range of serial numbers for a set of devices to update
a specific version of the software. In this way, only the
specific devices with the attributes that satisfy the boolean
formula-based authorization policy can decrypt that software
update.

3) UPLOADING SOFTWARE UPDATES TO THE CLOUD
The software updates Ec

(
PKc, bj,A

)
is uploaded to the IPFS

cloud C . Storing the software update on the blockchain in an
‘‘on-chain’’ solution can introduce avoidable inefficiencies
such as creating multiple blockchain transactions or making
a transaction more expensive in gas.

4) UPLOADING OF THE KEY TO BLOCKCHAIN
The manufacturer mi creates a SHA-3 based [39], [53] cryp-
tographic hash (i.e., hEbj ) for the encrypted binary update
file. A software update message um is defined as um =
{UID∥hEbj ∥ Ea

(
kbj ,PKol

)
}. The um is signed by using

ECDSA [41], which provides a secure and space-efficient
key size for delivery through the blockchain. The signed
um is notated as σ . Both the um and σ are uploaded to
the blockchain. The following data is then posted on the
blockchain.
• UID - Unique identifier of the update, which is used by
pk as an identifier to compare versions

• hEbj - Hash of the encrypted binary, which is stored on
the cloud

• Ea
(
kbj ,PKol

)
– the encrypted key which can be used by

ol to decrypt the binary
• σ – signature of the um for delivery to owner ol
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FIGURE 4. Framework process diagram.
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E. DISTRIBUTION AND DOWNLOAD OF THE UPDATE
In this section, we will discuss the distribution of the smart
contract, delivery of the software update, and its final instal-
lation on the target IoT devices as shown in Fig. 4.
The manufacturer creates a smart contract for its software

update services and deploys it on the blockchain. Due to its
openness, the smart contract can be verified by any node on
the blockchain to ensure its correctness. The owner ol who
purchases his/her IoT devices from the manufacturer can par-
ticipate in the smart contract to interact with themanufacturer.

1) SETUP OF A SOFTWARE UPDATE FOR DELIVERY
TO THE OWNER
The smart contract can receive the software update message
um, and the signed message σ submitted by the manufac-
turer, verify the signature, and retrieve the url that stores
the encrypted software update. Then, the IoT owner can
download the encrypted software updatesEs

(
bj, kbj

)
from the

cloud data storage C provided by the url.

2) DOWNLOADING THE UPDATE TO THE IOT DEVICE
Once downloaded the encrypted software update Es

(
bj, kbj

)
,

the owner ol computes the corresponding hash h1′, and verify
if it is identical with hEbj .

If verified, the IoT device decrypts the software update by
performing bj←Dc

(
PKc,Es

(
bj, kbj

)
, SKd

)
where SKd is a

secret key encrypted with the attributes, including the model,
serial number of the device, and version of the software.
The attributes are specific to the IoT device and installed in
the device’s hardware when it is manufactured and are thus
considered unforgeable.

3) INSTALLATION OF THE UPDATE
The device then installs the software and upon comple-
tion notifies the blockchain that the software has been
installed with a message Ea (i ∥ j ∥ k ∥ l ∥ um,PKi) ∥

Ea
(
i ∥ j ∥ k ∥ l ∥ um,PKol

)
specifying information about

who participated in the transaction. This message can be used
later by both the manufacturer and the owner for auditing
purposes.

F. DESIGN OF THE COST-EFFICIENT BUYER–SELLER
SMART CONTRACT
In this section, we discuss the proposed cost-efficient smart
contract, which aims to guarantee the delivery of software in
exchange for payment.

Typically, when creating a smart contract, the transac-
tions that take place are between two parties. In the pro-
posed buyer-seller smart contract, we design the capability
for groups of IoT owners to receive the software update
through the same smart contract. Although each IoT owner
still needs to have a transaction with the manufacturer such
that no party acts before a previous step has been com-
pleted, performing the transactions by group instead of indi-
vidually by owner or device reduces the overall transaction

cost to the manufacturer. As a result, the proposed solution
conserves gas and increases the performance of the smart
contract.

Specifically, while the assignment of IoT owners to the
group, where they will receive their data should be done
off the smart contract, the smart contract has a central array
used to cache the CP-ABE-encrypted keys for the software
update and the signature from the manufacturer. The owners
of the devices can see which element of the central array
holds their software information. Furthermore, there is a hash
of the transaction used by the manufacturer to put that data
on the smart contract. When a miss occurs in the cache, the
blockchain’s immutable ledger records all transactions and
provides the software update information. Once the owner
accesses the data and updates his/her devices, the device
sends proof of update to the blockchain as a final confirma-
tion for auditing purposes. By putting the CP-ABE encrypted
keys on the blockchain, the framework is designed to make
the common case fast. It is less performant to individually
encrypt keys for every device which is the traditional and cur-
rent practice. In addition, using the smart contract combined
with CP-ABE encryption allows for these transactions to be
confidential, available, and auditable.

Below we outline the high-level algorithms for the Buyer-
Seller smart contract. In the implementation, the Buyer-Seller
smart contract is organized into a class structure with two
primary algorithms of read and write as described below.

Algorithm 1 Buyer-Seller Write
1: G : di→ gj > initialization
2: procedureWrite(gj, ck , pl , fm)
3: A

(
gj

)
→ (ck , pl, fm)

Algorithm 2 Buyer-Seller Read
1: G : di→ gj > initialization
2: procedure Read(di, mn, e)
3: gj = G(di)
4: if gj∄A then
5: A(gj)← readKeys(mn)
6: if e = P(A(gj)) +F(A(g_j)
7: (pl, fm)↔ C(A(gj))
8: pay fm
9: collect pl

In Algorithm 1 and 2, G is the preassigned mapping of
groups to device identifiers. A is the array used to cache
CP-ABE keys by group, di is a device, gj is a group, ck
is a cpabe key, pl is a price, and fm a fee predetermined
by the manufacturer. We define C, P, and F as utility func-
tions that return a specific element of the tuple. Specifically,
C (ck , pl, fm) returns the first element ck .P (ck , pl, fm) returns
pl and F (ck , pl, fm) returns fm. Furthermore, readKeys()
reads all transactions which allows the manufacturer to
update the array A when a cache miss occurs.
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VII. PERFORMANCE EVALUATION
In this section, we describe the proposed scheme on the
Ethereum blockchain and evaluate gas usage caused by the
proposed scheme. Gas is Ethereum that is consumed and
paid by nodes to execute a smart contract and/or make any
transactions on the Ethereum blockchain. Gas is a metric
used to measure both CPU and memory usage for smart
contracts that run on the Ethereum Virtual Machine (EVM).
Thus, it is the primary means of evaluating the performance
of Ethereum blockchain systems. The proposed framework
leverages the Ethereum blockchain [35] for implementation
because it has smart contract functionality implemented in a
Turing-complete programming language (Solidity) [54].

The simulations ran under Windows 10 in Ubuntu-based
Docker containers designed to simulate IoT device config-
urations. For physical hardware tests, we ran on Raspberry
pi3 Model B Broadcom BCM2711, Quad-core Cortex-A72
2GB RAM, and Raspberry pi4 Raspberry Pi 3 (RPi3) Model
B Quad-Core 1.2 GHz 4 GB RAM Quad Core devices.

Since gas usage measures both CPU and memory space
usage on the Ethereum blockchain, we analyze the framework
in the context of the amount of gas used and its performance
and scalability [55].

A. SIMULATION PARAMETERS
The input parameters for the simulation results are as follows:

• 1 manufacturer
• 5 software products
• 6 hardware models of IoT devices
• 5,000 IoT devices

From the simulation, Fig 5, Fig 6, and Fig 7, the histograms
describe the overall usage of gas for the proposed smart
contract to analyze performance resulting in 45,271 smart
contract transactions. As seen in these figures, the framework
demonstrates both consistent and efficient gas usage due to
how the proposed smart contract is designed to group trans-
actions.

B. RESULT ANALYSIS
For the notifications that are posted on the blockchain, gas
is used to send the notification that a new update exists,
to send the update message, and to send the manufacturer’s
digital signature of the update message on the blockchain.
Notably, using Ethereum-based smart contracts, the contract
creation and data writing operations cost gas while reading
data from the blockchain does not. The simulations showed
stable notification gas usage under 50,000 wei, as shown in
Fig. 5. While 50,000 wei may seem like a lot, with 1 ether
being 1·1018 wei. At the time of writing this paper, the current
market value of 1 ether is $3027. Thus, the total cost for all
notification transactions for 5,000 devices for all products and
all models is much less than one cent ( $1.5×10−10), thereby
making the proposed framework practical for manufacturers
with millions of IoT devices.

Similarly, the experiment results also demonstrate efficient
usage of gas for the update message at under 30,000 wei,
as shown in Fig. 6. In addition, the simulation shows effi-
cient usage of gas for the signature message signature under
30,000 wei, as shown in Fig. 7.

FIGURE 5. Notification gas usage.

FIGURE 6. Update message gas usage.

C. COMPARISON
This section compares the proposed framework with existing
frameworks as seen in Table 2. The proposed framework pro-
vides several particularly important advantages when com-
pared to previous research.

Specifically, several researchers have used on-chain stor-
age of the software update. On-chain solutions are limited
by the block size of the blockchain technology [26], [27].
Even with variable block-size technologies like Etherium,
storing large software updates on the blockchain costs addi-
tional fees in gas to store large software updates. The block
size limit or/and the additional cost are avoided with off-
chain solutions. Prior research focuses on the notification
and distribution of the software key while not improving
the availability of the software update binary file itself [26],
[31], [33]. In the proposed framework, we leverage IPFS to
provide a highly available and distributed encrypted software
update binary file. The proposed framework offloads several
computationally expensive operations to the blockchain plat-
form to reduce computational complexity requirements for
IoT devices. As seen in Table 2, previous research has over-
burdened the IoT devices with these operations creating high
IoT computational complexity [26], [27], [31]. The proposed
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TABLE 2. Comparison.

FIGURE 7. Update message signature gas usage.

framework takes advantage of CP-ABE to provide O (1)
key generation complexity for the manufacturers. In addi-
tion, previous analysis shows that CP-ABE performs well
on constrained IoT devices when the authorization policy is
dependent on three attributes only and the data being CP-
ABE-encrypted is small as we use CP-ABE to encrypt the
key, not the software update itself [56].

D. SCALABILITY VERSUS SECURITY TRADE-OFF
Within the proposed framework for software delivery, there
are trade-offs between scalability and security. First, the
adoption of blockchain and smart contracts ensures the
authenticity and integrity of the software update, as well
as the atomic software delivery and payments between IoT
devices and the manufacturer. Although blockchain tech-
niques are often criticized for its scalability and efficiency,
many recent studies have shown significant improvement of
the scalability and efficiency through alternative consensus
mechanisms [57], [58], and side-chains [59] or layer 2 solu-
tions [60], [61]. Therefore, the scalability of blockchain itself
is not the focus of this proposed study. Instead, we mainly
focus on the scalability comparison between the proposed
framework and the traditional client-server framework.

Table 4 illustrates the scalability of the proposed frame-
work compared to the traditional client-server model by
asymptotically evaluating n IoT devices from the manufac-
turer’s viewpoint. As shown in Table 4, due to the adoption of
CP-ABE, themanufacturer only needs to encrypt the software
for each authorization policy, instead of encrypting it for each
device. From the security aspect, it requires a secure design
of the CP-ABE authorization policy, so that only the IoT
devices with a completed payment can satisfy the authoriza-
tion policy. To address this issue, we add the devices’ serial
number as one important attribute to avoid softlift attacks,
an attack through which a paid device can share the encrypted
software update with another device without payment. From
the scalability aspect, since the number of authorization pol-
icy terms is a small constant value (i.e., 4 attributes in the
proposed system), the encryption costs at the manufacture
end remain constant when the number of IoT devices n grows.
This significantly improves the scalability of the proposed
system.

To notify the client, the manufacturer only needs to post
one single transaction (i.e., O(1)) on the blockchain, instead
of sending notifications to each of the n IoT devices, which
significantly reduces the communication overhead at the
manufacturer end.

In the conventional client-server model, the server must
send the decryption key to each client separately through a
secured channel. In the proposed blockchain based frame-
work, the decryption key is sent in exchange for payment by
the smart contract. This exchange is accomplished via the
smart contract and is publicly available. This public nature
emphasizes the importance confidentiality of the transaction
to be maintained. As the proposed framework adopts CP-
ABE to encrypt the key, the confidentiality is ensured as
long as the CP-ABE scheme is not compromised as shown
in the Security Analysis section. In addition, the framework
uses the blockchain to deliver the key to each device in a
distributed manner, which provides additional reliability. The
adoption of blockchain may introduce additional risks if the
majority blockchain nodes are dishonest. But as discussed
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TABLE 3. Safeguards against threat model attacks.

TABLE 4. Scalability from manufacturer’s viewpoint.

in the Security Analysis section, we show compromising the
blockchain is exponentially difficult.

Last but not least, in the proposed framework, the manu-
facturer only needs to send the encrypted software update to
IPFS once, rather than sending it to each IoT device, which
greatly improves the scalability. Since the software update is
stored and maintained by a third party (i.e., the IPFS), there
are additional confidentiality and integrity risks involved if
the IPFS is compromised. However, as a distributed cloud
storage, it is very difficult for the IPFS to be completely
compromised. In addition, the manufacturer only uploads the
encrypted software update to IPFS, and the hash value of
the encrypted software is posted on the blockchain. As a
result, we can assume the confidentiality is ensured if the
encryption scheme is not compromised. In addition, as long
as the blockchain record is not manipulated, by checking
the hash value of the encrypted software, we can ensure the
integrity is not compromised.

VIII. SECURITY ANALYSIS
In this section, we define the cryptographic lemmas needed
to support proof of the framework’s security. Then, we define
theorems and proofs of the safeguards against the specific
threats defined in the threat model which was provided in
Section V. Table 3 organizes and explains which safeguards
protect against various threats.

A. SECURITY FOUNDATIONS
The security of the framework is founded on the crypto-
graphic security of CP-ABE, hash, and properties of the
blockchain. Herein we define the security foundations of the
framework as lemmas to support the proofs of the security of
the framework.
Lemma 1: Given a blockchain with n blocks, the probabil-

ity P for malicious nodes to revert a transaction by ‘catching
up’ is

P = 1−
∑n

k=0

λke−λ

k!
(1− (

q
ph

)
(n−k)

) (2)

where ph is the probability that an honest node finds the
next block, q = 1 − ph is the probability that a malicious
node finds the next block. Therefore, as n grows, the proba-
bility P of malicious nodes reverting a transaction decreases
exponentially [44].
Lemma 2: CP-ABE cryptosystem for device dij with the

attributes {a1, a2, . . . , ak , ak+1, . . . , am} where m ∈ Z, m is
the message, Ec (m) encrypts m, and, Dc decrypts such that
Dc (Ec (m)) = m. An IoT device with an attribute ak that
does not satisfy authorization policy P is unable to decrypt
an encrypted message Ec (m). The CP-ABE cryptosystem
ensures the security so that when the authorization policy key
is not satisfied the ciphertext cannot be decrypted [49].
Lemma 3: We assume a random oracle model. Within the

random oracle model, a hash Hwill deterministically produce
a random value h′ for a given input, H (x0) = h′ [62].
Lemma 4: We define a function G(λ) that generates a key

pair of {sk, pk} where sk is a private key, pk is a public
key, and λ is an initialization parameter. Given a message
m, there exists a function E(m, sk) that produces a signature
σ . V (σ, pk) produces true if and only if m is signed by the
private key sk . This cryptographic construct is formally called
a digital signature [63]

B. MALICIOUS ATTACKER (MA) SAFEGUARDS
Theorem 1: A Malicious Attacker (MA) attempts to pre-

vent an honest manufacturer from notifying devices of a new
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software update. The MA notification attack is exponentially
difficult to succeed.
Proof 1: The manufacturer commits notification transac-

tion T∝ on the blockchain such that 1 ≤∝≤ t where t is
the number of transactions. IoT device owner can read any
node on the blockchain to receive the notification. To pre-
vent the notification, the MA attempts to produce a sepa-
rate chain long enough to invalidate T∝. By Lemma 1, the
ability to revert the notification T∝ decreases exponentially.
Thereby, the ability to successfully prevent the software
update notification increases exponentially as the length n of
the blockchain grows. All IoT devices will be able to read
the notification since the blockchain provides availability
through its distributed nodes.
Theorem 2: If we assume a MA can become a man-in-

the-middle (MITM) and download a software, the MA is not
able to decrypt the software update. The confidentiality of the
software update is maintained.
Proof 2: Given the attributes

{
a1, a2, . . . , aj,

}
where j ∈

Z that satisfy the customized CP-ABE authorization policy.
A MA with an attribute a∝ ∈

{
a1, a2, . . . , aj,

}
such that

a∝ does not satisfy the authorization policy. MA is unable to
decrypt a software update due to Lemma 2. Confidentiality
is further secured since MA does not have the private key
without performing exchange of the software update through
the Buyer-Seller smart contract. Thus, software update con-
fidentiality is maintained.
Theorem 3: Given a software update message um, it is

impossible for aMA to successfully execute an invalid update
attack.
Proof 3: MA attempts to provide a damaged software

update message umma to a device with a forged signature
σma. The hash of umf is compared to the hash of the valid
um given in the software update notification. Due to Lemma
3, H (umma) ̸= H (um), H (umma) is rejected. In the pro-
posed framework as seen in Table 3 and Figure 4, this is
implemented with a SHA3 hash. In addition, the device will
run V (σma, pk) from Lemma 4 using ECDSA and detect the
inauthenticity of the message.
Theorem 4: Given a software update, a MA should not be

able to perform a rollback attack in which a software update is
reverted to a previous insecure version of the software update.
Proof 4: The proof for the rollback attack safeguard is a

corollary of Proof 1. By Proof 1, the software update notifi-
cation is immutable. Thereby, the defense against the attack
is accomplished by the owner reading the software version
number, um, and H (um) from the most-recent notification.
With this information the owner can compare the version
numbers to detect, and reject the previous insecure version
of the software update.

C. MALICIOUS MANUFACTURER SAFEGUARDS
Theorem 5: A malicious manufacturer (MM) must not

complete a non-delivery attack whereby the MM receives
payment without delivering the software update.

Proof 5: A non-delivery attack attempt by the malicious
manufacturer (MM) is prevented by the proposed smart con-
tract and the properties of IPFS. The execution of the smart
contract ensures that a valid exchange is executed in an atomic
way, so that neither the manufacturer nor the IoT owner can
take advantage of the other party. IPFS provides distributed
and immutable storage of the software update. In addition,
when the MA attempts to receive payment, the unique identi-
fier of the software update in IPFS is sent to the IoT owner to
download the software update. This unique identifier (UID)
of IPFS contains a hash of the data which guarantees that data
has not been manipulated. Availability is guaranteed because
IPFS is a distributed storage system [36].
Theorem 6: It is exponentially difficult for a MM to per-

form a false update records attack aimed to create incorrect
transaction records.
Proof 6: As a corollary of Proof 1, when a MM attempts

a false update record attack, it aims to insert a forged trans-
action into the blockchain. Due to Lemma 1, such manipula-
tions of records are exponentially difficult to achieve.

D. MALICIOUS OWNER SECURITY SAFEGUARDS
Theorem 7: A malicious owner (MO) is not able to con-

duct a payment free attack in which they receive a software
update without payment.
Proof 7: The smart contract protects against the malicious

owner’s (MO) payment-free attacks via an atomic transaction
guaranteed by the blockchain smart contract for payment and
software key delivery. The execution of the smart contract is
distributed, and the resulting transactions are recorded on the
blockchain in an immutable way that guarantees payment.

Through these safeguards, the framework successfully pro-
vides confidentiality, integrity, availability, and authenticity
against threats, and achieves the designed security goals.

IX. CONCLUSION AND FUTURE WORK
In summary, in this work, we propose a distributed
blockchain-based framework to facilitate resource-
constrained IoT devices to perform secure and efficient
software updates while providing high-availability and
immutable records for software updates. An authorization
policy is designed for CP-ABE to ensure that large numbers
of authorized IoT devices can efficiently retrieve the plain-
text of software updates. A cost-efficient smart contract is
designed to guarantee atomic payment in exchange for the
delivery of software updates in an efficient way.

We also are currently researching similar problems in the
area of autonomous vehicles which hold opportunity for our
framework to address challenges unique to autonomous vehi-
cles research [64], [65], [66].

In future work, the proposed framework can be further
applied in other application domains, such as software supply
chain pipelines or intelligent vehicle software updates over-
the-air (OTA). Integration of smart contract and CP-ABEmay
lead to atomic safeguards and efficient key generation while
also protecting against software piracy techniques from a

44892 VOLUME 11, 2023



G. Solomon et al.: Secure and Cost-Efficient Blockchain Facilitated IoT Software Update Framework

malicious owner such as softlifting where the owner attempts
to install the same license on multiple valid devices they own.
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