
Received 8 April 2023, accepted 26 April 2023, date of publication 3 May 2023, date of current version 10 May 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3272672

stohMCharts: A Modeling Framework for
Quantitative Performance Evaluation
of Cyber-Physical-Social Systems
DONGDONG AN 1,2, ZONGXU PAN 1,2, XIN GAO 1,2, SHUANG LI 1,2,
LING YIN3, AND TENGFEI LI 4,5
1Shanghai Engineering Research Center of Intelligent Education and Bigdata, Shanghai Normal University, Shanghai 200234, China
2College of Information, Mechanical and Electrical Engineering, Shanghai Normal University, Shanghai 200234, China
3College of Electronic and Electrical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
4Casco Signal Ltd., Shanghai 200071, China
5School of Software Engineering, East China Normal University, Shanghai 200050, China

Corresponding author: Xin Gao (sizegaoxin@126.com)

This work was supported in part by the Shanghai Sailing Program under Grant 21YF1432900, in part by the National Natural Science
Foundation of China under Grant 61802251, and in part by the Shanghai Post-Doctoral Excellence Program under Grant 2021146.

ABSTRACT Cyber-physical-social systems (CPSS) have recently gained attention from researchers due to
their combination of cyber, physical, and social spaces. Modeling and Analysis of Real-Time and Embedded
systems (MARTE) is a Unified Modeling Language (UML) extension profile that supports the specification,
design, and verification of Real-Time Embedded Systems (RTES). While MARTE Statecharts can assist in
describing CPS, it does not model the uncertainty within a CPSS environment. To enhance the accuracy of
CPSS analysis, we propose the stohMCharts (stochastic hybrid MARTE statecharts) modelling framework
as an extension of MARTE statecharts for modelling and analyzing stochastic hybrid systems. stohMCharts
can model CPSS in a unified manner. Additionally, based on the mapping rules and algorithms, we have
developed a tool to convert models built in stohMChart language into Networks Stochastic Hybrid Automata
(NSHA) which can be verified by statistical model checker UPPAAL-SMC. We demonstrate the efficiency
and accuracy of the framework by applying it to one autonomous driving scenarios.

INDEX TERMS Cyber-physical-social systems (CPSS), modeling and analysis of real-time and embedded
systems (MARTE), network of stochastic hybrid automata (NSHA), quantitative evaluation, automatic
vehicles.

I. INTRODUCTION
The field of cyber-physical systems (CPS) and the Internet of
Things (IoT) have focused on the interaction between phys-
ical objects, but not on human activity [1]. A new paradigm,
cyber-physical-social systems (CPSS), has emerged to rev-
olutionize the relationship between humans, computers, and
the physical environment [2]. Due to the increasing interac-
tion with the external uncertain physical environment, the
complexity of CPSS design is rapidly developing. Model-
ing human reactions and system behaviors in an uncertain

The associate editor coordinating the review of this manuscript and

approving it for publication was Taehong Kim .

environment and guaranteeing critical functional, real-time,
and performance specifications have proven to be significant
challenges in CPSS design.

The UML profile for Modeling and Analysis of Real-Time
and Embedded Systems (MARTE) has been published as
a standard modeling language for Real-Time Embedded
Systems (RTES) [3]. To represent the continuous dynamic
behavior of CPS [4], a set of differential equations has been
introduced to MARTE statecharts. hMChart(Hybrid MARTE
statecharts) [4], a MARTE statecharts extension based on
hybrid timed automata, has been adopted for the design
and analysis of safety-critical systems. hMChart can support
continuous modeling beyond stochastic process modeling.

44660
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 11, 2023

https://orcid.org/0000-0002-1412-8182
https://orcid.org/0000-0003-1112-3463
https://orcid.org/0009-0007-3642-068X
https://orcid.org/0000-0001-9618-5414
https://orcid.org/0000-0002-9531-7128
https://orcid.org/0000-0001-6246-6218

D. An et al.: stohMCharts: A Modeling Framework for Quantitative Performance Evaluation of CPSS

Several model checking-based approaches have been pro-
posed to enhance the accuracy and performance of hMChart
[5], [6]. However, most approaches focus on safety issues
with only ‘‘true’’ or ‘‘false’’ outputs based on given proper-
ties. Limited models have the ability to model the stochastic
behaviors of hMChart under human action variations and
uncertainties in the physical environment. For example, a key
issue for hMChart designers is determining ‘‘the probability
of triggering a specified scenario within time t .’’ Due to
the nondeterministic execution and accumulated time vari-
ation, the bottleneck lies in the lack of hMChart-supported
stochastic modelling and effective quantitative analysis meth-
ods. In order to bridge the gap between the stochastic mod-
eling and quantitative analysis of CPSS, we propose an
approach that describes and formally verifies the stochas-
tic behavior of CPSS, denoted as the Stochastic Hybrid
MARTE Statechart (stohMChart). stohMChart is a novel
framework based on Statistical Model Checking (SMC) [7]
techniques that rely on the monitoring of random system
simulation runs. The simulation results are analyzed using
sequential hypothesis testing or Monte Carlo simulations
in order to verify the satisfaction probability of specified
properties. Unlike traditional formal verification methods
that explore the whole state space, SMC techniques only
inspect a limited number of simulation runs [8]. SMC is
suitable for the approximate functional validation of complex
CPSS designs. Thus, we employ the statistical model-checker
UPPAAL-SMC [9], [10] as the engine for our approach.
In order to overcome the limitations of the current tech-
niques used to model CPSS, the major contributions are as
follows:
• We propose a novel formal visual language, called
stohMCharts(Stochastic Hybrid MARTE Statecharts),
to support modeling and analysis stochastic behaviors
in uncertain environments of CPSS.

• We propose a set of mapping rules and a construction
algorithm that can automatically transform the stohM-
Chart into NSHA models. The tool is available at
https://beiyanpiki.github.io/stohMCharts/. It supports
hierarchical modeling, allowing for the decomposition
of complex systems into smaller, more manageable sub-
systems.

• Our formal framework, which supports the quantitative
performance analysis of stohMChart, is integrated with
the statistical model checker UPPAAL-SMC.

The rest of this paper is organized as follows. We present
the preliminaries such as the probability and measure the-
ory, stochastic hybrid automata and probabilistic computation
temporal logic in Section II. After introducing the syntax and
semantics of stohMChart in Section III, Section IV presents
the mapping rules used to transform stohMCharts to NSHA
models. Based on a case study of two autonomous driving
scenarios, Section V demonstrates that our approach can be
effectively applied to the quantitative analysis of stohMChart
designs. The rest of the work present the related work and
conclude the paper.

II. PRELIMINARIES
A. NETWORKS OF STOCHASTIC HYBRID AUTOMATA
Our approach adopts the network of stochastic hybrid
automata (NSHA) [11] to model the stochastic behaviors of
CPSS. Compared to traditional timed automata (TA) [12], the
clocks in SHAs vary in different locations. NSHA consists of
a set of SHAs that can communicate with each other through
shared variables and broadcast channels. The syntax of SHA
is defined as a tuple SHA = {L, l0,V ,C,A, I ,D(l),Ep},
where

• L is a finite set of locations,
• l0 is the initial location,
• V is a finite set of continuous variables,
• C is a finite set of clocks,
• A is the set of actions,
• I is a set of invariants,
• D(l) is a time delay function for each location l ∈ L,
• Ep is a finite set of transitions with probability p ∈ [0, 1].
Ep ⊆ L×A×2C×ψ×L whereψ is a binary relationship
on RV

Networks of Stochastic Hybrid AutomataWe define NSHA
as SHAj = {L j, l j0,V

j,C j,Aj, I j,D(l)j,E jp}(j =1. . . n), they
are composed into a closed network iff they have the same
action set A = Aj = Ak for all j, k.

B. PROBABILISTIC COMPUTATION TEMPORAL LOGIC
In recent years, many works use probabilistic temporal logic
such as Computation Temporal Logic (CTL) and Linear Tem-
poral Logic (LTL) to express abstractions and properties of
CPS [13], [14]. While one downside of specifying proper-
ties in CTL or LTL [15] is that the properties of the sys-
tem and environment have to be expressed deterministically.
Probabilistic Computation Temporal Logic (PCTL) based on
CTL, which is an expressive language that closes this gap
by using probabilistic atomic predicates parameterized with
a time-varying random variable drawn from a given distri-
bution [16]. Our framework adopt PCTL to express safety
constraints in uncertainty environment.

The State and path formulae of PCTL are

8 ::= true|a|8 ∧8|¬8|P▷◁p[9]

9 ::= X8|8U≤n8|8U8

respectively, where a is an atomic proposition, p ∈ [0, 1] is a
probability bound, ▷◁∈ {<,>,≤,≥} and n ∈ N .

C. STATISTICAL MODEL CHECKING
Statistical model checking techniques have been widely
investigated to evaluate uncertainty-aware designs. For exam-
ple, Du et al. [17] use UPPAAL-SMC tool to evaluate
energy-aware buildings with time uncertainty. Chen et al. [18]
present a way to evaluate the task allocation and schedul-
ing strategies with time and power variation information.
Gu et al. [19] analyze quantitative timing of UML activity
diagrams based on statistical model checking.

VOLUME 11, 2023 44661

D. An et al.: stohMCharts: A Modeling Framework for Quantitative Performance Evaluation of CPSS

FIGURE 1. The comparison of ES, CPS and CPSS.

FIGURE 2. Workflow of proposed framework.

Through using the build-in function random(), we can
define a large set of commonly used distributions instead of
the uniform and exponential distributions which UPPAAL-
SMC supports. During the checking of NSHA models, SMC
simulates random runs which are bounded by either time, cost
or some discrete steps. Upon a decision of an NSHA during
the simulation, the transitionwith the shortest delay triggered,
then all the continuous variables updated [7].

III. WORKFLOW OF PROPOSED FRAMEWORK
Fig.1 presents the basic concepts and relationship between
the embedded systems, CPS and CPSS. The embedded sys-
tems include cyberspace and physical space and are modelled
via timed automata [20], [21]. CPS extends embedded sys-
tems using logic time Clock Constraint Specification Lan-
guage (CCSL) [22] defined in MARTE. CPSS extends CPS
by considering social space, with human actions, uncertain

44662 VOLUME 11, 2023

D. An et al.: stohMCharts: A Modeling Framework for Quantitative Performance Evaluation of CPSS

environments and probabilistic logic time, probabilistic clock
constraint specification language (pCCSL) [23] integrated
into the system. The proposed Stochastic Hybrid MARTE
Statechart (stohMChart) for CPSS analysis is based on Net-
works Stochastic Hybrid Automata [11].

Fig.2 presents the workflow of our proposed approach and
the overview of our framework. Firstly, we model the CPSS
using stohMChart, which extends hMChart by considering
uncertainty information (e.g., human variation measurements
and, action execution time). Following this, we transform the
stohMChart model to NSHA based on the mapping rules
demonstrated in Fig.3. In order to allow for the quanti-
tative analysis of the stohMChart model via performance
queries, we design specification properties as PCTL formu-
las. Once the NSHA models and performance query-based
properties are ready, the framework employs the statisti-
cal model checker UPPAAL-SMC to quantitatively analyze
CPSS stochastic behaviors.

A. THE SYNTAX OF stohMChart
1) VARIABLES AND EXPRESSIONS IN stohMChart
To describe the variables with the stochastic property,
we enrich standard MARTE datatypes with probability vari-
ables as well as probability functions. Table 1 presents five
types of variables in stohMChart.

TABLE 1. Variables in stohMChart.

Now we enrich MARTE expressions, as we can see from
Table 1, stohMChart expressions are assigned by variables
we introduced in Table 1. Different kinds of stohMChart
variables assigned to expressions can generate different kinds
of expressions. The expressions in stohMChart are classified
into eight subsets based on their types and their potential to
contain references to a variable’s first derivative or subex-
pressions with nondeterministic values. These subsets are
summarized in Table 2, which also illustrates the relation-
ship between variables and expressions in stohMChart. For
example, in Tabl. 2, the logical expression Lxp depends on
the variables ‘Bool Variables’, ‘Event Variables’, and ‘Clock
Variables’, so these variables are marked with a check mark
’
√
’ in their corresponding columns, while the other vari-

ables are marked with ’×’. In addition, the action expression
Acxp depends on the variables Nact, Pact, Sact, Cact, silent
action, error action, and break action, and this relationship is
separately indicated in the lower right part of the table. The
expressions in stohMChart can be represented by the follow-
ing notation: Axp⊎Bxp⊎uBxp⊎Sxp⊎Lxp⊎Dxp⊎Cxp⊎Acxp
where

1) Axp: assignment expressions such as x + 3.2, which
evaluate to R and do not contain derivatives, nondeter-
minism and sampling.

2) Bxp: boolean expression usually used to express guard
conditions, such as a == 1.

3) uBxp: uncertain boolean expressions, may be nondeter-
ministic or contain references to derivatives, for exam-
ple d(x) <= 3 represents the first derivative of x can
not exceed 3, Bxp ⊆ uBxp.

4) Sxp: expressions that do not contain references to
derivatives, but may be nondeterministic and use sam-
pling, for example y = x + Uniform(1, 0.2) where
Uniform(a, b) denotes sampling from the uniform
distribution.

5) Lxp: logical expressions including logic operators
like &&, ||,¬ etc.

6) Dxp:differential expressions. The first derivative of a
continuous variable v, denote as d(v). Note that the
d(v) is only valid for continuous variables and cannot
be used with clock variables. We also define a mea-
sure expression, M = Normal(v, δ) The actual value
measured by the controller is sampled according to a
normal distribution with the actual value as mean v and
a standard deviation of δ.

7) Cxp: clock constraint expression is introduced in [23].
Let c, d be two clocks, the set of constraints can be
defined as follows: Clk ::= true| c ≥ n| n + c ≥
d + m| ¬c| c ∼= d where c, d ∈ C and m, n ∈ N
c ∼= d ::= c ≺p d | c ⪯p d | c ∼ d | c ▷◁ d | c♯d .

8) Acxp:Action expressions. There are several categories
of actions in stohMChart. A ::= Nact ⊎ Pact ⊎ Sact ⊎
Cact ⊎ {⊥, bk, τ }

a) Nact: normal actions which occur without nonde-
terminism.

b) Pact: probabilistic actions that occur based on
probability p, p ∈ [0, 1].

c) Sact: stochastic action which follow the distri-
bution act ∈ Sact,Mact : act → Distact is a
mapping function that specifies the distributions
of the execution time of actions.

d) Cact: cycle actions which occur based on a time
cycle act ∈ Cact, act(every t)

e) ⊥, bk, τ represents is the error, break and silent
action respectively.

2) DEFINITION OF stohMChart
A stohMChart is a tuple
stohMChart = {S, s0,T ,Cmd,A,X , Inv,D}

1) S = {s0, s1, . . . , sm} is a set of states. A state s
is a tuple(l, v, exp, h) where l denotes the location, v
denotes the value of a variable, exp denotes the expres-
sions, h denotes the hierarchy.

2) s0 ∈ L is the initial state.
3) T ⊆ s× Cmds×6 × 2X∪V × s′

VOLUME 11, 2023 44663

D. An et al.: stohMCharts: A Modeling Framework for Quantitative Performance Evaluation of CPSS

TABLE 2. Expressions and variables in stohMChart.

4) Cmd = {g0, g1, . . . , gp} is a set of probabilistic guard
commands of the form g → p1 : u1 + . . . + pm : um
where
• g ⊆ L×Rk is a guard, k ∈ N+ is the dimension of
the stohMChart, i.e. there are k variables(including
clock variables) in the model.

• For all 1 ≤ i ≤ m, we get pi ≥ 0 and 6m
i=1pi = 1.

• The update function is defined as 3 : (L × Rk)→
2L×R

k
for 1 ≤ i ≤ m.

5) A = {act0, act1, act2, . . . , actn} is a set of actions.
We define a single action τ representing the passing of
time.

6) X is a finite set of clocks constraints.
7) Inv = {i0, i1, . . . , in} is a set of invariants. Inv : L →

Exp assigns a set of invariants L to each location.
8) D is the delay function. D : (l, v, e)→ Normal(µ, δ) |

Exp(rate) |Uniform(a,b).

B. THE SEMANTICS OF stohMChart
The semantics of stohMChart can be interpreted by the
stochastic transition system [24]. A stochastic transition sys-
tem is a tuple ⟨S, s0,D,→,→D,→0⟩, where
• S × D is the set of states and s0 is the initial state.
• D is the delay density function, which will perform the
stochastic output with

∫
D(t)dt = 1.

• →: S×6×S ′ is the normal transition function between
two states of the stohMChart,where6 represents a finite
collection of input symbols.

• →D: S × 6 × D × S ′ is a delay transition, where D is
the delay function in the transitions.

• →0: S ×6×0×S ′ is a set of output probability tran-
sition with

∑
0(t)dt = 1, where 0(t) is the probability

in each transition.
The semantics of stohMCharts is defined as
[[S, s0,T ,Cmd,A,X , Inv,D]] = ⟨S, s0,D,→,→D

,→0⟩ where
• S : L×RX∪C

×D with RX∪C
|H Inv is the set of states.

• s0 : (l0, v) with l0 ∈ L, v ∈ X ∪ C and v |H Inv0 is the
initial state.

• D is the delay density function, which will perform the
stochastic output with

∫
D(t)dt = 1.

• 6 : Cmds × A × 3 is a set of labeling function, where
Cmds is the set of commands, A the set of synchronous

actions between different stohMChart and3 is the set of
update functions.

• T :→ ∪ →D ∪ →0 denotes the normal transitions,
delay transitions and probability transitions in each
transition.

IV. TRANSFORMING stohMChart TO STOCHASTIC
HYBRID AUTOMATA
A. MAPPING RULES
In Fig.3 it shows the mapping rules of the stohMChart and
SHA in UPPAAL-SMC.

1) In Fig.3.a, it shows the DelayUnif(a,b) which means
the time stay in State1 follows the uniform distribution
with parameter a and b. We model it in UPPAAL-SMC
with a clock c, set the invariant c <= b in State1 and a
transition guard c >= a.

2) In Fig.3.b, it shows the DelayExp(rate) which means
the time stay in State1 is nondeterminism which fol-
lows the exponential distribution with parameter rate.
In UPPAAL-SMC it just already encoded in the state
with Rate of Exponential.

3) In Fig.3.c, it shows the v∼ DelayNormal(a, u) which
means the continuous variable in State1 follows the
normal distribution with two parameters: mean a and
varianceu. The UPPAAL-SMC hasn’t supported the
normal distribution yet, so we define in the func-
tion based on random() function that UPPAAL-SMC
provides.

4) In Fig.3.d, it shows the Delay(t) which means the time
stay in State1 is determinate with time t .

5) In Fig.3.e, it shows the action in the state of stohM-
Chart. In UPPAAL-SMC, it is modeled as broadcast
channel to synchronize.

6) In Fig.3.f, it shows the probabilistic transition with
p1 and p2, in UPPAAL-SMC, the probability is calcu-
lated as p1

p1+p2
and p2

p1+p2
respectively.

The algorithm 1 presents the mapping mechanism from
stoMChart to NSHA. Given a stochastic model C and the
initial state s0, the algorithm generates an NSHA model U .
The initial state s0 is removed from the set of states S. For
each expression in a state, the delay uniform distribution and
the delay expression, a new state in NSHA is created. A new
transition is created associated to the state. The guard, action,

44664 VOLUME 11, 2023

D. An et al.: stohMCharts: A Modeling Framework for Quantitative Performance Evaluation of CPSS

FIGURE 3. The mapping rules of the stohMChart and SHA.

and probability weight are transformed to the corresponding
part in the edges of NSHA. More importantly, the hierarchy
of the states in stoMChart is translated to another template in
NSHA, and the synchronous actions are inserted.

V. CASE STUDY
To illustrate our approach, we present a case study based
on the interaction between an autonomous vehicle and a
human-driven motorcycle (represented by the blue and red
cars in Fig. 4, respectively) on a shared road. In the upper
part of Fig. 4, Scene 1 demonstrates the case where the
human-driven motorcycle slows down to make room for the
autonomous vehicle to pass and change lanes, which ulti-
mately succeeds. In the lower part of Fig. 4, Scene 2 illustrates

the case where the human-driven motorcycle refuses to allow
the autonomous vehicle to change lanes, and as a result,
the autonomous vehicle either abandons the lane change or
performs an emergency braking maneuver. We define this
problem as a simple CPSS, which can be modeled using the
stohMChart framework.

A. DEFINE STOCHASTIC BEHAVIORS AND EXPRESSIONS
1) ABSTRACT DRIVING STYLE
It clears that not all humans behave the same way. In [25],
it provides a survey on driving style characterization and
recognition revising a variety of algorithms, with particular
emphasis on machine learning approaches based on current

VOLUME 11, 2023 44665

D. An et al.: stohMCharts: A Modeling Framework for Quantitative Performance Evaluation of CPSS

Algorithm 1Mapping stohMChart to NSHA
Require:

The stohMChart model C with the initial state s0;
Ensure:

The model of NSHA, U ;
The initial state of U , u0;

1: WHILE (S is not empty)
2: S ← S\s0;
3: ts the transition links to the state s, s ∈ S;
4: create the initial state of U , u0;
5: create new transition links to the state u0;
6: SWITCH(Type of Delay Expression in State)
7: Case: stohMChart.State1.Inv.DelayUnif(a,b); then

NSHA.State1.invariant[c ≤ b];
NSHA.EdgeState1→State2.guard[c ≥ a];

8: Case: stohMChart.State1.Inv.DelayExp(rate); then
NSHA.EdgeState1→State2.guard[c ≥ a];
NSHA.State1.rate of exponential[rate];

9: Case: stohMChart.State1.Exp.v=Normal(a,u)
NSHA.EdgeState1→State2.update.[v = Norm(a, u)];

10: Case: stohMChart.State1.Inv.Delay(t); then
Generate two new states State2 and State3;
Generate two new edges EdgeState1→State2 and

EdgeState1→State2
NSHA.EdgeState1→State2.update [c = 0];
NSHA.State2.inv[c ≤ t];
NSHA.EdgeState2→State3.guard [c == t];

11: Case: stohMChart.Transition.Action[action?]
stohMChart.Transition.Action[action!]; then

NSHA.EdgeState1→State2.sync [action?];
NSHA.EdgeState3→State3.sync [action!];

END SWITCH
12: SWITCH(Type of Transition)
13: Case: stohMChart.Transition.prob=p1

stohMChart.Transition.prob=p2; then
NSHA.EdgeState1→State2.probabilityweight [p1];
NSHA.EdgeState1→State3.probabilityweight [p2];

14: construct new state with new transition with new param-
eters;

15: construct new NSHA.
END SWITCH
ENDWHILE

and future trends. To identify different driving style, three
driving style are defined in [26] and [27],
• Aggressive: aggressive drivers drive with sharp and
abrupt acceleration and deceleration, aiming at dynamic
vehicle performance, and increased the likelihood of
accidents [28].

• Conservative: Conservative drivers often exhibit mild
operational behaviors with small amplitudes and
low-frequency actions on the steering wheel, accelera-
tor, and brake pedal [25].

• Moderate: Moderate drivers are positioned between
the above two. They would like to balance multiple

FIGURE 4. A scenario of autonomous car and human-driven motorcycle.

performances, such as dynamic vehicle performance,
ride comfort, and energy efficiency [28].

2) DEFINE EXPRESSIONS
The model presented in this study represents a car. In Fig.5,
we used our developed tool to model its behavior on the road
(which can be accessed through our public GitHub repos-
itory:https://github.com/beiyanpiki/stohMCharts). The pink
border represents three sub-models, STOP, STRAIGHT, and
CHANGELANE,which respectively represent the car’s brak-
ing and stopping behavior, straight driving behavior, and
lane-changing behavior.

Specifically, in the STRAIGHT sub-model, the car can
choose to accelerate at a more aggressive speed or decelerate
at a more conservative speed while driving at a constant
speed. When encountering dangerous situations (represented
by risk_1 and risk_3, which represent different risk levels),
the car will choose to enter either the CHANGE_LANE state
or the STOP state.

In the CHANGE_LANE sub-model, the car will choose
to either continue driving straight in the STRAIGHT state
or abort the lane-changing operation based on the driving
styles of surrounding cars and the driver. Specifically, before
choosing to change lanes, if the driver has an aggressive
driving style, the car will choose to accelerate until the lane
change is successful. If the driver has a conservative driving
style, the car will decelerate and abandon the lane change,
transitioning into the STRAIGHT or EMERGENCYBREAK
state.

B. MAPPING TO UPPAAL-SMC MODEL
After building the stohMCharts, we use the mapping rules
in Fig.3 to transform the model to NSHA in UPPAAL-SMC.
The constructed NSHAmodel consists of four sub-templates,
namely the composite template Composite, the change lane
templateChangeLane, the Straight travel template Straight-
Driving,and the environment risk template EnvRisk.
Therefore, the NSHA model of UPPAAL-SMC can be
expressed as:

DrivingModel = Composite ∪ ChangeLane

∪ StraightDriving ∪ EnvRisk

44666 VOLUME 11, 2023

D. An et al.: stohMCharts: A Modeling Framework for Quantitative Performance Evaluation of CPSS

FIGURE 5. The stohMchart model of autonomous vehicle.

FIGURE 6. The UPPAAL-SMC template: the composite layer.

FIGURE 7. The UPPAAL-SMC template: the scenario of change lane.

Fig.6 shows the composite layer of the UPPAAL-SMC
template, The straight line driving template is shown in
Fig.7, The template of the lane change is shown in Fig.8.
Due to the space limit, we only show three template
here, for more template, please refer https://github.com/
beiyanpiki/stohMCharts

C. DEFINE QUERIES
We considered four model queries to quantitatively analyze
how scenarios are affected by uncertain factors, such as

FIGURE 8. The UPPAAL-SMC template: the scenario of straight driving.

different driving styles.

Pr[t <= 180](<> v >= 100)

Pr[t <= 180](<> v >= 80)

Pr[t <= 180](<> v >= 60) (1)

The query 1 means the probability that the speed of a
car exceeds a certain value within 180 units of time. In our
experiment, we set three speed values, 60 for slow speed,
80 for normalspeed , and 100 for fasterspeed .

Pr[t <= 180](<> Straight.too_fast)

Pr[t <= 180](<> Straight.throttle)

Pr[t <= 180](<> Straight.keep)

Pr[t <= 180](<> Straight.break) (2)

The query 2means the probability that the car will take cer-
tain actions within 180 units of time, among which too_fast
indicates overspeed, while throttle keep break indicates throt-
tle, constant speed, and brake, respectively.

Pr[t <= 180](<> ChangeLane.emergency_break)

Pr[t <= 180](<> ChangeLane.change_line) (3)

VOLUME 11, 2023 44667

D. An et al.: stohMCharts: A Modeling Framework for Quantitative Performance Evaluation of CPSS

The query 3 means the probability that a car will overtake
and enter different states within 180 time units.

Pr[t <= 1000](<> Composite.straight)

Pr[t <= 1000](<> Composite.change_lane) (4)

The query 4 means the probability of a car in different
states within 1000 time units, namely, straight line driving
and lane changing.

D. EXPERIMENT RESULTS AND ANALYSIS
1) RESULTS OF QUERY 1
Query 1 describes the speed profile of the car during normal
operation, where higher speeds indicate a more aggressive
driving style of the car’s driver. Column 2 of Table 3 dis-
plays the probability distribution of vehicle speed exceeding
a certain value over 180 time units. The values of these three
speeds are 100, 80, and 60, respectively. The third column of
the table shows the time spent on each of the three properties
in verification query 1. The fourth column shows the number
of states visited and explored during the verification of each
property. This indicates that within 180 units of time, the
probability of the car’s speed being between 60 and 80 is rel-
atively high, while the probability of the speed being greater
than 100 is relatively low.

We have plotted Fig.9 to illustrate the cumulative prob-
ability confidence intervals for a vehicle’s speed exceeding
80 within 180 unit times, from an academic perspective. The
horizontal axis represents time, while the vertical axis repre-
sents probability. The relevant parameters are listed below the
graph.

2) RESULTS OF QUERY 2
Query 2 demonstrates the operational behavior of a vehicle
on a straight road within a unit time. The column too_fast
indicates the vehicle’s speed status, where a higher value
indcates a higher likelihood of overspeeding. In addition,
throttle, keep, and break represent the probabilities of the
vehicle accelerating, maintaining its current speed, and brak-
ing, respectively. A higher probability for both ‘‘throttle’’
and ‘‘break’’ indicates a more complex road situation that
requires frequent adjustments to the vehicle’s speed.Column
2 of Table 4 shows the results of probability distribution
of vehicle overspeed, throttle, constant speed driving, and
braking actions within 180 unit times. The third and fourth
columns of the table respectively describe the time taken for
validating the properties and the number of states accessed
and explored during the verification process.

We have plotted Fig.10, which illustrates the cumulative
probability confidence intervals of a vehicle’s throttle within
180 unit times while driving straight. The relevant parameters
are listed below the graph.

3) RESULTS OF QUERY 3
Query 3 describes the situations in which a car reaches
different states when changing lanes. emergency_break

FIGURE 9. The verification results of property Pr[t<=180](<> v>=80).

FIGURE 10. The verification results of property Pr[t<=180](<>
Straight.throttle).

FIGURE 11. The verification results of property Pr[t<=1000](<>
Composite.straight).

represents a failed attempt to change lanes, where the car sud-
denly brakes, while change_line represents a successful lane
change. The second column of Table 5 shows the probability
distribution of a vehicle’s emergency braking and successful
lane change within 180 unit times. It can be observed that the
values of these two probability distributions are equal. The
third and fourth columns of the table respectively describe

44668 VOLUME 11, 2023

D. An et al.: stohMCharts: A Modeling Framework for Quantitative Performance Evaluation of CPSS

TABLE 3. Verification results of vehicles at different speeds.

TABLE 4. Verification results of the vehicle under different actions.

TABLE 5. The probability of a car making emergency braking and lane changes within 180 time units.

TABLE 6. Verification results of vehicles in different driving states.

the time taken for validating the properties and the number of
states accessed and explored during the verification process.

4) RESULTS OF QUERY 4
Query 4 represents the probabilities of a vehicle being in the
state of driving straight and changing lanes from a global per-
spective. The second column of Table 6 shows the probability
distribution of the vehicle being in either a straight driving or
a lane-changing state within 1000 unit time. The probability
of the vehicle being in a straight driving state is significantly
higher than that of being in a lane-changing state, indicating
that the vehicle spends most of its time driving normally with
few overtaking situations.

We have plotted Fig.11, which illustrates the cumulative
probability confidence intervals of a vehicle’s straight-line
driving within 1000 unit times. The relevant parameters are
listed below the graph.

VI. RELATED WORK
The modeling and analysis of CPSS is both multi-faceted and
complex, and has been the subject of extensive research in the
fields ofmodel driven architecture andmodel checking. In the
following, we briefly review several approaches employed to
model & analyze CPSS. Statecharts, a visual language ini-
tially introduced by Harel in the late 1980s [29], has become
a popular means of specifying the behavior of embedded
systems. In [30], the authors present a formal semantics for
UML statecharts via model transition systems. However, the
authors fail to consider the stochastic property of the system.
Moreover, [31] expand the semantics proposed in [32] with
SCCharts [31] for specifying safety-critical reactive systems.
In particular, SCCharts uses statechart notation and provides

determinate concurrency based on a synchronous compu-
tation model. SCCharts can effectively model CPS [33],
however, it does not consider without considering human
behaviors. With respect to CPSS models, a domain ontology
is proposed in [34], while [35], introduces a framework for
command and control self-synchronization. However, both
studies fail to provide a formal definition of key CPSS
components.

The U-Test European Horizon 2020 project focuses on
standardizing uncertainty modeling at OMG, playing a key
role in current research on MARTE uncertainty models.
More information about the initiative of Precise Semantics
for Uncertainty Modeling (PSUM) is defined in [36]. Fur-
thermore, [37] extends the Restricted Use Case Modeling
(RUCM) methodology and its supporting tools to specify
uncertainty as part of the system requirements.

Contributing to the progress in CPSS analysis and verifica-
tion frameworks, Gu et al. [19] analyze the quantitative timing
of UML activity diagrams via statistical models. Results
provide a complete workflow for the stochastic modelling
analysis of action executions.

Soudjani et al. [38] introduce a MATLAB-coded pro-
cedure to analyze stochastic modeling. In particular, the
authors focus on modelling stochastic hybrid systems (SHS),
and establish a framework to generate abstractions for
uncountable-state discrete-time stochastic processes for sin-
gle discrete mode and finite actions SHS models. Their
algorithm also verifies reachability-like properties and cor-
responding policy synthesis, and consequently targets a class
of SHS models that only depend on discrete time.

The work of [39] makes similar assumptions in order to
improve the FAUST2 tool by simplifying the input model

VOLUME 11, 2023 44669

D. An et al.: stohMCharts: A Modeling Framework for Quantitative Performance Evaluation of CPSS

description via sparse matrices for the manipulation of tran-
sition probabilities and by reducing the computational time
required to generate abstractions. In [40], the authors present
a method for the statistical verification of quantitative prop-
erties over a partially unknown system with actions by
employing a parametric Markov decision process (pMDP)
model [41]. The work presented in the current paper shares
several common points with the aforementioned literature.
For example, as in [19] and related studies, we also use statis-
tical methods to analysis and verify the quantitative properties
of CPSS.

VII. CONCLUSION
We proposed a formal visual language stohMChart, which
support uncertain and hierarchical modeling for CPSS. Based
on the stohMChart modeling language, mapping rules, and
algorithms, we developed a tool to automatically convert
stohMChart to NSHA and verified it by UPPAAL-SMC
engine. We also present a case study based on the interaction
between an autonomous vehicle and a human-driven motor-
cycle on a shared road to demonstrate our approach.

Our future work will extend our tool with a AI-based
submodule to learn human uncertainty in CPSS. Furthermore,
the development of an algorithm for the automatic generation
of the UPPAAL-SMC model from stohMCharts could have
enhanced the applicability of the proposed approach.

REFERENCES
[1] G.-G. Wang, X. Cai, Z. Cui, G. Min, and J. Chen, ‘‘High performance

computing for cyber physical social systems by using evolutionary multi-
objective optimization algorithm,’’ IEEE Trans. Emerg. Topics Comput.,
vol. 8, no. 1, pp. 20–30, Jan./Mar. 2017.

[2] M. Gharib, A. Ceccarelli, P. Lollini, and A. Bondavalli, ‘‘A cyber–
physical–social approach for engineering functional safety require-
ments for automotive systems,’’ J. Syst. Softw., vol. 189, Jul. 2022,
Art. no. 111310.

[3] S. Graf, S. Gérard, O. Haugen, I. Ober, and B. Selic, ‘‘Modeling and
analysis of real-time and embedded systems,’’ in Proc. Int. Conf. Model
Driven Eng. Lang. Syst. Berlin, Germany: Springer, 2005, pp. 58–66.

[4] J. Liu, Z. Liu, J. He, F. Mallet, and Z. Ding, ‘‘Hybrid MARTE statecharts,’’
Frontiers Comput. Sci., vol. 7, no. 1, pp. 95–108, Feb. 2013.

[5] D. Drusinsky,Modeling and Verification Using UML Statecharts: A Work-
ing Guide to Reactive System Design, Runtime Monitoring and Execution-
based Model Checking. Amsterdam, The Netherlands: Elsevier, 2011.

[6] V. A. D. S. Júnior and F. E. C. D. Silva, ‘‘From statecharts into model
checking: A hierarchy-based translation and specification patterns proper-
ties to generate test cases,’’ in Proc. 2nd Brazilian Symp. Syst. Automated
Softw. Test., Sep. 2017, pp. 1–10.

[7] A. David, K. G. Larsen, A. Legay, M. Mikučionis, and D. B. Poulsen,
‘‘Uppaal SMC tutorial,’’ Int. J. Softw. Tools Technol. Transf., vol. 17, no. 4,
pp. 397–415, Aug. 2015.

[8] J. Wang, Z. Huang, Y. Zhu, and G. Shen, ‘‘Statistical model checking
for stochastic and hybrid autonomous driving based on spatio-clock con-
straints,’’ Int. J. Softw. Eng. Knowl. Eng., vol. 32, no. 4, pp. 553–582,
Apr. 2022.

[9] E.-Y. Kang, D. Mu, and L. Huang, ‘‘UPPAAL-SMC,’’ in Proc. 14th
Int. Conf. Integr. Formal Methods (IFM), vol. 11023. Maynooth, Ireland:
Springer, Sep. 2018, p. 236.

[10] K. G. Larsen and A. Legay, ‘‘Statistical model checking the 2018 edition!’’
in Proc. Int. Symp. Leveraging Appl. Formal Methods. New York, NY,
USA: Springer, 2018, pp. 261–270.

[11] A. David, K. G. Larsen, A. Legay, and D. B. Poulsen, ‘‘Statistical model
checking of dynamic networks of stochastic hybrid automata,’’ Electron.
Commun. EASST, vol. 66, no. 9, pp. 122–136, 2014.

[12] J. Bendík, A. Sencan, E. A. Gol, and I. Černá, ‘‘Timed automata robustness
analysis via model checking,’’ 2021, arXiv:2108.08018.

[13] O. Maler and D. Nickovic, ‘‘Monitoring temporal properties of continuous
signals,’’ in Formal Techniques, Modelling and Analysis of Timed and
Fault-Tolerant Systems. Berlin, Germany: Springer, 2004, pp. 152–166.

[14] H. A. Bardh Hoxha and G. Fainekos, ‘‘Benchmarks for temporal logic
requirements for automotive systems,’’ Proc. Appl. Verification Continu-
ous Hybrid Syst., 2014, pp. 25–30.

[15] L. M. Tabajara and M. Y. Vardi, ‘‘Linear temporal logic—From infinite
to finite horizon,’’ in Automated Technology for Verification and Analysis,
Z. Hou and V. Ganesh, Eds. Cham, Switzerland: Springer, 2021, pp. 3–12.

[16] J. V. Deshmukh, P. Kyriakis, and P. Bogdan, ‘‘Stochastic temporal logic
abstractions: Challenges and opportunities,’’ in Formal Modeling and
Analysis of Timed Systems, D. N. Jansen and P. Prabhakar, Eds. Cham,
Switzerland: Springer, 2018, pp. 3–16.

[17] D. Du, M. Chen, X. Liu, and Y. Yang, ‘‘A novel quantitative evaluation
approach for software project schedules using statistical model checking,’’
in Proc. 36th Int. Conf. Softw. Eng., May 2014, pp. 476–479.

[18] M. Chen, D. Yue, X. Qin, X. Fu, and P. Mishra, ‘‘Variation-aware evalu-
ation of MPSoC task allocation and scheduling strategies using statistical
model checking,’’ in Proc. Design, Autom. Test Eur. Conf. Exhib. (DATE),
2015, pp. 199–204.

[19] F. Gu, X. Zhang, M. Chen, D. Große, and R. Drechsler, ‘‘Quantitative tim-
ing analysis of UML activity diagrams using statistical model checking,’’ in
Proc. Design, Autom. Test Eur. Conf. Exhib. (DATE). San Jose, CA, USA:
EDA Consortium, 2016, pp. 780–785.

[20] Y. Yang, Y. Jiang, M. Gu, and J. Sun, ‘‘Verifying simulink stateflowmodel:
Timed automata approach,’’ in Proc. 31st IEEE/ACM Int. Conf. Automated
Softw. Eng., Aug. 2016, pp. 852–857.

[21] M. Z. Golonka, ‘‘Comparative analysis of methods and tools for formal
modelling and verification for embedded systems. Probabilistic approach,’’
in Proc. 28th Int. Conf. Mixed Design Integr. Circuits Syst., Jun. 2021,
pp. 265–273.

[22] M. Zhang, F. Song, F. Mallet, and X. Chen, ‘‘SMT-based bounded schedu-
lability analysis of the clock constraint specification language,’’ in Funda-
mental Approaches to Software Engineering (Lecture Notes in Computer
Science), R. Hähnle and W. van der Aalst, Eds. Cham, Switzerland:
Springer, 2019, pp. 61–78.

[23] D. Du, P. Huang, K. Jiang, and F. Mallet, ‘‘PCSSL: A stochastic extension
to MARTE/CCSL for modeling uncertainty in cyber physical systems,’’
Sci. Comput. Program., vol. 166, pp. 71–88, Nov. 2018.

[24] L. de Alfaro, ‘‘Stochastic transition systems,’’ in CONCUR’98 Concur-
rency Theory. Berlin, Germany: Springer, 1998, pp. 423–438.

[25] C. M. Martinez, M. Heucke, F.-Y. Wang, B. Gao, and D. Cao, ‘‘Driv-
ing style recognition for intelligent vehicle control and advanced driver
assistance: A survey,’’ IEEE Trans. Intell. Transp. Syst., vol. 19, no. 3,
pp. 666–676, Mar. 2018.

[26] C. Lv, X. Hu, A. Sangiovanni-Vincentelli, Y. Li, C. M. Martinez, and
D. Cao, ‘‘Driving-style-based codesign optimization of an automated
electric vehicle: A cyber-physical system approach,’’ IEEE Trans. Ind.
Electron., vol. 66, no. 4, pp. 2965–2975, Apr. 2019.

[27] Z. Deng, D. Chu, C. Wu, Y. He, and J. Cui, ‘‘Curve safe speed model con-
sidering driving style based on driver behaviour questionnaire,’’ Transp.
Res. F, Traffic Psychol. Behav., vol. 65, pp. 536–547, Aug. 2019.

[28] C. Lv, Y. Liu, X. Hu, H. Guo, D. Cao, and F.-Y. Wang, ‘‘Simultaneous
observation of hybrid states for cyber-physical systems: A case study
of electric vehicle powertrain,’’ IEEE Trans. Cybern., vol. 48, no. 8,
pp. 2357–2367, Aug. 2018.

[29] D. Harel, ‘‘Statecharts: A visual formalism for complex systems,’’ Sci.
Comput. Program., vol. 8, no. 3, pp. 231–274, 1987.

[30] D. Varró, ‘‘A formal semantics of UML statecharts by model transition
systems,’’ in Proc. Int. Conf. Graph Transformation. Berlin, Germany:
Springer, 2002, pp. 378–392.

[31] L. Grimm, S. Smyth, A. Schulz-Rosengarten, R. V. Hanxleden, and
M. Pouzet, ‘‘From Lustre to graphical models and SCCharts,’’ ACM Trans.
Embedded Comput. Syst., vol. 21, pp. 1–8, Jul. 2022.

[32] C. André, ‘‘Semantics of SyncCharts,’’ I3S Lab., Sophia-Antipolis, France,
Tech. Rep. ISRN I3S/RR–2003–24–FR, 2003.

[33] J. C. Jensen, D. H. Chang, and E. A. Lee, ‘‘A model-based design method-
ology for cyber-physical systems,’’ in Proc. 7th Int. Wireless Commun.
Mobile Comput. Conf., Jul. 2011, pp. 1666–1671.

44670 VOLUME 11, 2023

D. An et al.: stohMCharts: A Modeling Framework for Quantitative Performance Evaluation of CPSS

[34] G. Xiong, F. Zhu, X. Liu, X. Dong, W. Huang, S. Chen, and K. Zhao,
‘‘Cyber-physical-social system in intelligent transportation,’’ IEEE/CAA J.
Autom. Sinica, vol. 2, no. 3, pp. 320–333, Jul. 2015.

[35] Z. Liu, D.-S. Yang, D. Wen, W.-M. Zhang, and W. Mao, ‘‘Cyber-physical-
social systems for command and control,’’ IEEE Intell. Syst., vol. 26, no. 4,
pp. 92–96, Jul./Aug. 2011.

[36] M. Zhang, S. Ali, T. Yue, and R. Norgre, ‘‘Uncertainty-wise evolution of
test ready models,’’ Inf. Softw. Technol., vol. 87, pp. 140–159, Jul. 2017.

[37] M. Zhang, S. Ali, T. Yue, R. Norgren, and O. Okariz, ‘‘Uncertainty-wise
cyber-physical system test modeling,’’ Softw. Syst. Model., vol. 18, no. 2,
pp. 1379–1418, Apr. 2019.

[38] S. Soudjani, C. Gevaerts, and A. Abate, ‘‘Faust2: Formal abstractions of
uncountable-state stochastic processes,’’ in Proc. TACAS, 2015, pp. 1–15.

[39] N. Cauchi, K. Degiorgio, and A. Abate, ‘‘StocHy: Automated verification
and synthesis of stochastic processes,’’ 2019, arXiv:1901.10287.

[40] E. Polgreen, V. B. Wijesuriya, S. Haesaert, and A. Abate, ‘‘Automated
experiment design for data-efficient verification of parametric Markov
decision processes,’’ in Proc. Int. Conf. Quant. Eval. Syst., 2017, vol. 3,
no. 4, pp. 259–274.

[41] S. Junges, J.-P. Katoen, G. A. Pérez, and T. Winkler, ‘‘The complexity of
reachability in parametric Markov decision processes,’’ J. Comput. Syst.
Sci., vol. 119, pp. 183–210, Aug. 2021.

DONGDONG AN received the B.S. and Ph.D.
degrees in software engineering from East China
Normal University, Shanghai, China, in 2013 and
2020, respectively. She is currently a Lecturer with
the Department of Computer Science and Technol-
ogy, Shanghai Normal University, Shanghai. Her
current research interests include model-driven
architecture, machine learning, formal methods,
and statistical model checking techniques.

ZONGXU PAN received the B.S. degree in com-
puter science and technology from the Zhengzhou
University of Light Industry, China, in 2022. He is
currently pursuing the master’s degree with the
College of Information, Mechanical and Electrical
Engineering, Shanghai Normal University, China.
His current research interests include formal meth-
ods and machine learning.

XIN GAO received the bachelor’s degree in com-
puter science and technology from the Hangzhou
College of Commerce, Zhejiang Gongshang
University, Zhejiang, China, in 2021. He is cur-
rently pursuing the master’s degree with the Col-
lege of Information, Mechanical and Electrical
Engineering, Shanghai Normal University, Shang-
hai, China. His main research interests include
adversarial machine learning and neural network
verification.

SHUANG LI received the Ph.D. degree from the
School of Computer Engineering and Science,
Shanghai University, Shanghai, in 2019. She is
currently a Lecturer with the College of Infor-
mation, Mechanical and Electrical Engineering,
Shanghai Normal University, China. Her research
interests include parallel computing, swarm intel-
ligence systems, and ternary optical computer.

LING YIN received the B.S. degree in software
engineering and the Ph.D. degree in computer
technology from East China Normal University,
China, in 2008 and 2016, respectively. She is cur-
rently a Lecturer with the School of Electronic
and Electrical Engineering, Shanghai University
of Engineering Science, China. Her research inter-
ests include deep learning, time series analysis,
and software engineering with formal methods.

TENGFEI LI received the Ph.D. degree from the
Software Engineering Institute, East China Nor-
mal University, in 2021. He is a Postdoctoral
Researcher with East China Normal University
and CASCO Signal Ltd. His research interests
include formal verification, safety-critical cyber-
physical systems, and spatio-temporal logics.

VOLUME 11, 2023 44671

