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ABSTRACT With the development of intelligent applications, simply relying on traditional single type
of computing unit cannot efficiently satisfy diverse cloud requirements. The emergence of heterogeneous
computing can efficiently achieve the adaptation of these intelligent applications by using different types of
processing units such as Graphics Processing Unit (GPU) and Field Programmable Gate Array (FPGA).
However, the trade-off between profit and costs in the process of scheduling heterogeneous computing
resources is also an issue worthy of attention. To address this challenge, this work establishes a heterogeneous
computing resource scheduling model based on Stackelberg differential game, which includes three roles
Computing Power Trading Platforms (CPTPs), Heterogeneous Computing Service Providers (HCSPs), and
Heterogeneous Computing Application Providers (HCAPs). The objective is to maximize utility function of
CPTPs and HCSPs subject to rental ratio, pricing strategy and energy consumption of resource scheduling,
which has proved that there exists a Stackelberg Nash Equilibrium (NE) solution. The Support Vector
Machine based on Artificial Fish (SVM-AF) is proposed to predict the access times of heterogeneous
computing applications. In addition, the distributed iteration method and Cauchy distribution is adopted
to optimize the computing price strategy and improve its convergence performance. The simulation results
show that compared with other strategies, the proposed strategy can effectively improve computing revenue
of user experience and while reducing energy consumption in the process of resource scheduling.

INDEX TERMS Heterogeneous computing, resource scheduling, game optimization, Stackelberg.

I. INTRODUCTION
In recent years, with the continuous development of demand
for new cloud computing services such as AI and big data,
especially the extensive application of deep learning, higher
requirements have been put forward for the computing ability
of servers deployed in the cloud [1], [2], [3]. Affected by the
physical design limit and energy consumption control, the
traditional single computing unit with CPU can no longer
meet the growing demand for diverse cloud requirements
[4], [5]. As the demand for computing power in various fields
continues to increase, various hardware chip products have
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been launched for different computing scenario applications,
such as GPUs for image processing [6], [7], FPGAs for
high-performance computing [8], NPUs for neural network
based training [9], and DPUs for data processing [10].

Nowadays, heterogeneous multi-core computing architec-
ture has gradually become the mainstream processor, which
base on different types of instruction set architecture and
computing units form a new system enables to serve the
most suitable business scenarios [11], [12], [13]. At present,
it mainly includes GPU, FPGA, NPU and elastic accelerated
computing [14], [15]. With these computing units equip with
special capabilities showing more and more powerful perfor-
mance in large-scale parallel computing. OpenCL by Apple
[16] and CUDA by NVIDIA [17] are both heterogeneous
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computing unit. In this structure, the CPU is responsible for
making up for the lack of logic control capabilities of the
GPU. The GPU compensates for the shortcomings of the tra-
ditional CPU multicore architecture when dealing with high
parallel, large scale compute intensive applications. Make the
whole system suitable for a wider range of application scenar-
ios. However, this structure also faces many new challenges.
For example, the difference in heterogeneous cores leads to a
decrease in resource utilization, which makes the system per-
formance less than expected. Therefore, improving re-source
utilization in heterogeneous systems is an extremely impor-
tant research objective in the field of heterogeneous multi-
core research.

A. RELATED WORKS
In recent years, various heterogeneous computing resources
scheduling schemes to enhance system performance have
been proposed by academia and industry [20], [21]. In order
to minimize the energy consumption in the task process-
ing of heterogeneous edge devices, which including CPU
and GPU computing resources, Zeng et al. [22] propose a
resource management method of edge nodes based on fed-
erated learning. Based on CPU-GPU heterogeneous com-
puting, the authors in [23] propose an energy efficient
resource management strategy for federated edge learning
to promote cooperative cooperation between CPU, GPU,
and other heterogeneous computing hard-ware resources to
improve the utilization of resources. Wang et al. [24] pro-
pose a dynamic scheduling scheme for real-time tasks based
on cloud data center virtualization, which classifies het-
erogeneous tasks and virtual machines based on historical
scheduling records and merges them by scheduling jobs of
similar classes to maximize the host’s operational state uti-
lization. To further improve the utilization of heterogeneous
resources to reduce the cost overhead in the scheduling pro-
cess, Zeng et al. [22] propose a dynamically reconfigurable
task scheduling method based on the CPU-FPGA heteroge-
neous body system architecture to improve the scheduling
efficiency by fully considering the task scheduling over-
head and latency impact. In [25], a heuristic algorithm for
CPU-GPU system utilization awareness and energy saving is
proposed from the accuracy of computing scheduling.

However, the above heterogeneous computing resource
scheduling schemes are all for static scenarios. In real sce-
narios, diverse computing tasks are constantly coming. Accu-
rately predicting the upcoming heterogeneous resources and
preparing in advance is also the key to improve the uti-
lization of heterogeneous resources and increase the rev-
enue of computing service providers. In [26], a recurrent
neural network based traffic prediction model for piecewise
access control is proposed to further improve the network
resource utilization by constructing an improved variant with
a closed loop parameter update mechanism. Reference [27]
proposed an AlloX strategy for achieving efficient prediction
of access-side machine learning business resources, thereby

enabling rational utilization of GPU and CPU resources and
reducing the cost of CPU/GPU data centers. The authors
of [28] study an elastic multi-resource allocation strategy
based on a coupled CPU-GPU shelf, which provides resource
availability while better ensuring user fairness. In [29], a deep
Q-learning resource prediction and scheduling algorithm
for GPU is proposed, which designed three prototypes of
resource management systems, the simulation results show
significant improvements in resource utilization compared
to ordinary heuristics. The authors in [30] proposed a deep
learning based on multi-core CPU workload prediction by
fusing GMM clustering with LSTM algorithm for phase pre-
diction, which will produce the best phase-aware prediction
results and reduces the average error.

Although the above studies through task prediction have
optimized resource utilization, but not consider the revenue
issue. It is also worthwhile for cloud computing resource
operators to pay attention to improving the operational rev-
enue of computing power providers. Through reasonably
adjusting the resource allocation strategies while ensur-
ing the computing power service demand of computing
power application providers. Game theory has been widely
used in resource allocation and optimization tasks, such
as internet pricing and network slicing resource allocation.
In [31], a cloud computing resource sharing mechanism
based on Stackelberg’s differential game is proposed to facil-
itate resource transactions between cloud computing service
providers and different edge computing service providers.
The authors in [32] investigate a spatial anti-interference
scheme for IoT that minimizes the anti-interference routing
cost through Stackelberg games and reinforcement learning.
For the limited computing resources of MEC servers, [33]
designed a reasonable resource pricing and task offload-
ing strategy based on the Stackelberg game. The simu-
lation results showed that the study could improve the
profit of MEC servers and the utility of end users, thus
achieving a win-win situation. Reference [34] proposes a
non-cooperative Stackelberg game interaction algorithm for
distributed scheduling of fog and cloud resources. A resource
controller is initiated to manage the available fog resources to
further maximize the service provider’s profit and seamless
resource provisioning.

B. MOTIVATION AND CONTRIBUTIONS
The heterogeneous computing resource scheduling has been
studied in [22], [23], [24], and [25], but it mainly considers the
static resource scheduling scenario, the temporary resource
switching scenario is ignored. Meanwhile, although resource
prediction has effectively improved the flexible scheduling
ability of computing resources in [26], [27], [28], [29], and
[30], but not consider actual costs and profit from the perspec-
tive of operators and how to maximize the benefits of com-
puting operations. Besides, the current research on resource
scheduling based on game theory is mainly oriented to
cloud computing power pricing, network elements, and other
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fields [31], [32], [33], and [34]. To the best of our knowl-
edge, there is no contribution to investigate the heterogeneous
computing resource scheduling with Stackelberg. Further-
more, the resource competition behavior between computing
resource service providers in a heterogeneous computing
environment is similar to the free competition market in
economics, and the game theory based on the method can
build the competition relationship in resource management.
Therefore, to obtain more computing benefits by competing
for limited computing resources, the game theory is intro-
duced to build the cooperation and competition relationship
between computing service providers. Main contributions of
this paper are summarized as follows.

The main contributions of this paper are summarized as
follows:

• We establish the heterogeneous computing resource
scheduling model based on distributed computing resource
management, which includes three roles, Computing Power
Trading Platforms (CPTPs), Heterogeneous Computing Ser-
vice Providers (HCSPs), and Heterogeneous Computing
Application Providers (HCAPs).

• A Stackelberg game is proposed to facilitate the com-
puting resource trading between the CPTPs and HCSPs. The
profit function of heterogeneous computing trading platforms
is constructed based on income, user preferences, and energy
consumption, which has proved that the Stackelberg Equilib-
rium (SE) is exit in the proposed game.

• An Support Vector Machine based on Artificial Fish
(SVM-AF) is developed to predict the access times of het-
erogeneous computing applications.

• The distributed iteration method and Cauchy distribution
are adopted to optimize the computing price strategy and
improve its convergence performance.

The effectiveness of the scheme has been verified, sim-
ulation results show that the proposed strategy can effec-
tively improve computing revenue of user experience and
while reducing energy consumption in the process of resource
scheduling.

C. ORGANIZATION
The remainder of this paper is organized as follows. The
system model is presented in Section II. We formulate the
optimization problem in detail and describe its solutions in
Section III and Section IV, respectively. Simulation results
are presented in Section V. Finally, we draw our conclusions
in Section VI.

II. SYSTEM MODEL
The system model of heterogeneous computing power
resource scheduling is shown in Figure 1. The system model
mainly contains X CPTPs NCPT (i = 1, 2, . . . ,X ) and Y
HCSPs NCSP(j = 1, 2, . . . ,Y ). HCSP develop hardware
resources based on the business requirements of different
dedicated capabilities and provide them to the upper layer
of a trusted arithmetic trading platform to realize hardware
resource virtualization and abstraction, which can realize the

unified management of resources. As the user of computing
resources, HCAPs submits computing requirements to the
resource trading platform to obtain more suitable computing
resources, such as AI model training, video rendering, secu-
rity surveillance, and graph computing.

The computational resources obey a heterogeneous
chi-square Poisson point distribution with density ϕ. The
resource scheduling process for the heterogeneous computing
power is as follows:

1) HCSPs gives the price of computing resources and
informs the CPTPs.

2) Based on the performance and price of computing
power, CPTPs determines the computing power rental pro-
portion and issues computing power prices according to the
request of HCAPs.

3) Based on the prices, preferences and satisfac-
tion, HCAPs select appropriate heterogeneous computing
resources to access.

A. COMPUTING APPLICATION POPULARITY
In reality, HCAP has different preferences depending on the
requirements, so the popularity of other computing power
varies is important. The higher the application popularity, the
more frequently users visit, so as to leadmore revenue. There-
fore, introducing the application popularity metric can more
reasonably determine the proportion of application comput-
ing power rented and improve the revenue of the computing
power resource platform.

Assume that the applications are denoted by A =

A1,A1, . . . ,AN , the popularity of the n-th application is
Dn, n = 1, 2, . . . ,N . According to the popularity of the
applications, the set of applications for algorithmic resources
is ranked in descending order. The probability of a user
requesting service from an application isDn, which obeys the
Zipf distribution.

With the increasing popularity of AI model training, video
rendering, security surveillance, and graph computation,
some popular applications are becoming well-known. In this
paper, regulators θ is introduced to adjust the popularity of
arithmetic applications to improve the popularity of hetero-
geneous arithmetic and the gain of heterogeneous computing
power networks. The calculation formula can be given by

Dn =
θ/na

N∑
i=1

(1/ia)

, (1)

where, a is the popularity index factor for heterogeneous
computing power, with the increase of a, the popularity of
heterogeneous computing applications continues to increase.

B. USER PREFERENCES
The variability of the computing power services provided by
varies HCAPs leads to different preferences. The preference
of computing power users directly affects the revenue of
HCAP. In general, if the user preference is low, the revenue of
HCAP will be lower, and vice versa. Therefore, in the paper,
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FIGURE 1. The heterogeneous computing resource scheduling model.

user preference metrics are introduced to measure the quality
of computing services.

Various factors influence user preference, such as com-
puting power performance, latency, energy consumption, etc.
It assumed that each computing power has M evaluation
metrics, and each evaluation metric has R discrete values.
Each computing power resource corresponds to an computing
power preference matrix G, which can be given by

G =


g11 g12 . . . g1R
g21 g22 . . . g2R,
...

...
...

...

gM1 gM2
... gMR

 (2)

where gmr denotes the degree of preference of HCAP for the
m-th characteristic,m represents arithmetic aversion, and r is
the computing preference m ∈ 1, 2, . . . ,M ,r ∈ 1, 2, . . . ,R.
W = W1,W2, . . . ,WM is the matrix of weight values for M
evaluation indicators, and the preference of users for the D-th
computing power as shown in equation (3)

Rn =
λ

λ + ε

1
R

R∑
r=1

(WG), (3)

where ε is the influence factor of user preference. λ is the per-
centage of computing power resources rented by the CPTPs.
R denotes the number of evaluation indicators. According to
the law of large numbers, Bn converges to a constant value
when it tends to infinity

lim
R→∝

Bn = lim
R→∝

λ

λ + ε

1
R

R∑
r=1

(WG) =
λ

λ + ε
. (4)

C. CPTPs ENERGY CONSUMPTIONS
The energy consumption of CPTPs as the sum of energy
consumption for resource schedulingEr , maintenanceEm and
idle time Eidle, the total energy consumption of the CPTP as

FIGURE 2. The process of the stackelberg game.

shown in equation (5)

Ex =

Y∑
y=1

λxyEr + Em + Eidle

=

Y∑
y=1

λxytrer + tmem,

+ (Ttotal − tr − tm)eidle (5)

where λxy is the proportion of x-th CPTP renting y-th HCSP
computing power, respectively. er , em and eidle are the energy
consumption per unit of time for resource scheduling, mainte-
nance and idle time,. tr , tm are the time of resource scheduling
and maintenance, respectively. Ttot is the total time.

This section proposes the Stackelberg to optimize the
scheduling for the heterogeneous computing resources.
The Stackelberg game model consists of three roles: parties,
the strategy space, and utility function. The game parties
generally consist of a dominant player and a follower. Both
sides of the game have their utility functions and strategy
spaces. In this paper, the process of the game can be shown
as Fig. 2.

The Stackelberg game model contains three elements,
which formulate as
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1) Game player: CPTPs as the leader with a number of X .
Followers are HCSPs with a number of Y .
2) Strategy space: Strategy space of the leader is the rent

ratio λxy of computing resources given by the CPTPs. Fol-
lower’s strategy space is the price P = P1,P2, . . . ,PY of
computing power service set by HCSPs.

3) Utility function: The utility functions of the leader and
follower are the utility of CPTPs and HCSPs, respectively,
given by Ux , Uy.

The utility function of the CPTP can be obtained can be
expressed as

Uproof
x =

Y∑
i=1

N∑
n=1

TSDnBn, (6)

U rent
x =

Y∑
i=1

λxyϕyPy,

Ux = Uproof
x − U rent

x − τEx (7)

=

Y∑
y=1

N∑
n=1

TSDnBn −

Y∑
y=1

λxyϕyPy,

−

Y∑
y=1

τ (λxyEr + Em + Eidle) (8)

where λxy is the proportion of x-th CPTP renting y-th HCSP
computing power.Uproof

x is the proof from providing services
for HCAP, ϕy is the total computing power of Py. U rent

x , Ex
are the cost of computing resources rent and energy efficiency
consumption, respectively. T denotes the number of times
of the application is accessed per unit of time, τ denotes
cost per unit energy, S is the unit price per service. The
utility functions of HCSPs are the subtracting value of the
fee charged for renting the computing resource service and
the cost of managing the computing resource, which can be
written as

Uy =

X∑
i=1

(Py − Cy)ϕyλxy. (9)

III. PROBLEM FORMULATE
A. PROBLEM FORMULATE
The optimization problem of the HCSPs is to maximize the
utility function, which can be given by

MaxUy(P, λ). (10)

The optimization problem of CPTPs can also be denoted
as maximizing the utility function, which can be formulated
as

MaxUx(T ,P, λ). (11)

Consequently, our goal is to maximize the utility function
of CPTPs and HCSPs by optimizing the heterogeneous com-
puting applications access times T , rental ratio of comput-
ing λxy and the pricing strategy of computing resources Py,

Which can be formulated as

max
T ,Py,λxy

{Ux(T ,P, λ),Uy(P, λ)} (12)

s.t. Ex =

Y∑
y=1

τ (λxyEr + Em + Eidle) ≤ Emax , (12a)

Pminy ≤ Py ≤ Pmaxy , (12b)

≤ λxy ≤ 1, (12c)

Fx =

Y∑
y=1

λxyϕy ≤ Fmax , (12d)

where Emax is the thresholds of the maximum energy con-
sumption, Pminy and Pmaxy are the minimum and maximum
price constraint of computing resources, respectively. The
constraint (12d) is given to guarantee number of computing
resources rented, Fmax is the maximum number of computing
resources can be rented.

B. NASH EQUILIBRIUM
The Stackelberg game consists of multiple HCSPs and
CPTPs, and there is a competitive relationship between mul-
tiple CPTPs because of the limited resources of HCSPs.
Meanwhile, the rental strategy of each CPTPs affects the
price of the computing resources of the HCSPs, which in turn
affects the rental strategies of other HCSPs. Therefore, there
is a non-cooperative game relationship among the CPTPs.

Nash equilibrium is the optimal solution of a non-
cooperative game, which is a stable state of the strategy space
among the game participants, i.e., there does not exist a game
participant who can achieve more gains by changing the
corresponding strategy space. The process of proving Nash
equilibrium is as follows.

1) Let the dominant player (CPTP) is X , and the followers
(HCSP) is Y , So the corresponding set is finite
2) It is obvious that in the Euclidean space, the strategy

space of the game participants is a bounded non-empty closed
set and the utility function is continuous on the strategy space.

The first-order and second-order partial derivatives of the
effectiveness function are expressed as

∂Ux
∂λ

=

ε
N∑
n=1

TSDn
R∑
r=1

WG

R(λ + ε)2
− (ϕyPy + τEr ), (13)

∂2Ux
∂2λ

=

−2ε
N∑
n=1

TSDn
R∑
r=1

WG

R(λ + ε)2
< 0. (14)

It can be seen that the second-order partial derivatives of
the utility function are less than 0, which can be obtained
that the utility function satisfies the strictly concave function
property on the strategy space. For this part, the Nash equi-
librium algorithm in the non-cooperative game is proposed as
shown in TABLE 1.
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TABLE 1. Algorithm 1 The Nash equilibrium algorithm in the
non-cooperative game.

IV. STRATEGY OPTIMIZATION
A. PREDICTED THE ACCESS TIMES
In order to further improve the revenue of CPTPs, ensure
it can perceive the access times T of heterogeneous com-
puting applications in real time, and achieve the effective
deployment. In this section support vector machine algorithm
based on artificial fish (SVM-AF) is proposed to optimize the
penalty factors and kernel functions to improve the accuracy
of model prediction. Therefore, the problem of (12) can be
reformulated as

max
T

Ux = Uproof
x − U rent

x − τEx

=

Y∑
y=1

N∑
n=1

TSDnBn −

Y∑
y=1

λxyϕyPy.

−

Y∑
y=1

τ (λxyEr + Em + Eidle) (15)

• Support Vector Machine Regression Prediction
For the sample set (ai, bi),i = 1, 2, . . . , I , ai is the i-th input

vector of access times T ,bi is the output term of access times
T , and φ(·) is the nonlinear mapping of the sample mapping
in the feature space. So the regression prediction of the least
squares support vector machine can be expressed as:

f (a) = HTφ(a) + n, (16)

where H and n are settable parameters, and their values can
be determined by the following calculation

G =
1
2
∥H∥

2
+ cG1, (17)

where G1 is the loss function and c is the adjustment factor.
The problem is expressed as

min(
1
2
∥H∥

2
+ c

I∑
i=1

e2i ), (18)

s.t. HTφ(ai) + n+ ei, (18a)

L(H , n, ei, ϱi) =
1
2
∥H∥

2
+ c

I∑
i=1

e2i ,

−

I∑
i=1

ϱi(HTφ(ai) + n+ ei − bi) (19)

where ϱi is the Lagrangian multiplier, ei is the error. Accord-
ing to the KKT condition

I∑
i=1

ϱiφ(ai) = H

cei = ϱ
L∑
i=1

ϱi = 0,

HTφ(ai) + n+ ei = bi

(20)

The regression function is expressed as

f (a) =

I∑
i=1

ϱiK (a, ai) + n, (21)

where K (a, ai) is a kernel function satisfying mercer condi-
tion. Considering the characteristics of radial basis function
such as wide convergence domain and strong generalization
ability, this paper selects the kernel function of radial basis
function, which is expressed as

K (ai, aj) = exp(−
∥ai − aj∥2

2σ 2 ), (22)

where σ is the core width. In the LSSVM regression model,
the kernel function and the adjustment factor c are two key
parameters that affect the regression performance, and they
are also important points to improve the accuracy of the
model.

• Artificial fish swarm algorithm
The artificial fish swarm algorithm finds the optimal solu-

tion of the model based on the adaptiveness of each fish
by imitating the characteristics of the freedom of fish forag-
ing without adding centralized control factors. The artificial
fish swarm algorithm has the advantages of less sensitivity
and obvious robustness in the selection of initial values and
parameters, which can overcome the local extremes to the
highest extent and realize the global search of the optimal
solution.

1) FORAGING BEHAVIOR
Fish foraging behavior refers to the process of fish finding
food through their own perception and swimming to the
location where food is abundant, and in the artificial fish
swarming algorithm it is an iterative process that points to
a better solution. In the foraging behavior, assume that the
initial position of the artificial fish is Xi, in its swimmable
range randomly choose a locationXj, whereDij is the distance
between Xj and Xi, V is the distance perceived by the individ-
ual artificial fish. If the food concentration at the location Xj
is higher than Xi, which will be given

Sij(i+ 1) = Sij(i) +
R(n)
Dij

[Sij(j) − Sij(i)]. (23)
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Instead, the artificial fish will swim one step at random,
which will be have

Sij(i+ 1) = Sij(i) + R(n), (24)

where Sij(i), Sij(j) are the elements of column i and j in the
parameter matrix of artificial fishXi,Xj, respectively. Sij(i+1)
is the next states of Xi, R(n) is a random number within [1, n].

2) SCHOOLING BEHAVIOR
The schooling behavior refers to the natural aggregation of
fish and collective foraging behavior. In this process, the
school should avoid overcrowding with neighboring individ-
uals. In the gathering behavior, the initial state is Xi, and the
number of fish schools visible in its search domain is fi, the
set can be given by

Jik = Xj|Dij ≤ V . (25)

It is assumed that Jik ̸= ∅, the search center location is Xc,
the food concentration at Xc is Fc, and the number of partners
is Nc. If the food concentration at Xc is high and the crowding
is not high, the artificial fish will swim toward Xc

Xi+1 = Xi +
(Xc − Xi)Rs

Dic
, (26)

where, Rs denotes the random step size of artificial fish. Oth-
erwise, artificial fish will perform foraging behavior. If Nc =

0 the artificial fish also performs the foraging behavior.

3) TAIL-CHASING BEHAVIOR
Tail-chasing behavior refers to the behavior of individuals in
the school chasing the most active individuals nearby, and in
the algorithm, it is the process of advancing to the neighbor-
ing optimal solutions. The current position of the artificial
fish is Xi, the position with the highest food concentration
visible in the search field is Xmax , and the number of partners
in the search area Xmax is Nmax . If the food concentration
at Xmax is high and not crowded Fi < Fmax , the individual
artificial fishwill move towardsXmax , which can be expressed
as

Xi+1 = Xi +
(Xmax − Xi)Rs

Di,max
. (27)

On the contrary, artificial fish perform foraging behavior.

4) RANDOM BEHAVIOR
In the random behavior, artificial fish swim randomly in the
water in order to find food and fish, which have

Xi+1 = Xi + Rs. (28)

In the random swimming of artificial fish, the food concen-
tration at the location of each artificial fish individual shall
be recorded and compared with the previous location. If it is
superior, the previous location shall be replaced.

In order to overcome the shortcomings of support vector
machines in solving large-scale random data, in this paper
an improved support vector machine algorithm based on

TABLE 2. Algorithm 2 Improved SVM algorithm based on artificial fish
swarm.

artificial fish swarm is proposed, which gives full play to the
superior global search ability of the fish swarm algorithm and
the efficient ‘‘trans-ductive inference’’ advantage of support
vector machines. The optimal support vector machine penalty
parameter c and kernel function parameter δ are found by
the foraging behavior, clustering behavior and tail-chasing
behavior of the fish swarm algorithm, which the optimal
concentration food coordinates (bestX1, bestX2) are found in
the fish swarm algorithm. Algorithm 2 is proposed to solve
the optimal power allocation in TABLE 2.

B. OPTIMAL RENTAL RATIO OF COMPUTING RESOURCES
In this section, we consider the sub-problem, which optimizes
rental ratio of computing resources when access times and
price strategy are fixed, the utility function of CPTPs can be
written as

max
λxy

Ux = Uproof
x − U rent

x − τEx (29)

s.t. Ex =

Y∑
y=1

τ (λxyEr + Em + Eidle) ≤ Emax , (29a)

0 ≤ λxy ≤ 1, (29b)

Fx =

Y∑
y=1

λxyϕy ≤ Fmax , (29c)

Assume that computing resources is sufficient for all
HSAP. The HCSPs gives a set of computing resource rental
prices, and the best rental ratio of CPTP can be obtained
through derivation as follows

∂Ux
∂λ

=

N∑
n=1

TSDn
∑R

n=1WGRε

R(λ + ε)2
− ϕyPy − τEr , (30)
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λ =

√
ε
∑N

n=1 TSDn
∑R

n=1WG
R(ϕyPy + τEr )

− ε

±

. (31)

From formula (30), it can be seen that when the rental ratio
of the CPTP is 0, the CPTP will not rent computing services.
HCSP and CPTP will not benefit from the computing power
network, and the quality of computing power application
providers cannot be improved. Therefore, themaximumvalue
of computing power resource price exists, which can be
obtained

Pmaxy =
1
ϕy

N∑
n=1

TSDn
R∑
r=1

WG− εRτEr

εR
, (32)

When λ = 1, the CPTP will rent all computing power. Due to
the limited resources of HCSP, which will reduce the utility of
HCSP. Therefore the minimum value of computing resource
price exists, which can be given by

Pminy =
1
ϕy

ε
N∑
n=1

TSDn
R∑
n=1

WG− τErR(ε + 1)2

R(ε + 1)2
. (33)

In summary, the maximum and minimum computing
power resource prices exist. When the price is less than the
minimum value Pminy , the current rental price should be raised
by the CPTP. When the price is higher than the maximum
value Pmaxy , the current rental price should be lowered by
the HCAP. Through multiple adjustments to achieve the best
computing power service price, the two will ultimately max-
imize profits and improve the quality of user experience.

In practice, the service resources of HCAP will not be
ignored, which should meet formula (34), and the rental
proportion of computing resources should meet 0 ≤ λ ≤ 1.

Fx =

Y∑
y=1

λxyϕy ≤ Fmax , (34)

where, Fmax is the maximum number of computing service
resources.

Note that the optimal problem is convex and meet Slater
condition. The optimal value of λxy can be seen the following
dual problem.

min
ω≥0,ξ≥0,ν≥0,θ≥0

{max
λxy

Ux = Uproof
x − U rent

x − τEx)}. (35)

The Lagrangian multiplier method is proposed to optimize
the game. The Lagrangian function as follows

Lx(λxy, ω, ξ, υ, θ) =

Y∑
y=1

N∑
n=1

TSDnBn −

Y∑
y=1

λxyϕyPy

−

Y∑
y=1

τ (λxyEr + Em + Eidle).

+ w(
Y∑
y=1

(λxyEr + Em + Eidle) − Emax)

+ ξ (
Y∑
y=1

λxyϕy − Fmax)

+ υλxy + θ (1 − λxy) (36)

The optimal rent ratio of computing power resources is
shown can be given by

∇λxyLx(λxy, ω, ξ, ν, θ) = 0

∇ωLx(λxy, ω, ξ, ν, θ) = 0

∇ξLx(λxy, ω, ξ, ν, θ) = 0

∇νLx(λxy, ω, ξ, ν, θ) = 0

∇θLx(λxy, ω, ξ, ν, θ) = 0

(37)

where ω, ξ and ν are the Lagrangian multipliers. The neces-
sary and sufficient constraints of the Lagrangian function can
be given by.

The best rental ratio of computing resources can be derived
as follows

1, γ <

ε
N∑
n=1

TSDn
R∑
r=1

WG

R(ϕyPy + Ed + Emr − Etr )(1 + ε)2

0, γ <

ε
N∑
n=1

TSDn
R∑
r=1

WG

R(ϕyPy + Ed + Emr − Etr )
− 1,√√√√√√[

ε
N∑
n=1

TSDn
R∑
r=1

WG

R(ϕyPy + Ed + Emr − Etr )(1 + γ )
− ε]±, other

(38)

where, γ is the constraint of computing resources for HCSP,
the expression of which can be given by

γ = (Fmax −

Y∑
y=1

λxyϕy)2 − 1 (39)

C. OPTIMAL PRICE STRATEGY OF COMPUTING
RESOURCES
The optimal price of computing power resources can be
obtained by calculating the maximum value of the util-
ity function of HCSP. In this section, we consider the
sub-problem, which optimizes price strategy of computing
resources when access times and rental ratio are fixed, the
utility function of HCSPs can be written as

max
Py

Uy =

X∑
x=1

(Py − Cy)ϕyλxy. (40)

s.t. Pminy ≤ Py ≤ Pmaxy (40a)

The best value of the resource rental ratio of computing
services is substituted into equation (40) for derivation. The
derivation result is shown in equation (41). If the derivative
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is 0, it can be inversely solved. The price of HCSP for each
update can be obtained as

∂Uy
∂Py

= ϕyλ
∗
xy + ϕy(Py − Cy)

∂λxy

∂Py
, (41)

P∗
y = Cy − λ∗

xy/
∂λxy

∂Py
. (42)

The optimal price of a single computing service resource
is dynamic, and it is closely related to the price of computing
services for other HCSPs. The iterative formula of computing
power service is shown as follows

Pt+1
y = C t

y −
ρλ∗

xy

∂λxy/∂Py
, (43)

where, t is the number of iterations, Pty is the price of com-
puting power service resources at iteration t . C t

y denotes the
cost price of computing power service re-source management
at iteration t . ρ is the iteration step length, the value of which
gradually decreases with the iteration number.

Because the decline parameter value is too small or too
much and is not conducive to Nash equilibrium point approx-
imation, the Cauchy distribution is introduced to optimize the
system. The probability density function of one-dimensional
Cauchy distribution is

f (x) =
1
π

·
t

t + x2
, (−∞ < x < +∞), (44)

When t = 1, (44) is the standard Cauchy distribution. The
generating function of Cauchy distribution random variable
can be given by

η = tan[(ϖ − 0.5)π ], (45)

where ϖ is a random variable on [0,1], where it represents
the iteration step ρ. The optimized iteration step size can be
obtained as

ρ∗
=

1
2π

arctanρ (46)

When the number of iterations is t + 1, if the utility value of
HCSP and CPTP reaches the maximum, the iteration process
is terminated. On the contrary, enter the next cycle, and
stop the iteration process until the utility value of both is
maximum.

V. NUMERICAL RESULTS
A. EXPERIMENTAL SETTING
In this section, simulation results are given to evaluate the
system performance and investigate the impact levels of
the game optimization strategy of heterogeneous computing
application resource scheduling. There are 5 HCSPs, Each
HCSP contains multiple computing types, it can be expressed
as D1 = (CPU ,GPU ,FPGA), D2 = (CPU ,GPU ,NPU ),
D3 = (CPU ,NPU ), D4 = (CPU ,DSP), D5 =

(CPU ,ASIC). Simulation parameters are stated as Table 3.
A single HCSP has 500 computing resources. In the simu-
lation, this strategy is compared with ant colony algorithm
(ACA), global optimization strategy (GOS), and QOS prior-
ity algorithm (QOS PA) [35], [38].

TABLE 3. Table of parameters for numerical results.

FIGURE 3. The number of applications used vs. reduction rate of energy
consumption.

B. SIMULATION RESULT
In order to achieve fair comparison, we optimize the param-
eters of BP algorithm and SVM algorithm in a similar way.
BP algorithm is a general algorithm for training neural net-
works, which combines optimization methods such as gra-
dient descent and repeats two-stage cycle, propagation and
weight update. SVM algorithm is a machine learning algo-
rithm for analyzing data, which is used for classification and
regression analysis. In addition, themean absolute percentage
error (MAPE) was applied to evaluate the accuracy of the
model.

MAPE =
1
n

N∑
i=1

|
T̂i − Ti
Ti

100| (47)

where, T̂i is the number of accesses to real heterogeneous
computing resources at the i-th time, Ti is the number of
accesses to predicted computing resources at the same time,
n is the number of predictions.
Fig.3 shows theMAPE values of three different algorithms

BP, SVM, and SVM-AF. The calculation force access predic-
tion process based on historical data is called step=1. New
results can be obtained by pre setting. This process is called
step=2, and so on. From the simulation results, it can be
seen that MAPE increases with the increase of prediction step
size. Therefore, we can draw the conclusion that the results
become inaccurate as the step size increases. The simulation
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FIGURE 4. Computing price relationship between two HCSPs.

FIGURE 5. The revenue of CPTP vs. the number of iterations.

results show that the algorithm can achieve the minimum
prediction error compared with the other two algorithms.
Specifically, when step=5, compared with SVM algorithm,
the absolute error of prediction is reduced by 7.3%, and
compared with BP algorithm, the absolute error of prediction
is reduced by 32.4%.

Fig.4 illustrates the computing price relationship between
two HCSPs. The points on the curve represent the optimal
pricing strategy of the current HCSPs relative to another
HCSPs. It can be observed that the intersection point (0.49,
0.4) of the two curves is the Nash Equilibrium point, which
represents that the pricing and utility of both parties reach the
optimal level.

Fig.5 illustrates the income of CPTP versus the number of
iterations. It can be observed that with the same number of
iterations, the popularity of computing resources has a very
strong impact on the CPTP income, i.e., as the popularity
of heterogeneous computing resources increases, the CPTP
income also increases. Besides, from figure 5, it can be seen
the algorithm proposed in our paper has good convergence,
which basically converges after about 65 iterations.

FIGURE 6. The utility of CPTP vs. the rental ratio of computing resources.

FIGURE 7. The utility of HCSP vs. the price of computing.

Fig.6 illustrates the utility of CPTP versus the rental ratio
of computing resources. As can be seen, along with the rental
ratio of computing resources increases, the utility of CPTP
firstly increases and then decreases, which is explained by
the fact that with the increase of rental ratio, more computing
power rental costs will incur, and the energy consumption
of CPTPs for computing power resource scheduling and
mainte-nance will also increase, so lead to utility of CPTP
decrease.

Fig.7 illustrates the utility of HCSP versus the price of
computing. As can be observed from figure 7, along with the
pricing of computing increases, the utility of HCSP increases.
It can be explained as follows, since a higher price of com-
puting can increase the income of HSCPs. However, when
the rental price rises to a certain level, it will affect the rental
ratio of computing power for HCSP, thus the utility of HCSP
will decrease. Furthermore, we also observed that the strategy
proposed is superior to other strategies and algorithms.

Fig.8 shows the utility of CPTP versus the number of
access times. It can be seen from the figure the utility of
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FIGURE 8. The utility of CPTP vs. the number of access times.

FIGURE 9. The utility of CPTP vs. the energy consumption for resource
scheduling.

CPTP increases with the number of computing access times
increases. And the utility for the optimization strategy in this
paper is better than the other three strategies and algorithms.

Fig.9 shows the utility of CPTP versus the energy con-
sumption for resource scheduling. As can be seen, along with
the energy consumption for resource scheduling the utility
of CPTP firstly decreases and then then stabilize. It can
be explained by the fact that with the increase of energy
consumption, the cost of energy consumption will increase
during resource scheduling. However, when the energy con-
sumption generated in the resource scheduling reaches a cer-
tain level, it will affect the rental ratio of computing resources,
so the utility of CPTP tends to be stable.

VI. CONCLUSION
In order to solution the challenge of the trade-off between
profit and costs in the process of scheduling heterogeneous
computing resources, this work establishes a heterogeneous
computing resource scheduling model based on Stackelberg
differential game, which includes three roles Computing

Power Trading Platforms (CPTPs), Heterogeneous Comput-
ing Service Providers (HCSPs), and Heterogeneous Com-
puting Application Providers (HCAPs). The objective is to
maximize utility function of CPTPs and HCSPs subject to
rental ratio, pricing strategy and energy consumption of
resource scheduling, which has proved that there exists a
Stackelberg Nash Equilibrium (NE) solution. The Support
VectorMachine based on anArtificial Fish swarm (SVM-AF)
is proposed to predict the access times of heterogeneous
computing applications. In addition, the distributed iteration
method and Cauchy distribution is adopted to optimize the
computing price strategy and improve its convergence per-
formance. The simulation results show that compared with
other strategies, the proposed strategy can effectively improve
computing revenue of user experience and while reducing
energy consumption in the process of resource scheduling.

VII. DISCUSSION
In this study, we establish a heterogeneous computing
resource scheduling model based on Stackelberg differential
game. The maximization of the system utility function is
solved by optimizing the access times, rental ratio, pricing
strategy. The SVM-AF is proposed to predict the access times
of heterogeneous computing applications. When comparing
our results to those of older studies, it must be pointed out
that we propose a strategy that can effectively improve the
computing revenue of user experience and reduce energy
consumption. Moreover, on the basis of considering the effi-
cient computing power provided by heterogeneous comput-
ing, we study the trade-off between the cost and profit of com-
puting power resource leasing, so as to effectively improve
the revenue of computing power suppliers and provide better
guidance for the actual computing power operation. One
important future direction is to research the differences in
costs and profits of different computing resources and con-
sider the role and significance of operation and maintenance
capabilities in the entire heterogeneous computing resource
trading process.
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