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ABSTRACT Owing to limited drug testing possibilities in pregnant population, the development of
computational algorithms is crucial to predict the fate of drugs in the placental barrier; it could serve as
an alternative to animal testing. The ability of a molecule to effectively cross the placental barrier and
reach the fetus determines the drug’s toxicological effects on the fetus. In this regard, our study aims to
predict the permeability of molecules across the placental barrier. Based on publicly available datasets,
several machine learning models are comprehensively analysed across different fingerprints and toolkits
to find the best suitable models. Several dataset analysis models are utilised to study the data diversity.
Further, this study demonstrates the application of neural network-based models to effectively predict the
permeability. K-nearest neighbour (KNN), standard vector classifier (SVC) and Multi-layer perceptron
(MLP) are found to be the best-performing models with a prediction percentage of 82%, 86.4% and 90.8%,
respectively. Different models are compared to predict the chosen set of drugs, drugs like Aliskiren, some
insulin secretagogues and glucocorticoids are found to be negative while predicting the permeability.

INDEX TERMS Placenta barrier, machine learning, drug permeability, developmental toxicity.

I. INTRODUCTION

With the growing number of pregnant women, who have pre-
existing medical conditions such as type II diabetes, thyroid
disorders, psychiatric disorders, asthma, and hypertension,
the scenario of either limited or no medication during preg-
nancy is now changed [1]. Over the years, there has been
an increase of over 60% in the use of prescription drugs
during the first trimester [2]. In addition, the risk of preg-
nancy complications and the exacerbation of the existing ones
demand further therapy. When drugs are administered, the

The associate editor coordinating the review of this manuscript and

approving it for publication was Sangsoon Lim

52726

active pharmaceutical ingredient is distributed throughout the
body via the bloodstream. During this process, the ingredient
encounters various biological barriers such as the blood-brain
barrier (BBB), blood-nerve barrier (BNB), blood-retinal bar-
rier, pulmonary barrier, and placental barrier (in the case of
pregnancy) [3], [4], [5]. While the intended drug interaction is
easily achieved, there are always reported side effects because
of the ability of drugs to cross these biological barriers and
interact with untargeted regions [6]. For instance, thalido-
mide’ a nonaddictive, nonbarbiturate sedative was prescribed
to treat morning sickness in pregnant women. However,
it was later identified that the drug developed the symptoms
of peripheral neuropathy and severe birth defects [7]. This
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indicates that the drug could cross the placental barrier and
reach the fetus, along with the ability to cross the BBB and
BNB. Following this disastrous tragedy of the 20th century,
several studies have started emerging on identifying the abil-
ity of a drug to penetrate biological barriers.

The placenta barrier plays a crucial role in the maintenance
of fetal health and development by ensuring the transport of
nutrients and growth factors while eliminating xenobiotics.
The placental permeability of chemicals/drugs is a crucial
aspect of developmental toxicology [8]. To ensure safety
during pregnancy, the application of in vitro, in vivo and
ex vivo models of the placenta are adapted to study the
ability of drugs or xenobiotics to pass through the placental
barrier and reach the fetus [9]. However, their outcomes are
not completely reliable due to the difference in the models,
their simplicity and high cost. In this regard, computational
algorithms could throw some light to predict the fate of xeno-
biotics in the placental atmosphere and the toxicity effects.
These algorithms could also be used to design new drug
candidates [9], [10].

In contrast to traditional classification models [11], [12],
[13], [14], [15], [16], [17], [18], [19], machine learning
algorithms [20] have recently been applied to predict BBB
permeability. One of the applications of the machine learning
(ML) models is to eliminate the tedious early stages of drug
discovery cycle by providing quick inference on the perme-
ability across the barrier to the bioinformaticians and drug
developers [21]. The data-inductive nature of the ML models
allows them to learn patterns in the data associated with drugs
that permeate through the barrier, thereby allowing them to
generalize on other drugs and new chemical compounds.
We believe that a similar strategy could also be utilized to
train the models for placenta barrier permeability. Unlike
BBB, the quantitative structure-activity relationship (QSAR)
models for the placenta barrier are extremely limited owing
to poor data availability. Some QSAR models are based on ex
vivo placental perfusion [22], [23], while others are based on
the maternal-fetal blood concentration ratio [24]. To the best
of our knowledge, limited studies have discussed the applica-
tion of machine learning models for predicting the placental
transport of chemicals [2].

By employing data from the basic science of drug struc-
ture and physicochemical properties, clinical decisions on
the drug prescription during pregnancy-related complica-
tions can be considered using such permeability prediction
algorithms. Since translational medicine facilitates medi-
cal advancement from scientists to clinician, such clinical
decision-making algorithms become imperative. After the
Thalidomide incident, a typical two-way bedside to bench-
side communication, safer medications for morning sickness
has been recognised. However, the development of predictive
algorithms could fasten this decision making process from
bench-side to effective bed-side communication.

Risk categorization for drugs during pregnancy was ini-
tially introduced in 1978 by Sweden followed by US Food
and Drug Administration (FDA), which initiated the risk
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stratification representation using letters A to D along with
an X category in 1979 [25]. The representations are as follow:
Category A: No risk in human studies; catergory B: No risk
in animal studies; category C: Risk cannot be ruled out due
to non-satisfactory studies; Category D: Evidence of risk and
finally, Category X: Contraindicated with risks of drugs out-
weighing potential benefits. FDA categorization needs robust
data like controlled studies during pregnancy to categorize
a drug as safe. Such studies are unlikely to be taken due to
ethical and safety concerns. As a result, most of the drugs
have been assigned as category C i.e., “‘risk cannot be ruled
out”. With the increase in the use of over-the-counter (OTC)
medications, there is an urgent need to understand the fate of
drugs and their permeability across the placenta. For instance,
a recent study has implicated paracetamol, one of the most
common OTC used during pregnancy affecting certain neu-
rodevelopmental, reproductive and urogenital disorders [26].

The primary rationale behind this study is to have a better
understanding of the ability of certain commonly used drugs
to pass through the placental barrier. Assimilation of such
information can be extended to decode the drug’s effects on
fetal development and its toxicity. For this purpose, our study
has been designed to predict the passage of a few common
drugs anti-diabetic, anti-allergic, and anti-hypertensive drugs.
While many of these drugs are not generally prescribed dur-
ing pregnancy, it is still crucial to understand their effects due
to an increasing trend in self-medication [27]. To achieve this,
we develop ML models with existing datasets to predict the
transport of molecules across the placenta. The performance
of the models is further analysed to predict the transport of
the above-mentioned class of drugs.

In this study, we aim to develop and explore the application
of machine learning and deep learning models for predicting
the placental permeability of different drug classes. Since
machine learning applications for such placental permeability
have not been explored extensively in literature [2], this study
has been performed to explore different models and molecu-
lar representations to understand the ability computer algo-
rithms and correlate patterns in the drug structural aspects
and its passage across the barrier. While Di Filippo et al.
explore the suitability of genetic algorithm for critical feature
selection, our study aims to comprehensively analyse the
suitability of different models including neural networks with
cross toolkit testing for this prediction application. We further
employ the best models for permeability prediction of drugs
that can be explored for pregnancy complications like hyper-
tension, diabetes, and allergies. Another important rationale
behind the current study is to understand the fate of some of
the drugs that are generally prescribed during non-pregnancy.
We envision correlating this permeability prediction with our
developed machine learning models as a step towards a new
approach for developmental toxicity prediction.

Il. METHODOLOGY
At the core of our methodology, we conduct a thorough
experimental study with several ML and deep learning (DL)
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models to highlight the potential of utilizing the supervised
learning algorithms for the placenta permeability. Specifi-
cally, we design a study to maximize the performance of
the ML models by employing techniques that can overcome
the challenges in the dataset. We further analyze the impact
of these techniques on classification performance. Finally,
we show an application of the trained models on the drugs
commonly prescribed during pregnancy.

A. DATASET

Filippo et al. [2] compile a list of 248 drugs for placenta
barrier permeability. The dataset also contains the fetal-
maternal blood concentration ratio (F/M ratio) and clearance
index (CI) of drug molecules. A drug is labelled as crossing
(PB+) the placenta barrier if the F/M ratio is higher than
0.3 or CI is higher than 0.8. On the other hand, a drug is
labelled as not crossing (PB-) the placenta barrier if the F/M
ratio is lower than 0.3 or CI is less than 0.8. The drugs
that had an F/M ratio between 0.15 and 0.3 were omitted
from the dataset due to ambiguity in the permeability label.
Altogether, the dataset contains 213 (86%) molecules with the
label PB+ and 48 (14%) molecules with PB- labels. We uti-
lize Pubchem [28], to represent the drugs in a simplified-
molecular-input-line-entry system (SMILES). The SMILES
representation allows for fingerprint and 1D/2D descriptors
extraction through various chemical feature extraction frame-
works. RDKit framework employed for feature extraction has
classified 11 molecular SMILES as invalid, resulting in a final
dataset size of 237.

B. MOLECULAR FINGERPRINTS

One of the aims of our experimental study is to evaluate
the suitability of different molecular fingerprints for the pla-
centa barrier permeability. Our study includes fingerprints
that are path-based (e.g., FP2), substructure-based (e.g.,
FP3), hashing-based (e.g., Standard), Hybrid (e.g., Avalon),
and model-generated (e.g., mol2vec). By selecting the well-
known molecular fingerprints in each category, we aim to
analyze the impact of the fingerprints on the classification
accuracy, hoping the future research to focus on ML/DL
model innovation without needing to test across all molecu-
lar fingerprint representations. We use several computational
chemistry toolkits including RDKit, CDK, and Open Babel to
extract the diverse molecular representations for this study.

C. EXPERIMENTAL STUDY OVERVIEW

We conduct a comprehensive empirical study of the placenta
barrier permeability to identify the best parameters for dif-
ferent stages of the ML pipeline. First, we extract represen-
tative fingerprints from well-known categories to analyze the
fingerprint that provides adequate information to the ML/DL
models for permeability prediction. Specifically, we extract
five different fingerprints, as explained earlier. After analyz-
ing the fingerprints, we observe that most fingerprints are
sparse binary vectors (e.g., FP3, Standard) except the ones
generated by ML models as a learned representation of the
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molecules (e.g., mol2vec). Based on the sparse nature of fin-
gerprints, we perform feature transformation using principal
component analysis (PCA)(Table 1).

PCA allows us to convert high-dimensional data vectors
into low-dimensional space without losing variance informa-
tion. We chose to do PCA over other dimensionalilty reduc-
tion methods like kernel PCA and other feature selection
methods as it provides a straightforward mechanism to con-
trol variability in the transformed data. PCA projects the data
on principle components/Eigenvectors (i.e., directions that
capture the variability in data) thereby suggesting directions
in the multi-dimensional space while retaining most of the
information.

This transformation makes the learning procedure easier
for the ML models because the low-dimensional data needs
fewer parameters for effective generalization while needing
smaller training datasets. Another crucial advantage of PCA
is that it allows us to control information loss in the dataset
during transformation by specifying the variance of the trans-
formed dataset. Additionally, we apply standard scalar nor-
malization before PCA to effectively transform the dataset
instances to avoid significant differences in feature ranges.

Once the necessary steps are taken to prepare the dataset,
we explore the different ML models for training and effec-
tive generalization in real-world applications. To elaborate,
we select a representative model from popular categories,
such as in-memory-based (e.g., K-nearest neighbour (KNN))
classifiers, linear and kernel-based classifiers (e.g., support
vector classifier (SVC)), tree and ensemble-based classifiers
(e.g., random forest (RF)), boosting classifiers (e.g., Light
gradient boosting machine (LightGBM)), and deep neural
networks (e.g., multi-layer perceptron (MLP)).

KNN works by calculating K nearest instances to the
query points (i.e. test) using the measure of distance. Alter-
natively SVC finds an optimal dimension in the high dimen-
sional feature space to maximise the margin between two
instances. Here, we chose to work with non-linear SVC from
the SVM module to be able to implement the kernel hack
and for better classification of drugs that fall between the
positive and negative classes. To have a combination of
decision trees, we chose random forest, an ensemble learn-
ing method that outputs the class determined by mist deci-
sion trees.LightGBM is an open-source gradient boosting
framework; gradient-based one side sampling (GOSS) and
exclusive feature bundling (EFB) are two essential parts of
LightGBM. GOSS enables LightGBM to track the instances
that are not properly trained, greatly enhancing the model’s
knowledge gain. EFB uses the sparsity of higher dimen-
sional spaces to choose a group of features that are mutually
exclusive, reducing the model’s training time and memory
complexity. MLP is a multilayer feedforward artificial neural
network that generates output classes from input sets. The
above ML models were chosen based on their successful
application in previous studies [21]. For instance, KNN is
one of the basic methods of ML modes and most frequently
used with easy application. Similarly, MLP is another well
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TABLE 1. Summary of descriptors, fingerprints, and latent space vector representation of molecules along with their dimensions.

. . . Dimension after PCA
Feature Name Feature type Description Dimension (95% variance retained)
EP2 Babel Linear/Daylight style ﬁngerprmt that extract 1024 363
path-based features

. Substructure fingerprint that represents whether

FP3 Babel certain SMARTS pattern are present in the molecule 1024 20
Substructure fingerprint that represents whether

FP4 Babel certain SMARTS pattern are present in the molecule 1024 68
Hybrid fingerprint that captures path-based and

Avalon RDK substructure-based features like an atom, bond, and ring patterns 512 308

and their paths
Rdkit RDK Substructurg fingerprint with properties of daylight 2048 343
fingerprints to capture atom and bond types
Klekota-roth CDK Substructure fingerprint with biological activity 4860 326
of the molecules
CDK implementation of MACCS, with some minor

MACCS CDK changes in SMARTS patterns and molecule aromaticity 166 &
Substructure fingerprint that represents whether

Pubchem CDK certain SMARTS pattern are present in the molecule 881 142

Standard CDK Hashgq fingerprints generated by examining paths of 1024 377

different lengths from key functional groups
mol2vec Unsupervised ML Latent spflce vector representation of the molgcules inspired by 300 33
unsupervised natural language processing models.

explored models for a variety of applications and is continu-
ously evolving.

One of the critical aspects of training the ML/DL models is
to appropriately hyperparameterize the tuning for the dataset
of interest. We conduct a comprehensive grid search for
different hyperparameters of each model with built-in cross-
validation (i.e., GridSearchCV) to ensure effective general-
ization across different folds of a limited dataset. Parameter
choice can impact the accuracy of the chosen ML models with
limitations contributed by biased dataset. To ensure appropri-
ate parameter choice, we pair grid search with 10-fold cross-
validation to select parameters that provide the best results
across the folds. In each step of the cross-validation, 1 fold of
the dataset is treated as the test set and the remaining 9 folds
are used for model training. We report the performance of the
model which is the average test performance of the 10 folds,
thus allowing us to evaluate the models robustly. Grid search
is strategically employed to exhaustively search for the best
parameters for the 10 folds. In the initial set of experiments,
we train and evaluate different ML modess with different
fingerprints without upsampling the minority class to provide
a baseline performance for the models.

One of the significant challenges of the placenta perme-
ability dataset is the imbalance between PB+ and PB- classes
(86:14). Therefore, necessary measures are needed to prevent
model bias towards the PB4 class. To this end, we employ
the synthetic minority oversampling technique (SMOTE) to
generate instances of PB- class in the train set of each cross-
validation during grid search. SMOTE generates the sample
of PB- class by employing KNN and on one of the instances
of PB- class. The new synthetic sample is generated by
computing a vector between the selected instance of PB- and
one of its neighbours. We employ SMOTE to analyze whether
the data balancing technique can improve model perfor-
mance by reducing the false positive rate (FPR). To elaborate,
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we examine the model’s effectiveness for correctly predict-
ing the minority class (i.e., PB-) without labelling them as
PB+-. Lower FPR provides higher confidence for drugs when
inferred using the ML/DL models, encouraging further lab
testing and release of newer drugs in the real world to treat
different chronic conditions that women encounter during
pregnancy.

In the final stage of our study, we construct a dataset com-
prising drugs prescribed for treating allergies, hypertension,
and diabetes to predict their ability to cross the barrier using
our models. By doing so, we expect to add value to the exist-
ing knowledge on toxicity predicted for drugs and in turn,
provide a faster preliminary screening for drug safety dur-
ing pregnancy. We employ the best-performing models and
corresponding fingerprints for placenta barrier permeability.
We infer the permeability using multiple models (ensem-
ble approach) to minimize the likelihood of misprediction
since ensemble models have lower error rates than individual
ML/DL models. Next, we thoroughly analyze the inference
of ML/DL models and discuss our findings.

D. METRICS
We exhaustively evaluate different classification aspects of
the study’s ML/DL models by evaluating their ability to
correctly predict the samples from PB+ and PB- classes.
We employ overall accuracy, sensitivity (i.e., true posi-
tive/(true positive + false negative)), and specificity (i.e.,
true negative/(true negative + false positive)) to quantify the
prediction capabilities for PB+ and PB- classes.
Additionally, we utilize the area under the receiver operator
characteristic curve (AUC_ROC) for combining sensitivity
and specificity into a single measure. We also use the f_beta
score (specifically, f_0.5) for taking the harmonic mean of
precision and recall. The f_0.5 metric places higher weigh-
tage on precision, thereby ensuring a higher f_0.5 correspond
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to a lower FPR. During the initial establishment of baseline
performance of different models, we analyzed the f_0.5 score
of the models in addition to AUC_ROC. However, we chose
not to discuss the results of f beta score in the manuscript
for better comparison with the existing articles on the bar-
rier permeability. The source code, raw data and dataset
details can be found in the GitHub library using the link
“https://gitlab.com/chip23618/PlacentaBarrier”

E. IMPLEMENTATION DETAILS

We utilize the Pyfingerprint library for extracting fingerprints
from different chemical fingerprint extraction libraries (e.g.,
RDKit, CDK, and Open Babel). We employ the SMOTE
implementation made available by the imbalearn package in
Python to handle the dataset imbalance. The imbalearn pack-
age supports Scikit-learn (sklearn) pipelines, which assist
in grid search and model training with unbalanced dataset.
Additionally, we utilize the standard sklearn implementation
of ML models and MLP for our empirical study. The Xgboost
and LightGBM models have been trained from their indepen-
dent Python packages (compatible with sklearn). The grid
search with cross-validation is also implemented using the
built-in GridSearchCV method. The empirical study is con-
ducted on an HP Z8 workstation in a Linux operating system,
with 64-core Intel® Xeon(R) Silver 4216 CPU @2.10 GHz
(boost to 2.6GHz) and 128 GB of RAM.

IIl. RESULTS

A. DATASET ANALYSIS

The placenta dataset utilized in the current study is the direct
adaptation of the dataset used in the study conducted by
Di Filippo et al. [2]. The authors create the dataset based on
clearence index (CI), fetal/maternal drug concentration ratio
(F/M) and literature evidence on whether a molecule passes
the barrier or not. As the current study focuses on creating
prediction models, the dataset from Di Filippo et al. was
directly adapted without any modifications to it, thus ensuring
a better comparison of the results with their study. In case
of F/M ratio < 0.15, the molecule is considered negative
for placental barrier (PB-) permeability and molecules with
F/M > 0.3 are termed as positive for placental barrier perme-
ability (PB+). Similarly, a CI1>0.8 is termed PB+. Di Filippo
et al. choose this threshold based both CI and F/M data. The
dataset presents a total of 248 molecules with 213 PB+ and
35 PB- compounds. Unlike other common barrier perme-
ability prediction dataset, the placenta dataset is extremely
limited owing to poor data availability due to poor experi-
mental models [29]. For building a reliable model, a thorough
understanding of the available dataset is needed. In line with
this, a scatter plot is developed to understand the chemical
space occupied by the positive and negative samples of the
placenta dataset. Such a plot would graphically represent the
diversity of the molecules in the dataset. As can be observed
in Figure 1, the chemical diversity of the compounds in the
dataset is reasonably wide and the distribution of positive and
negative molecules also indicates a diverse chemical space.
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FIGURE 1. Chemical diversity analysis of the placenta dataset after PCA.

Further, understanding the similarity between two
molecules is a routine and key task in cheminformatic analy-
sis. In the current scenario, by studying similarity index of the
molecules in the dataset, an understanding on the diversity of
the molecules contributing to the dataset could be understood.
A typical metric for calculating the separation or similarity
of molecules is the Tanimoto coefficient. It could provide
an understanding on the extent to which the information
captured by these descriptors overlap. To analyse the simi-
larity index of the molecules in the dataset and the selected
set of drugs, the Tanimoto similarity index is calculated
for each pair of molecules by using the Avalon fingerprint.
The choice to study the similarity index using the Avalon
fingerprint is made based on the preliminary results of several
ML models application for predicting placental permeability
across different fingerprints. As Avalon shows maximum
prediction percentage for the majority of models employed,
it is chosen as an obvious choice for studying the similarity
index. A distribution plot is made to compare the similarity
index of placenta dataset with anti-hypertensive drugs, anti-
allergic drugs, and anti-diabetic drugs individually. Finally,
a distribution plot of similarity between the three classes of
drugs is also generated to understand the drug data (Figure 2).

The Tanimoto similarity index is calculated for each pair
using Avalon fingerprint of the placenta dataset and the aver-
age similarity index is found to be 0.26, whereas the allergy
drug list shows an average similarity index of 0.29 (Figure 2).
Similarly, the similarity indices of diabetes drugs and allergy
drugs are found to be 0.31 and 0.25, respectively. While
the low similarity index of the placenta dataset indicates the
structurally diverse compounds in the data thereby facilitat-
ing the development of a reliable model, the drugs chosen
for analysing the ML models performances are also equally
diverse. The similarity of the chosen drugs to that of placenta
dataset (Figure 2D) indicates a similar diverse set. However,
it can safely be assumed from these plots that the prediction
model developed from placenta datset could effectively be
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FIGURE 2. Tanimoto similarity index of (A) Placenta barrier chemicals and Hypertension drugs (B) Placenta function barrier chemicals and Diabetes drugs
(C) barrier chemicals and and Allergy drugs (D) Hypertension, diabetes and allergy drugs. The x-axis represents tanimoto similarity index and y-axis
represents the 10 times of the probability of the density of each tanimoto similarity index.

applied to predict the fate of the chosen drugs in placental
atmosphere.

B. MODEL PERFORMANCES
The baseline performances of 10 different ML models for
placenta permeability are studied (as provided in the supple-
mentary file). While binary classifiers are generally analysed
based on metrics like sensitivity, specificity, and receiver
operating characteristics, the precision-recall plots can help
provide with an accurate prediction of potential classification.
This is attributed to their ability to evaluate the fraction of true
positives among positive predictors [22]. In the current study,
we have analysed the prediction performance using such a
precision-recall curve Figure 3. While AUC_ROC curves
are more popular, the interpretation of these metrices should
cautiously be conducted when using imbalanced dataset.
With the aim of identifying ML models capable of clas-
sifying whether a drug component can cross the placental
barrier, we have developed several ML models commonly
used for classification problems and used different molecular
representations toolkits. We have initially tested different
ML models with several fingerprints and descriptor types
to establish a baseline performance. Of the 10 models ini-
tially analysed with 17 fingerprint types, 5 best performing
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ML models are chosen further for improving performances.
As can be seen from Figure 3& 4 and Table 2, the pre-
diction performance of all the models are approximated
around 70% to 86%. Although using different toolkits to
generate similar fingerprints tend to offer certain level of
redundancy, we choose to analyse all the fingerprints and
descriptors from different toolkits, as an effort to perform
cross-toolkit analysis. Consequently, the SMILES processing
by different toolkits provides variable output, owing to the
ability of their processing capacity and the difference in the
aromaticity. However, due to the highly imbalanced nature
of the datasets, the specificity of the models is identified
to be very low. Interestingly, the KNN model show high
sensitivity and relatively low specificity Table 2. Such low
specificity has been reported previously in several KNN
models with imbalanced datasets [22], [30]. As the KNN
model is primarily a similarity-based classification model,
such low specificities are expected with highly imbalanced
datasets [21]. Similar results are obtained for all the models
with very low specificity and high sensitivity. Interestingly,
LightGBM model has performed well with some fingerprints
owing to the in-built data balancing feature and provided
regularization parameters for the estimators in the model to
prevent them from favoring the majority class.
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In this study, we have analysed the performance of a neu-
ral network model’ multi-layer perceptron (MLP). MLP is
a form of multilayer feed-forward neural network (FFNN)
consisting of one or more hidden layers and the input of each
hidden or output layer is considered as an inner product of
previous output layer and weights [31]. As a result, MLP
shows the highest prediction capability with better specificity
and sensitivity when compared to other models without any
data balancing stage 2. MLP is chosen among several deep
learning models as their application has been previously
proven to have outperformed other models used for similar
classifier problems [21], [32], [33].

Based on our previous work with blood-brain barrier [21],
it is noted that data balancing techniques in such a classifier
model plays a crucial role in determining the model outcome
and prediction capability. Albeit the high prediction accuracy
than the present literature, the limited data on PB- class
have resulted in a low recall ratio of the minority class (low
specificity). In order to address this issue, oversampling tech-
niques are commonly used. Though resampling techniques
can involve either oversampling or undersampling, we choose
to utilize oversampling methods as it adds more data points
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to the minority class without eliminating any critical data
points offered by the majority class. A review of the exist-
ing work on re-sampling techniques further indicates better
performances of oversampling techniques in comparison to
undersampling [21], [33]. Hence, SMOTE is introduced as a
data balancing technique to ensure that the number of PB+
and PB- instances are equal in the training and validation
folds. This is achieved by interpolation between minority data
and its k-nearest neighbours [34]. The application of SMOTE
significantly has improved the specificity in most of the
models (as provided in supplementary files). The improve-
ment in the performance of KNN is very evident in case of
standard fingerprint (Table 2). The extremely low specificity
and high sensitivity seen without data balancing in all the
models get improved significantly after the implementation
of SMOTE. Although the prediction is expected to improve
with data balancing techniques, some models like random
forest fail to significantly improve the prediction accuracy.
It is clear that accuracy would not be a suitable score for the
classification job due to the imbalance of the dataset classes.
It has been demonstrated that computing precision and recall
(Figure 3), a standard metric in classification jobs, provides
superior insight on the classificator’s performance for imbal-
anced sets than the Receiver Operating Characteristic curve
(Figure 4) [35].

The performance gain after SMOTE application is highly
evident across all the models. It can be deduced that the
higher the data imbalance, the greater is the perfromance gain
after SMOTE application. While models like LighGBM have
in-built data balancing modules, their effectiveness is not
obvious without SMOTE 2. The imbalance ratio in the current
dataset with positive class (86%) and negative class (14%)
is extremely high, thus resulting in significant performance
improvement by all models. Many studies have incorporated
other data balancing techniques like adaptive synthetic sam-
pling (ADASYN), random under sampler (RUS) [3] and have
concluded SMOTE to be the most advantageous option. How-
ever, care should be taken to employ SMOTE appropriately,
as studies have incorporated SMOTE to the entire dataset
resulting in synthetic samples in the test set leading to model
over-fitting [21].

C. PERMEABILITY PREDICTION OF DIFFERENT DRUG
CLASSES

Use of prescriptions medications during pregnancy has
become a common practice with prevalence ranging
from 27 to 99% [36]. Though pregnant women are not
included in pre-clinical studies, the current knowledge on the
risk-benefit profile of drugs in pregnancy is mostly analysed
through post-authorization studies. Anti-hypertensives, anti-
diabetics, antibiotics, anti-allergens are some of the common
drug groups used during pregnancy to treat and manage
different conditions. As 0.6 to 2% of women are known to
have chronic hypertension during pregnancy, medications to
treat it are commonly prescribed [37] and 14% of maternal
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TABLE 2. Performance of machine learning models with and without data balancing techniques (SMOTE).

Without Data Balancing With Data Balancing using SMOTE
Model Name | Features | Accuracy | Specificity | Sensitivity | Auc_Roc Accuracy | Specificity | Sensitivity | Auc_Roc
Standard | 0.87766 0.061905 1 0.825155 0.801684 | 0.680952 0.820674 0.861595
FP3 0.890426 | 0.357143 0.971196 0.831959 0.78945 0.680952 0.80662 0.813811
KNN Avalon 0.873493 | 0.033333 1 0.818912 0.371454 | 0.9 0.291521 0.791715
FP2 0.87766 0.061905 1 0.835221 0.696011 0.833333 0.674332 0.852333
mol2vec | 0.877748 | 0.066667 1 0.854955 0.725621 0.780952 0.718351 0.83463
Standard | 0.894504 [ 0.290476 0.985482 0.822687 0.88617 0.32381 0.970848 0.835492
FP3 0.864982 | O 0.995122 0.832404 0.239096 | 0.966667 0.128571 0.854346
SvC Avalon 0.869238 | O 1 0.85542 0.844149 | 0.709524 0.864344 0.846748
FP2 0.890248 | 0.257143 0.985366 0.812892 0.751064 | 0.709524 0.757143 0.808053
mol2vec | 0.911525 | 0.42381 0.985598 0.845219 0.882004 | 0.228571 0.98072 0.827449
Standard | 0.869238 [ 0.061905 0.99036 0.804336 0.890337 | 0.357143 0.970848 0.777458
FP3 0.88617 0.357143 0.966434 0.811285 0.857004 | 0.52381 0.908595 0.821254
RF Avalon 0.88617 0.128571 1 0.787195 0.864894 | 0.285714 0.951336 0.634108
FP2 0.860727 | 0.161905 0.966086 0.68555 0.87766 0.22381 0.975726 0.736353
mol2vec | 0.881915 | 0.161905 0.990244 0.835153 0.869415 | 0.395238 0.941928 0.814208
Standard | 0.852394 | 0.357143 0.92741 0.794841 0.848227 | 0.609524 0.883856 0.82651
FP3 0.852926 | 0.614286 0.889315 0.829249 0.835904 | 0.585714 0.874448 0.810763
Light GBM Avalon 0.886259 | 0.290476 0.975958 0.83614 0.852305 | 0.380952 0.922184 0.830314
FP2 0.827216 | 0.480952 0.878978 0.781543 0.840071 0.32381 091777 0.753842
mol2vec | 0.839982 | 0.561905 0.883508 0.828339 0.839894 | 0.561905 0.883624 0.80873
Standard | 0.886082 | 0.290476 0.975726 0.784079 0.87766 0.385714 0.951568 0.754162
FP3 0.894947 | 0.585714 0.942393 0.804975 0.869592 | 0.52381 0.92288 0.773926
MLP Avalon 0.881738 | 0.480952 0.942044 0.737476 0.869415 | 0.614286 0.908014 0.860647
FP2 0.864716 | 0.385714 0.936818 0.71686 0.873493 | 0.280952 0.961324 0.758672
mol2vec | 0.873493 | 0.485714 0.932288 0.77619 0.864894 | 0.485714 0.9223 0.746438

deaths have been attributed to hypertension [38]. How-
ever, their safety assessment needs to be addressed prior to
prescription. While treating pregnancy-related hypertension
with anti-hypertensives has been reported to increase the
risk of pre-term birth, low birth weight, growth restrictions,
untreated pregnancy-related hypertension have their own risk
making therapy indispensable. Likewise, gestational diabetes
is another common complication of pregnancy affecting
over 15% of pregnancies worldwide. Consequently, the need
for anti-diabetic medication during pregnancy has become
mandatory [39]. Until recently, insulin was the only drug
recommended for use in pregnancy. Metformin has been
identified to have equal effectiveness as insulin without any
risk to the fetus [40]. Though insulin is highly effective,
it requires multiple daily injections thereby reducing patient
adherence. This calls for more studies on alternate oral anti-
diabetic agents for gestational diabetes and its effects on
fetus. While the current study predicts the permeability of
many drugs in these categories, we have chosen to discuss
on few interesting drugs which were predicted positive or
negative by majority of the models.

1) ANTI-HYPERTENSIVE DRUGS

Acetazolamide use in pregnancy is generally not recom-
mended owing to its suspected teratogenic risks. Many con-
genital malformations like exencephaly, cleft lip, retarded
incisor teeth development, and microphthalmia have been
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reported based on animal studies [39], [40]. However, poor
evidence on the actual undesirable effects of acetazolamine
use during pregnancy is still unknown. All our models pre-
dict the permeability of acetazolamine across the placental
barrier, indicating its ability to reach the fetus (Table 3).
This is consensus with the case report by Al-Saleem and Al-
Jobair [41], where several congenital diseases are reported in
12-year-old boy who was exposed to maternal acetazolamide
before and during the first trimester of the pregnancy. As a
result, FDA has classified this drug as class C indicating
adverse effects based on animal studies but no well-controlled
human studies [41]. Similarly, angiotensin receptor blocker
is a class of anti-hypertensive therapeutics commonly pre-
scribed for hypertension. However, their use during preg-
nancy is not allowed owing to the possible congenital effects
on the fetus [42]. However, pregnancy-related hypertensive
disorders like pre-eclampsia need proper medical care as it
is known to affect the fetus resulting in premature delivery,
growth retardation, and death. While the regulations for high
blood pressure therapy are constantly updated, the defini-
tion and treatment recommendations for pregnancy-related
hypertension have not evolved considerably [42]. According
to the US National High Blood Pressure Education Program
(NHBPEP), methyldopa, labetalol, beta-blockers (other than
atenolol), nifedipine with slow release profile and a diuretic
for pre-existing hypertension are considered safe treatment
during pregnancy [43]. In agreement with this, none of our
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TABLE 3. Antihypertensive drug permeability prediction across placenta for different models trained with best fingerprints. Here, 1 and 0 represent the

+ve permeability and —ve permeability classes respectively.

Compound KNN MLP SVC
Cib N;)me Intended use (Standard) | (Avalon) | (Avalon)
1798 Acetazolamid Idiopathic intracranial hypertension 1 1 1
3749 Irbesartan RAS inhibitor/Angiotensin II receptor blockers/hypertension 1 1 1
4499 Nisoldipine Calcium Channel Blocker/hypertention 1 1 1
4828 Pindolol Beta blockers /hypertention 1 1 1
5833 Spironolactone | aldosteron antoagonist/potassium sparring diuretic/fluid drainage 1 1 1
54675783 Minocycline Idiopathic intracranial hypertension 1 1 1
5493444 Aliskiren RAS inhibitor/renin inhibitor/Hypertension 0 0 0
3869 Labetalol Beta blockers /hypertention 0 0 0
2162 Amlodipine Calcium Channel Blocker/hypertention 0 1 1
2405 Bisoprolol Beta blockers /hypertention 1 1 0
2541 Candesartan RAS inhibitor/Angiotensin II receptor blockers/hypertension 0 1 1
2720 Chlorothiazide Diuretic/fluid draingage/hypertension 0 1 1
3333 Felodipine Calcium Channel Blocker/hypertention 0 1 1
3702 Indapamide thiazide-like diuretic/hypertension 0 1 1
3784 Isradipine Calcium Channel Blocker/hypertention 0 1 1
4170 Metolazone Diuretics/Hypertension 0 1 1
4474 Nicardipine Calcium Channel Blocker/hypertention 0 1 1
4946 Propranolol Beta blockers /hypertention 1 1 0
65999 Telmisartan RAS inhibitor/Angiotensin II receptor blockers/hypertension 0 1 1
107807 Perindopril RAS inhibitor/ ACE inhibitor/ Hypertension 0 1 1
5281037 Eprosartan RAS inhibitor/Angiotensin II receptor blockers/hypertension 0 1 1
39147 Nadolol Beta blockers /hypertention 1 1 0
2520 Verapamil Calcium Channel Blocker/hypertention 0 0 1
41781 Torsemide blocking the chloride-binding site of the Na+/K+/2Cl- cotransport 0 0 1
2471 Bumetanide Diuretic/fluid draingage/hypertension 0 1

models predict the permeability of labetalol (Table 3), a beta-
blocker thereby indicating their safety for pregnancy-related
hypertensive disorders.

However, Aliskiren is a direct renin-angiotensin inhibitor;
it has been classified as a pregnancy category C agent for
the first trimester and category D drug for the second plus
third trimesters [44]. Though aliskiren has not been evaluated
in pregnant women and the categorization has been based
on other renin-angiotensin inhibitors, our models predict the
non-passage of these drugs across the placenta barrier. This
could be attributed to either lack of actual data related to the
drug permeability or lack of case reports on human effects
from this drug. Though NHBPEP has reported beta-blockers
relatively safe, their use during pregnancy has attained more
controversies than ever, owing to the increase in the propor-
tion of pregnant women with hypertension and the risk of
congenital malformations in offspring.

Alternatively, calcium channel blockers are commonly
used to treat pregnancy related hypertension as they are gen-
erally thought to have a favourable safety profile in preg-
nancy. However, a large study has observed the calcium
channel blockers exposure during the third trimester and it
is associated with a high risk of neonatal seizures. This is
attributed to the plausibility of the permeability of calcium
channel blockers across the placenta resulting in a decrease
in intracellular calcium [45]. Similarly, amlodipine, which
was predicted positive for permeability across the placenta
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by the majority of our models (Table 3) has been identified to
have no association with fetal malformations as compared to
other anti-hypertensive medications [46]. However, the study
was based on the small sample size. thus, more studies on the
actual passage of this drug and its effects during pregnancy
need to be conducted to be able to tag them safe. Similarly,
nifedipine has been reported to be favourable, though most
guidelines do not recommend it for pregnancy use. There is
also the possibility of their infiltration into the breast milk,
however, no adverse fetal effects have been reported in this
regard [47].

2) ANTI-DIABETIC DRUGS

Owing to the unparalleled efficacy, safety and lack of well-
studied alternatives drugs, insulin continues to be the gold
standard treatment for gestational diabetes. As for any dia-
betes type, medical nutrition therapy continues to be the
starting point for diabetic therapy. However, the need for
rapid control of glycemic levels demands alternate drug ther-
apies [48]. The use of oral anti-diabetic drugs is not rec-
ommended by FDA, whereas the UK National Institute of
Health and Care Excellence (NICE) considers metformin and
glyburide as safe anti-diabetic medications. Metformin is a
biguanide that decreases intestinal glucose absorption and
increases insulin sensitivity [49]. Finally, it is metabolized by
the CYP450 pathway and excreted in urine with a half-life of
6.2 hours. As recommended by NICE, insulin secretagogues
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TABLE 4. Anti-diabetic drug permeability prediction across placenta for different models trained with best fingerprints. Here, 1 and 0 represent the +ve

permeability and —ve permeability classes respectively.

KNN MLP SvC
CID Compound name Intended Use (Standard) | (Avalon) (Avalon)

3476 Glimepiride insulin secretagogue/anti-diabetic 0 0 0
3478 Glipizide insulin secretagogue/anti-diabetic 0 0 0
5505 Tolbutamide insulin secretagogue/anti-diabetic 0 0 0
4829 Pioglitazone Agonist to Peroxisome proliferator-activated receptor gamma/anti-diabetic 1 1 1
10096344 Linagliptin insulin secretagogue/anti-diabetic 1 1 1
11243969 Saxagliptin DPP4-inhibitors 1 1 1
11450633 Alogliptin DPP4-inhibitors 1 1 1
11949646 Empagliflozin inhibits the sodium-glucose contransporter 2(SGLT2) 1 1 1
45588096 Exenatide glucacon-like peptide-1(GLP-1) receptor agonist 0 1 1
145994868 Albiglutide glucacon-like peptide-1(GLP-1) receptor agonist 0 1 1
16134956 Liraglutide GLP-1 receptor agonist 0 1 1
65981 Repaglinide inhibitor of ATP-sensitive potassium channels in a glucose-dependent manner/anti-diabetic 0 1 1
77999 Rosiglitazone agonist at peroxisome proliferator activated receptors (PPAR) 0 1 1
4369359 Sitagliptin DPP4-inhibitors 0 1 1
5311309 Nateglinide non-sulfonylurea insulin secretagogue 0 1 1
9887712 Dapagliflozin inhibits the sodium-glucose contransporter 2(SGLT2) 0 1 1
41774 Precose alpha-glucosidase inhibitors/anti-diabetic 0 1 0
24812758 Canagliflozin inhibits the sodium-glucose contransporter 2(SGLT2) 0 1 0

like glimepiride, glipizide and tolbutamide are predicted neg-
ative for placental permeability by all our models (Table 4).
Based on the review by Kalra et al. [50], the choice of such
glyburide use during pregnancy must be approached pragmat-
ically after analyzing the target abnormality (insulin resis-
tance or glucose intolerance), the pathophysiology of the
person’s diabetic condition, fetal and maternal safety. Sim-
ilar results on the fetal safety of insulin secretagogues is
reported by Moore et al. [51] based on a randomized control
trial comparing the efficacy of metformin and glyburides for
gestational diabetes.

Sulphonylurea based secretagogues have been proven to
show effectiveness in treating hyperglycemia. However, their
use during pregnancy result in increased incidence of neona-
tal hypoglycemia [52]. However, these conclusions on the
resultant hypoglycemia are considered flawed owing to the
lack of data on fetal metabolic profile. Another study by
Towner et al. [53] rectify this lack of information by includ-
ing metabolic profile and identify glycemic control as the
sole independent risk factor for poor fetal outcomes. While
risk assessment of more such drugs in the second and third
trimester has started emerging, their assessment in the first
trimester is to be addressed yet. Similarly, thiazolidinediones
that activate the nuclear peroxisome proliferator activator
receptor gamma (PPARy ) have been reported to cross the pla-
centa and are consistent with our model prediction of piogli-
tazone and rosiglitazone (Table 4). However, their impact
is studied only in vitro and has been reported to have no
teratogenic effects. Although, owing to the role of PPARy
in placental maturation, there is a suspected effect of growth
retardation [54]. With the advent of their potential applica-
tion in stimulating ovulation in cases of polycystic ovary
syndrome, more research on their application during preg-
nancy can make these drug candidates as an alternate option
for managing gestational diabetes. Parallelly, glucosidase
inhibitors have been predicted to permeate across placenta by
only one model, while the other two models have predicted
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negative permeation (Table 4). In line with this, glucosidase
inhibitors are reported to not have any adverse fetal outcomes
in several studies [52]. However, most of the GLP-1 agonists
have been predicted to cross the placental barrier by the
majority of our models indicating their adverse effects on the
fetus (Table 4), which is further consistent with the findings
by Young and Anwar [52].

3) ANTI-ALLERGIC DRUGS

Allergic diseases are one of the most prevalent conditions in
the urban world affecting 18 to 30% of women of childbear-
ing age [55]. In pregnancy, allergic asthma has been related to
adverse pregnancy outcomes. During pregnancy, the mother
is in a state of immunotolerance to prevent the rejection of
paternal antigens in the fetus [56]. Similarly, placentation
and fetal growth require a specific immune environment.
Hence, there needs to be a constant balance in this immune
system to retain the foreign DNA and prevent pathogens
or allergens from affecting it. Ideally, there should be no
pharmacologic therapy during pregnancy, especially during
the first trimester. However, to avoid adverse effects due
to untreated conditions like allergic asthma, management of
allergic conditions like asthma, allergic rhinitis, and allergic
bronchitis is crucial.

In the current chosen pool of allergic medications, the
majority of them were predicted to cross the placental bar-
rier by most of our models (Table 5). Among the different
types of glucocorticoids, ciclesonide and budesonide were
predicted negative for permeability, whereas other glucocor-
ticoids were predicted positive (Table 5). Generally, inhaled
corticosteroids are considered relatively safe during preg-
nancy when used in lower doses. However, many continue
to show apprehension about their use during pregnancy. This
could be due to their use is considered safe as it prevents
adverse outcomes of untreated conditions [57]. In the next
class of anti-allergic medications, antihistamines are very
popular and can be acquired as over-the-counter medications.
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TABLE 5. Anti-allergic drug permeability prediction across placenta for different models trained with best fingerprints. Here, 1 and 0 represent the +ve
permeability and —ve permeability classes respectively.

Compound KNN SvVC MLP

CID szme Intended Use (Standard) | (Avalon) | (Avalon)
2200 Antazoline anticholinergic activity/ allergic conjunctivitis 1 1 1
2267 Azelastine histamine H1-receptor antagonist 1 1 1
21700 Beclomethasone dipropionate synthetic corticosteroid 1 1 1
9865442 Loteprednol glucocorticoid 1 1 1
5284514 Acrivastine triprolidine analog antihistamine 1 1 1
5281071 Olopatadine histamine H1 antagonist and mast cell stabilizer 1 1 1
444036 Fluticasone propionate synthetic glucocorticoid 1 1 1
82153 Flunisolide corticosteroid with anti-inflammatory 1 1 1
27503 Cromolyn sodium degranulation of mast cells, 1 1 1
31307 Triamcinolone Conrticosteroid 1 1 1
6918155 Ciclesonide glucocorticoid 0 0 0
5281004 Budesonide glucocorticoid that is a mix of the 22R and 22S epime 0 0 0
3241 Epinastine histamine H1- and H2-receptors antaonist 1 1 1
3348 Fexofenadine selective peripheral H1-antagonist 1 1 0
2913 Cyproheptadine antagonist of both serotonin and histamine receptors 0 1 1
3219 Emedastine allergic conjunctivitis 0 1 1
3957 Loratadine selective peripheral H1-antagonist 0 1 1
4636 Oxymetazoline alpha («)-adrenergic agonist 0 1 1
26987 Clemastine histamine H1 antagonist 0 1 1
124087 Desloratadine selective peripheral H1-antagonist 0 1 1
1549000 Levocetirizine histamine H1 antagonist 0 1 1
5282408 Ketotifen fumarate histamine H1 antagonist and mast cell stabilizer 0 1 1
2678 Cetirizine histamine H1 antagonist 0 1 1

This demands a more serious review of the safety of its
use during pregnancy. In line with this, our models have
predicted all the anti-histamines to be positive to permeate
through the placental barrier. Anti-histamines like histamine-
type 1 (H1) antagonists are some of the first generation of
antihistamines used for allergic conditions. While none of
these drugs has been reported to increase fetal risk if used
during pregnancy [58], there are some recent contradicting
reports which claim the risk of pre-eclampsia [59]. Owing
to such irregularities in the literature, a more thorough amal-
gamation of computational models, in vitro models and data
from other upcoming models is needed for a better under-
standing of their safety. Alternative to the first-generation
antihistamines, the second generation is preferred owing to
their reduced effect on the central nervous system (drowsi-
ness). These second-generation antihistamines like cetirizine,
fexofenadine, and loratadine are considered relatively safe
based on a meta-analysis of different groups prescribed with
these drugs posing no apparent fetal risks [58]. Though there
is strong evidence of the safety of the use of anti-allergic
medications during pregnancy and they are considered safe
to use at moderate doses. However, given the current state
of the research, it is still difficult to determine whether there
are actual effects of these medication on pregnancy outcomes
and if they are due to the underlying condition or due to
the medication. Hence, more studies addressing these are
needed to estimate the appropriate drug safety profile during
pregnancy.

While the current study has been demonstrated to effec-
tively predict the different drugs classes permeability across
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the placental barrier, there are certain limitations that need
to be addressed to advance further in this field of study.
For instance, the dataset utilised in the current study is a
mixture of several in vitro perfused placental drug transfer
data and blood analysis during pregnancy to determine drug
concentration. While these two models are the most reliable
data sources, it results only in a limited set of data points
(drugs), as very limited drugs are administered to pregnant
women. Alternatively, in vitro and in vivo data can be adapted
individually and studies can be performed to identify the key
differences between the data points. Thus, an ensemble of
in vitro and in vivo study specifically for data generation of
placental transfer of drugs can be considered to overcome the
limitations pertaining to dataset.

IV. CONCLUSION

Inherent to pregnancy traits, it is extremely difficult to gather
clinical data on fetal exposure to medications. Additionally,
it is also difficult to conduct research and predict the level
of fetal exposure. As a result, drug transfer across the pla-
centa barrier and the overall quantitative information is highly
sparse. In this regard, machine learning and deep learning
models can be exploited to predict the fate of drugs across the
placenta barrier. In this study, we have constructed the best-
performing machine learning models and neural networks.
While traditional ML models like KNN, and SVC have per-
formed well in this classifier problem, tree-based and boost-
ing algorithms could not perform well. We believe that this
study is one of the first to use neural networks to analyze pla-
cental permeability. We further identified the application of
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data balancing techniques like SMOTE improved the perfor-
mance of all the models. Interestingly, data balancing worked
only for few fingerprint types indicating the robustness of the
models developed. In conclusion Avalon fingerprint worked
based for most of the models and hence they were used for
further studies on understanding the drug permeability of
different drug classes.

The extremely little dataset and its severe imbalance could
be attributed for the subpar results of tree-based and boosting
algorithm models. The limits in datasets caused by ethical
concerns could be addressed through efforts to enhance the
dataset by fusing this work with in vitro model-based data.
Future studies can concentrate on identifying the compounds
and their representative qualities especially necessary for
transport through receptor/transporter proteins because the
current dataset have minimal information on the type of
transport properties.

ML-assisted drug development for pregnancy complica-
tions and toxicological screening for developmental toxicol-
ogy has seen enormous growth in the recent years. Owing
to the highly dynamic nature of the pregnancy period, the
pharmacodynamic and pharmacokinetic behaviour of a drug
can vary during applications during pregnancy. Hence, use of
such models could work towards predicting the fate of the
drug in pregnant women. However, the dataset limitations
can be addressed prior to the progress in this field. Future
studies can include a combination of in vitro data generated
using perfused placenta or other placenta barrier models like
placenta-on-chip that are specifically developed to study a
particular pregnancy condition and the drugs that could be
used to treat them. Data from such studies could provide more
details on the genomic and proteomic implications of a drug
crossing the placenta and the models can aid in predicting the
passage as well as the toxicological effects.
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