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ABSTRACT In this paper, we propose parallel heuristic methods to accelerate the generation of (n,m) best
equivocation code (BEC), where n andm are code and message lengths, respectively. The proposed dynamic
programming (DP) method and greedy method extend a previous heuristics method by reducing the time
complexity of the code generation process. The DP method produces the same codes as the previous method
but incurs an overhead for data reuse. In contrast, the greedy method avoids this overhead but generates
slightly different codes due to its heuristic approach. We parallelize the proposed methods by exploiting
coarse-grained and fine-grained parallelisms, which achieve further acceleration on multicore CPU and
graphics processing unit (GPU) systems, respectively. Experimental results demonstrate that the proposed
DP and greedy methods reduce the sequential generation time to a quarter, as indicated by theoretical
complexity analysis. In addition, the parallel implementation achieves linear speedup on a multicore CPU
system, and the GPU implementation realizes coalesced memory accesses, resulting in 17× acceleration
over the eight-core CPU implementation. We found that the greedy method produced different codes that
differ from the previous and DP methods; however, the generated codes had higher equivocation rates than
those generated by a naive random method. We believe that the proposed parallel methods can effectively
accelerate BEC generation for large m and n values, especially with larger values of n relative to m.

INDEX TERMS Dynamic programming, GPU, greedy algorithm, multicore CPU, parallel processing,
syndrome coding.

I. INTRODUCTION
Wyner’s wiretap channel [1] is a typical model deployed
to realize physical layer security [2]. Physical layer secu-
rity exploits the physical properties of the communication
channel to secure confidential information against an eaves-
dropper. This approach is useful for establishing security
in wireless networks with noisy channels [3]. Compared
to well-known public key cryptography, which relies on a
computationally infeasible problem, physical layer security
analytically secures confidential information based on infor-
mation theory regardless of the eavesdropper’s computational
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power. In addition, physical layer security is not suscep-
tible to key leakage, which is a drawback of public key
cryptography.

The wiretap channel model assumes that a sender trans-
mits confidential messages to a legitimate receiver in the
presence of an eavesdropper. Wyner proposed a syndrome
coding scheme to secure messages for a specific case where
the main channel (i.e., between the sender and receiver) is
noiseless, and the channel to the eavesdropper is a binary
symmetric channel. Here the eavesdropper receives incorrect
messages that have bits flipped with crossover probability α.
Similar toWyner’s work, many studies have used linear codes
with syndrome coding to accept all channels as noisy chan-
nels [4], achieve network security [5], and achieve secrecy
capacity [6].
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Zhang et al. [7] proposed the best equivocation code (BEC)
for the syndrome coding scheme. One advantage of the BEC
is that it has the highest equivocation rate [8] (an information
secrecy metric) for a given code of length n and code rate
m/n, wherem is the length of themessages to be encoded. The
equivocation rate is a measure of how much uncertainty the
eavesdropper has. Zhang et al. [7] also presented a heuristic
BEC generation method and demonstrated experimentally
that the generated BECs typically provide greater secrecy
than the best known error-correcting codes [9], [10] with
equal parameter values for n and m [11].

However, the code generation cost is a drawback of the
BEC. The time complexity of code generation is O(n24m),
which restricts the code generation for both large m and n
values. In fact, our preliminary estimation indicates that code
generation for (n,m) = (100, 25) requires more than one
month on a single CPU core, which is simply unacceptable for
practical applications. Thus, accelerating the BEC generation
is necessary to generate codes with high equivocation rates.

Accelerated code generation contributes to achieving both
high equivocation rates and high code rates. Given a fixed
message length m, the greater the code length n, the higher
the equivocation rate and the lower the code rate. In contrast,
given a fixed code length n, the equivocation and code rates
will increase with increasing message length m. As a result,
BECs with both larger m and n values are required to realize
high equivocation and high code rate.

In this paper, we focus on accelerating BEC generation
with large code length n and message length m to achieve
high equivocation and code rates. We propose a dynamic
programming (DP) method and a greedy method that extends
the previous method [7] by reducing the time complexity of
BEC generation. The proposedDPmethod produces the same
codes as the previous method but incurs overhead for data
reuse. In contrast, the proposed greedy method avoids this
overhead but generates codes that differ slightly compared to
those generated by the previous method. In addition, the pro-
posed methods are parallelized by exploiting coarse-grained
and fine-grained parallelisms, which achieve further acceler-
ation on multicore CPU and GPU systems, respectively.

The remainder of this paper is organized as follows.
Section II presents work related to the acceleration of code
generation and the calculation of the equivocation rate.
Section III discusses preliminaries, including the underlying
syndrome coding scheme and the previous method [7], which
is the basis of the proposed methods. Section IV describes the
proposed methods, and Section V explains how the proposed
methods are parallelized. Experimental results are presented
in Section VI. Finally, the paper is concluded in Section VII,
including suggestions for future work.

II. RELATED WORK
Generally, practical linear codes are defined with a gen-
erator polynomial that generates codewords. For example,
the binary Bose—Chaudhuri—Hocquenghem (BCH) code
[12], [13] with (n,m) = (15, 4) and a distance of at least five

has the generator polynomial G(x) = x8 + x7 + x6 + x4 + 1.
Thus, the generator polynomial gives the definition for the
BCH codes, and there is no need to search codes. In contrast,
a corresponding definition for BECs has not been presented,
which motivates us to accelerate BEC generation, i.e., finding
the code with the highest equivocation rate for the given
values of m and n.
The performance of BEC generation primarily relies on

the evaluation of equivocation rates. To eliminate this perfor-
mance bottleneck, Zhang et al. [14] proposed a method that
generates random codes rather than BECs, and they realized
an effective reduction of the computational costs. However,
the equivocation rates were reduced due to the random solu-
tion. Pfister et al. [15] presented a Monte Carlo simulation
approach to estimate the precise amount of equivocation
for coset-based wiretap codes. Their approach is similar to
Zhang et al. [14] in terms of deploying a random simulation.
In contrast, rather than employing random approaches, the
proposed solution employs a heuristic approach to generate
BECs in a feasible time.
Another approach to address the performance issue

involves incorporating restrictions on the deployed codes
such that their equivocation rates can be obtained precisely
with reduced computational costs. For example, Harrison and
Bloch [16] demonstrated that the equivocation ensured by
coset coding over a binary erasure wiretap channel could be
calculated precisely using the knowledge of the generator
matrix. Harrison [17] also extended the work [16] to present
exact expressions for the equivocation. In the current study,
we focus on reducing the time complexity of the equivocation
rate calculation using algorithmic techniques, such as DP
and greedy methods. Note that further improvements may
be realized by exploiting the advantages of coding theory
techniques [18].
In terms of BEC generation, Al-Hassan et al. [19] proposed

a variant of Zhang’s method [7]. The variant generates BECs
by extending the code length n by two rather than one,
which produces higher equivocation rates than the original
method [7]. In addition, they proposed a code generation
method [20] for BECs with the highest minimum distance.
Note that all of these variants can be accelerated using the
parallel methods proposed in this paper because these variants
are sequential algorithmswith a structure that is similar to that
of Zhang’s method [7].

III. PRELIMINARIES
In this section, we provide a brief overview of coding the-
ory to facilitate a general understanding of linear codes and
BECs.

A. LINEAR CODE
A linear code is an error-correcting code that constructs a
codeword from a linear combination of codewords. Here,
an (n, k) code encodes a k-bit message x ∈ {0, 1}k into an
n-bit codeword xG ∈ {0, 1}n, where G is the k × n generator
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matrix. Then, code C is given by set C = {xG | x ∈ {0, 1}k}.
For a linear code C , we have ∀y1, y2 ∈ C ⇒ y1 + y2 ∈ C .
An n-bit row vector y ∈ {0, 1}n is a codeword of C if and

only if the following holds:

yH⊤ = 0, (1)

where H is the parity check matrix for C . The parity check
matrixH is an (n−k)×nmatrix that can be computed from the
generator matrix G. In the following, we assume that H is in
the standard form H = [In−k | P], where In−k is the (n− k)×
(n−k) identity matrix, and P ∈ {0, 1}(n−k)×k is an (n−k)×k
matrix. For any data y ∈ {0, 1}n, yH⊤ ∈ {0, 1}n−k is referred
to as the syndrome of y. The receiver can detect errors by
computing the syndrome yH⊤ for the received data y, and
the receiver will obtain yH⊤ ̸= 0 if y includes any errors.

Here, hij is the element of matrix H located at the i-th
row and the j-th column, where 0 ≤ i < n − k and 0 ≤
j < n. Notice here that we deploy zero-based numbering for
indexing elements in a matrix. To simplify the notation for
matrix H , we represent the matrix in vector form:

H = (h0,h1, . . . ,hn−1), (2)

where hj represents the j-th column of H . Note that the j-th
column hj can be further represented as an integer value hj by
summing all elements of the column: hj =

∑n−k−1
i=0 hij2i. For

example, the parity check matrix

H =


1 0 0 0 0 1 1 1
0 1 0 0 0 1 1 0
0 0 1 0 1 0 1 1
0 0 0 1 1 1 1 0

 (3)

can be represented in the following vector form:

H = (1, 2, 4, 8, 6, 11, 15, 5). (4)

B. BEST EQUIVOCATION CODE (BEC)
The BEC [7] is based on a syndrome coding scheme designed
for the wiretap channel model. As mentioned previously, the
syndrome of length n− k is used for error detection in error-
correcting codes. In contrast, the goal of syndrome coding is
to embed a confidential message of length n − k using an
(n, k) linear code C . In the following, we use m = n − k to
represent the message length.

There are two restrictions between the code length n and
message length m. The first is n > m because the code
length must be greater than the message length. The second
restriction is n < 2m. This ensures the linear independence of
the columns in matrix H , which is required for linear coding.
Figure 1 shows an overview of the (n,m) BEC scheme [7].

This scheme employs an (n, k) linear code C to encode an
m-bit message x as an n-bit vector v such that

x = vH⊤. (5)

For each message, the scheme also generates a random n-bit
codeword y ∈ C from a random, uniformly distributed k-bit

FIGURE 1. Overview of the (n, m) BEC scheme, where m = n − k , based
on an (n, k) linear code C .

vector r ∈ {0, 1}k :

y = rG. (6)

Then, the sender transmits an n-bit vector v+y to the receiver.
The received vector is identical to the transmitted vector

because the main channel is noise-free in the wiretap channel
model. According to Eqs. (1) and (5), the receiver can decode
the received vector as follows:

(v+ y)H⊤ = x+ 0 = x. (7)

In contrast, the eavesdropper’s channel produces errors in
the wiretap channel model. Here, let e ∈ {0, 1}n be the error
vector, which represents an error pattern among 2n possible
patterns. Given the crossover probability α, an error pattern
e occurs with probability αw(e)(1 − α)n−w(e), where w(e) is
the Hamming weight of e. The eavesdropper decodes the
received vector v+ y+ e as follows:

(v+ y+ e)H⊤ = x+ s, (8)

where s = eH⊤ ∈ {0, 1}m represents the syndrome for
the error vector e. Thus, in the wiretap channel model, the
syndrome can be used as an error amplifier rather than an
error checker.

Zhang et al. [7] demonstrated that the syndrome s ∈
{0, 1}m for e = (e0, e1, . . . , en−1) ∈ {0, 1}n can be calculated
as follows:

s = eH⊤ =
n−1⊕
j=0

δ(ej − 1)h⊤j , (9)

where δ is the Dirac function, and ⊕ is the bitwise modulo-
2 addition, i.e., the bitwise XOR operation. Eq. (9) implies
the following: (1) an error pattern generates one of the 2m

syndromes, (2) different error patterns may produce the same
syndrome, and (3) the parity check matrix H determines the
distribution of syndromes.

C. SECRECY OF BEC
Assume that we have a syndrome encoding scheme whose
parity check matrix is H . Given an estimated message x̄
for the original message x, the equivocation rate E for the
syndrome encoding scheme can be measured by the eaves-
dropper decoder output equivocation:

E(H ) = H(x|x̄), (10)
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whereH(x|x̄) represents the conditional entropy of x given x̄.
According to Eq. (8), the equivocation rate can be obtained
as follows by calculating the probabilities of all possible
syndromes:

H(x|x̄) = H(s)

= −

2m−1∑
j=0

pj log pj, (11)

where pj is the probability of the j-th syndrome sj for the given
parity check matrix H . Thus, the secrecy of BECs, E(H ),
relies on the parity check matrix H , which determines the
distribution of syndromes.

Zhang et al. [7] proposed a recursive greedy method to
evaluate the secrecy of a BEC. Their method was based on
a code extension approach in which the i-th recursive step
generates codes of length i+ 1 from those of length i, where
0 ≤ i < n. A code of length i + 1 can be obtained from
the first i-th columns of the parity check matrix H . Here,
let p(i)j be the probability of the j-th syndrome, where 0 ≤
j < 2m, that can be generated from the code of length i + 1.
This probability can be calculated according to the following
recurrence relation:

p(i)j =


1− α, i = 0, j = 0,
α, i = 0, j = 1,
0, i = 0, j > 1,

(1− α)p(i−1)j + αp(i−1)j⊕hi , i > 0.

(12)

For example, when i = 0, there are only two error patterns,
e ∈ {0, 1}, which produce the first (j = 0) and second
(j = 1) syndromes, where e = 0 and e = 1 correspond to the
errorless and one-bit error cases that occur with probabilities
of 1 − α and α, respectively. The remaining syndromes
(j > 1) will not be produced when i = 0. In contrast, when
i > 0, we have two cases according to whether the extended
i-th bit causes an error or not. The first term of Eq. (12) (i > 0)
corresponds to the no error case, in which the j-th syndrome
at length i reappears at length i + 1. The second term covers
the error case, where the extended i-th bit causes an error.
This error bit produces a different syndrome as indicated by
Eq. (9). In other words, the extended column hi of the parity
check matrix H increases the probability of the (j ⊕ hi)-th
syndrome, where 0 ≤ j < 2m.

D. BEC GENERATION
In the BEC generation problem, the goal is to find a parity
check matrix H that maximizes the equivocation rate for the
given m and n:

argmax
H∈{0,1}m×n

= E(H ). (13)

Here, H is given in the standard form; thus, Eq. (13) can be
rewritten as follows:

argmax
P∈{0,1}m×(n−m)

= E([Im | P]). (14)

Eq. (14) indicates that an exhaustive search requires the worst
time complexity of O(2m(n−m)) to find the highest equivoca-
tion rate for the given m and n.

As described in Section I, we focus on accelerating BEC
generation for the given m and n. Note that finding appropri-
ate values for m and n is also a practical issue when using
BECs; however, this is beyond the scope of the current study.

E. PREVIOUS HEURISTIC METHOD
Zhang et al. [7] proposed a variant of a greedy strategy
to reduce the search space. Before describing that method,
we first introduce the greedy strategy. Here, let H (i) denote
a parity check matrix of length i + 1, where 0 ≤ i < n.
As explained in Section III-C, the idea of the greedy strategy
is to generate a parity check matrix H (i) by extending H (i−1)

with an additional column:

H (i)
= [H (i−1)

| Q], (15)

where m ≤ i < n and Q ∈ {0, 1}1×m is the column to
be added. According to this greedy strategy, the problem of
n-bit BEC generation can be expressed as follows:

argmax
H∈H(n−1)

E(H ), (16)

whereH(n−1) is the set of parity checkmatrices to be searched
at the (n−1)-th recursive step. The set H(i) at the i-th step can
be written by a recurrence relation as follows:

H(i)
=


{Im}, 0 ≤ i < m,

{[H (i−1)
| Q],

H (i−1)
∈ argmax

H∈H(i−1)
E(H ),

Q ∈ {0, 1}1×m}, m ≤ i < n.

(17)

The greedymethod considers the bestmatrix for the extension
at each step. Under the assumption that ∀i (m ≤ i < n),
| argmaxH∈H(i−1) E(H )| = 1, the greedy method signif-
icantly reduces the time complexity from O(2m(n−m)) to
O((n−m)2m) because the search space at each of n−m steps
is given by O(2m).

In contrast, Zhang’s previous method [7] reduces equiv-
ocation rate loss by considering the top 10 matrices rather
than the best matrix. In other words, their method replaces the
argmax operator with an operator that returns the arguments
of the top 10 values. Algorithm 1 shows the previous recursive
method [7], which outputs a set H(n−1) of the top t BECs
from four inputs: (1) message length m, (2) code length n,
(3) crossover probability α, and (4) the number t of matrices
saved in each step. The algorithm first initializes the set
H(m−1) of BECs with the minimum set {Im} (line 1) and then
iteratively extends the set by adding a column to the parity
checkmatrix. The loop structure comprises the following four
parts.

1) Matrix extension (Algorithm 1, line 4). The top t matri-
ces saved in the previous iteration are extended by
adding a column. All of the extended matrices are
added to set H for evaluation.
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Algorithm 1 BECgeneration (m, n, α, t)
Input: message length m, code length n, crossover probabil-
ity α, and the number t of matrices to save.
Output: A set H(n−1) of top t BECs of length n.
1: H(m−1)

← {Im}; ▷ Eq. (17)
2: for i← m to n− 1 do
3: E← ∅; ▷ Emptyset
4: H ← {[H (i−1)

| Q],H (i−1)
∈ H(i−1),Q ∈

{0, 1}1×m}; ▷ Eq. (17)
5: for each H ∈ H do ▷ Loop 1
6: p← DistrCalc(m, α,H , i); ▷ Alg. 2
7: E← E ∪ { EquivRateEval(m,p) }; ▷ Alg. 3
8: end for
9: H(i)

← top t matrices in H; ▷ According to E
10: end for

Algorithm 2 DistrCalc (m, α,H , l)
Input: message length m, crossover probability α, parity
check matrix H , current column index l in H .
Output: Probability distribution p of syndromes, where p =
(p0, p1, . . . , p2m−1).
1: p(0)0 ← 1− α; p(0)1 ← α; ▷ Eq. (12)
2: for i← 1 to l do
3: for j← 0 to 2m − 1 do ▷ Loop 2
4: p(i)j ← (1− α)p(i−1)j + αp(i−1)j⊕hi ; ▷ Eq. (12)
5: end for
6: end for
7: p← p(l);

Algorithm 3 EquivRateEval (m,p)
Input: message length m and probability distribution p of
syndromes, where p = (p0, p1, . . . , p2m−1).
Output: Equivocation rate E .
1: E ← 0;
2: for j← 0 to 2m − 1 do
3: E ← E − pj log pj; ▷ Eq. (11)
4: end for

2) Probability distribution calculation (Algorithm 2). For
each matrix in H, the probabilities of all possible syn-
dromes are calculated and stored in vector p.

3) Equivocation rate evaluation (Algorithm 3). For each
matrix in H, the equivocation rate is calculated from p
and added to set E.

4) Top t selection (Algorithm 1, line 9). According to the
set E of equivocation rates, the matrices with the top t
highest equivocation rates are selected for the extension
at the next iteration.

After the iterated extensions are performed, Algorithm 1
returns H(n−1) as a set of BECs with the top t equivocation
rates.

In practice, the message length m is much smaller than the
code length n, and parameter t is typically set to less than 10.

TABLE 1. Time complexities of BEC generation methods assuming m ≪ n
and t = O(1). The DP method reduces the overall time but incurs a search
overhead for data reuse. In contrast, the greedy method implements a
heuristic approach with greedy parameter g to realize a similar
complexity to that of the DP method.

Assuming these practical conditions, we obtain the following
theorem.
Theorem 1: Algorithm 1 can be processed inO(n24m) time

if m≪ n and t = O(1).
Proof: The loop at line 5 iterates t2m times because

|H| = t2m: 2m different columns are added to each of the
t matrices. Algorithms 2 and 3 take O(l2m) time and O(2m)
time, respectively. Note that Algorithm 2 can be rewritten as
O(n2m) time because l < n. As a result, the body for the loop
at line 2 of Algorithm 1 takes O(n2mt2m) time per iteration.
In addition, the loop at line 2 iterates n − m times; thus, the
time complexity of Algorithm 1 is given as O((n−m)nt4m).
This complexity can be rewritten as O(n24m) if m ≪ n and
t = O(1). □

IV. PROPOSED METHODS
Here, we describe the proposed methods in detail. Our con-
tributions over the previous method [7] are summarized as
follows. We propose a DP method that performs data reuse to
reduce the time complexity of BEC generation fromO(n24m)
to O(n4m) if m ≪ n and t = O(1). We also propose a
greedy method that realizes a similar time complexity as the
DP method by implementing a heuristic approach that can
be parallelized efficiently on GPU. Table 1 summarizes the
contributions of our methods.

A. DYNAMIC PROGRAMMING METHOD
The previous method can be improved by eliminating the
duplicate computations in Algorithm 2. In other words,
Algorithm 2 calculates the entire distribution, p(0),p(1), . . . ,
p(l), each time it is called from Algorithm 1; however, all
distributions except the last p(l) have already been computed
at the previous call of Algorithm 2. Such duplicate computa-
tions can be eliminated using a DP method that exploits the
advantage of the recurrence relation in Eq. (12).

Algorithm 4 describes the proposed DP method that reuses
the computed distributions. To realize this efficient reuse, the
proposed DPmethod extends the previous method as follows.

• Storing computed distributions (line 14). Algorithm 4
holds a set P̂ of computed distributions that can be reused
in the next iteration.

• Searching computed distributions (line 8). Algorithm 4
finds the appropriate distribution p̂ to be reused at line 9.

The search procedure is described in Algorithm 5, which
finds the computed distribution from P̂ that can be reused
forH . To facilitate this discussion, we introduce notationH≤i,
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Algorithm 4 BECgenerationDP (m, n, α, t)
Input: message length m, code length n, crossover probabil-
ity α, and the number t of matrices to save.
Output: A set H(n−1) of top t BECs of length n.
1: H(m−1)

← {Im};
2: P̂← { DistrCalc(m, α, Im,m− 1) };
3: for i← m to n− 1 do
4: E← ∅;
5: H ← {[H (i−1)

| Q],H (i−1)
∈ H(i−1),Q ∈

{0, 1}1×m}; ▷ Eq. (17)
6: P← ∅;
7: for each H ∈ H do
8: p̂← SearchDistr(H , H(i−1), P̂); ▷ Alg. 5
9: p← DistrCalcDP(m, α,H , i, p̂); ▷ Alg. 6
10: E← E ∪ { EquivRateEval(m,p) };
11: P← P ∪ {p};
12: end for
13: H(i)

← top t matrices in H; ▷ According to E
14: P̂← P;
15: end for

which represents the matrix comprising the first i-th columns
of matrix H . Given matrix H , Algorithm 5 first finds the cor-
responding matrix H≤i−1 from H(i−1), where H(i−1) is the set
of the top t matrices of length i. The appropriate distribution p̂
can be returned without an additional search process because
H(i−1) and P̂ have the same indexing scheme, in which matrix
H≤i−1 and its corresponding distribution p̂ can be accessed
with the same offset in H(i−1) and P̂, respectively.
Note that the vector form given in Eq. (4) is useful in terms

of realizing an efficient comparison of different matrices at
line 2 of Algorithm 5. With this form, the matrix comparison
can be realized by comparing the i − 1 integer values rather
than that of the n(i− 1) boolean values.

Algorithm 6 shows the distribution calculation extended
for the proposed DPmethod. Here, rather than calculating the
entire distribution, Algorithm 6 reuses the distribution at the
previous step, which allows us to replace the double nested
loop in Algorithm 2 with a single loop.

The time complexity of the DP method can be given by the
following theorem:
Theorem 2: Algorithm 4 can be processed inO(n4m) time

if m≪ n and t = O(1).
Proof: The loop at line 7 in Algorithm 4 iterates

t2m times because |H| = t2m; 2m different columns are
added to each of t matrices. In addition, the body for the
loop at line 3 takes O(t2m(t + 2m)) time per iteration
because Algorithms 5 and 6 require O(t) time and O(2m)
time, respectively. This loop iterates n − m times; thus, the
time complexity of Algorithm 4 is O((n − m)t2m(t + 2m)),
which can be rewritten asO(n4m) if m≪ n and t = O(1). □

Compared with the previous method [7], the proposed DP
method reduces the time complexity fromO(n24m) toO(n4m)
if m ≪ n and t = O(1) (Table 1). However, the DP method

Algorithm 5 SearchDistr (H , H(i−1), P̂)
Input: Parity check matrix H , set H(i−1) of BECs of length i,
and set P̂ of computed distributions.
Output: Probability distribution p̂ of syndromes, where p̂ =
(p0, p1, . . . , p2m−1).
1: for each J ∈ H(i−1) do
2: if J == H≤i−1 then
3: p̂← distribution in P̂ computed for J ;
4: end if
5: end for

Algorithm 6 DistrCalcDP (m, α,H , l, p̂)
Input: message length m, crossover probability α, parity
check matrix H , current column index l in H , and reused
distribution p̂.
Output: Probability distribution p of syndromes, where p =
(p0, p1, . . . , p2m−1).
1: p(l−1)← p̂;
2: for j← 0 to 2m − 1 do
3: p(l)j ← (1− α)p(l−1)j + αp(l−1)j⊕hl ; ▷ Eq. (12)

4: end for
5: p← p(l);

processes Algorithm 5, which incurs a search overhead for
data reuse. This overhead incurred by processing Algorithm 5
is given as O((n − m)t22m), which can then be given as
O(n2m) if m≪ n and t = O(1).
Note that some modifications are required to implement

Algorithm 4 on real machines due to memory capacity limi-
tations. Specifically, in line 14, Algorithm 4 assumes that all
previous distributions P̂ and new distributions P are stored in
main memory. The space complexity of these distributions
is O(t4m), which is too large for modern systems. Thus,
we trade time complexity for space complexity by (1) avoid-
ing updating the distributionsP (line 11), (2) recalculating the
distributions of top t BECs (line 14) usingAlgorithms 5 and 6,
and (3) storing only the distributions of the top t BECs rather
than all distributions (line 14). This solution, which reduces
the space complexity to O(t2m), is reasonable because only
the top t BECs are extended for code generation. Note that the
recalculation step (4), which processes Algorithms 5 and 6
t times, occurs place outside the loop at line 7; thus, the
overhead at line 14 is O(t(t + 2m)) per iteration, which is
negligible in terms of the bottleneck part, i.e.,O(t2m(t+2m))
per iteration.

B. GREEDY METHOD
The proposed greedy method accepts a heuristic approach
that facilitates parallelization but may produce different
BECs compared to the previous [7] and the proposed DP
methods (Section IV-A). The proposed greedy method real-
izes efficient data reuse under the assumption that higher
equivocation rates are generated from specific matrices that
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TABLE 2. Top 10 BECs and their equivocation rates generated by the
previous method [7] with m = 5, n = 9, and t = 10. Parity check matrices
are presented in the vector form.

have common columns. Based on this assumption, the pro-
posed greedy method discards some of the top t matrices in
the i-th step such that matrices H ∈ H(i) include the common
submatrix H≤i−g, where g ≥ 0 is a greedy parameter that
determines the width of the common submatrix. Note that
the greedy method with g = n corresponds to the previous
method [7].

One concern about the proposed greedy method is the
assumption required to realize data reuse. This assumption
was confirmed experimentally, i.e., we confirmed that the
top t matrices tend to have common columns. Table 2 shows
the top 10 matrices and their equivocation rates generated
by Algorithm 1 with m = 5, n = 9, and t = 10.
As can be seen in Table 2, six codes have a common pre-
fix (1, 2, 4, 8, 16, 15, 19) of length seven; thus, the last two
columns can be ignored by using g = 2. In other words, the
matrices with the most common prefix are saved for the next
iteration, and the remaining four matrices with different pre-
fixes are discarded prior to executing the subsequent iteration.

Algorithm 7 shows the proposed greedymethod that reuses
computed distributions under the assumption of the common
columns in the top t matrices. The greedy method extends the
previous method [7] as follows.
• Precomputation of the distribution for the common
columns H≤i−g−1 (Algorithm 7, line 5). Note here
that ‘‘−1’’ is required because all matrices have been
extended by one column at line 4. The proposed method
stores the precomputed distribution in vector p̂.

• Reuse of the precomputed distribution (Algorithm 8).
The precomputed distribution p̂ is reused to avoid redun-
dant iterations in Algorithm 2. Consequently, the loop at
line 2 in Algorithm 8 begins from l − g rather than 1.

• Top t selection (Algorithm 7, line 11). Atmost t matrices
with the most common columns H≤i−g are saved for the
next iteration.

Given extensions mentioned above, the greedy method
reduces the time complexity as follows:
Theorem 3: Algorithm 7 can be processed in O(n22m +

gn4m) time if m≪ n and t = O(1).
Proof: Algorithm 7 first calculates the distribution for

the common columnsH≤i−g−1 at line 5. The time complexity
of this calculation is O((n − m)(n + m − g)2m), which can

Algorithm 7 BECgenerationG (m, n, α, t, g)
Input: message length m, code length n, crossover prob-
ability α, the number t of matrices to save, and greedy
parameter g.
Output: A set H(n−1) of top t BECs of length n.
1: H(m−1)

← {Im};
2: for i← m to n− 1 do
3: E← ∅;
4: H← {[H (i−1)

| Q] | H (i−1)
∈H(i−1),Q∈{0, 1}1×m};

▷ Eq. (17)
5: p̂← DistrCalc(m, α,H≤i−g−1, i− g− 1), H ∈H; ▷

Alg. 2
6: for each H ∈ H do
7: p← DistrCalcG(m, α,H , i, p̂, g); ▷ Alg. 8
8: E← E ∪ { EquivRateEval(m,p) };
9: end for
10: H(i)

← top t matrices in H; ▷ According to E
11: Discard matrices in H(i) that do not have the most

common columns H≤i−g;
12: end for

Algorithm 8 DistrCalcG (m, α,H , l, p̂, g)
Input: message length m, crossover probability α, parity
check matrix H , current column index l in H , reused distri-
bution p̂, and greedy parameter g.
Output: Probability distribution p of syndromes, where
p = (p0, p1, . . . , p2m−1).
1: p(l−g)← p̂;
2: for i← l − g to l do
3: for j← 0 to 2m − 1 do
4: p(i)j ← (1− α)p(i−1)j + αp(i−1)j⊕hi ; ▷ Eq. (12)
5: end for
6: end for
7: p← p(l);

be derived by
∑n−1

i=m(i − g − 1)2m. The time complexity
of Algorithm 8 is O(g2m) because this algorithm calculates
the distributions from p(l−g) to p(l). The loop at line 6 in
Algorithm 7 iterates at most t2m time because |H| ≤ t2m.
Here, we consider only t matrices; thus, the most common
columns at line 11 in Algorithm 7 can be identified in O(t)
time. Therefore, the time complexity of Algorithm 7 isO((n−
m)((n+m−g)2m+t2mg2m)) = O((n−m)((n+m)2m+tg4m).
As a result, the time complexity of Algorithm 7 isO(n22m +
gn4m) if m ≪ n and t = O(1), and this completes the
proof. □

Compared to the proposed DP method, the proposed
greedy method eliminates the overhead incurred by the dis-
tribution search (Algorithm 5) but incurs an overhead in the
distribution calculation (Table 1). In fact, the time complexity
of Algorithm 8 is O(g2m), whereas that of Algorithm 6 is
O(2m). The distribution calculation can be parallelized effi-
ciently using 2m GPU threads, whereas the distribution search
cannot be parallelized efficiently on many threads because
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search tasks inherently require a reduction operation to unify
the search results from the threads.

V. PARALLELIZATION OF PROPOSED METHODS
The proposed DP and greedy methods have a similar loop
structure as the previous method [7], whose performance
bottleneck occurs at the quadruple-nested loop comprising
two double-nested loops at lines 2 and 5 of Algorithm 1 and
lines 2 and 3 of Algorithm 2. A similar triple-nested loop also
limits the performance of the proposed DP method, as can be
found in Algorithm 4 (lines 3 and 7) and Algorithm 6 (line 2).
Given this similar loop structure, we focus on the simplest
method, i.e., the previous method, to simplify the explanation
of how the proposed methods are parallelized.

Among the for loops mentioned above, there are two for
loops that can be parallelized efficiently on CPU/GPU cores.
These parallelizable loops have the following characteristics:
(1) each iteration is independent of all other iterations, and
(2) there is a large number of iterations during execution.
According to these characteristics, we targeted the following
loops for parallelization.
• Loop 1 in Algorithm 1 (lines 5–8). Given different matri-
ces fromH, their probability distribution calculation and
equivocation rate evaluation can be processed indepen-
dently on independent cores.

• Loop 2 in Algorithm 2 (lines 3–5). As indicated by
Eq. (12), different elements of the vector p(l) can be
processed independently on different cores.

Note that loops 1 and 2 have coarse- and fine-grained par-
allelisms, respectively. Due to the coarse granularity, loop 1
involves more complicated access patterns than loop 2. Given
such characteristics, we decided to assign loops 1 and 2 to
CPU and GPU cores, respectively, because GPU cores are
better suited to exploit fine-grained parallelism with simple
access patterns.

Unfortunately, the outermost loop at line 2 of Algorithm 1
cannot be parallelized due to the data dependence, i.e., code
generation for length i + 1 depends on that for length i.
Similarly, the loop at line 2 of Algorithm 2 must be processed
in sequence.

A. COARSE-GRAINED PARALLELIZATION FOR CPU CORES
We developed a main-worker scheme to allow CPU cores to
exploit coarse-grained parallelism in loop 1. Using c threads
on c physical CPU cores, the scheme processes Algorithm 1
in O(n4m/c) time if m ≪ n and t = O(1). The coarse-
grained method realizes multithreaded execution that itera-
tively assigns a task to an idle thread. Here, a task corresponds
to the probability distribution calculation or the equivocation
rate evaluation for a matrix H ∈ H. This method is summa-
rized as follows.
• Thread creation. Given c physical CPU cores, the main
thread forks cworker threads before iterating the loop at
line 2 of Algorithm 1.

• Task management. The main and worker threads share
a buffer that holds the current step i and the index for

the matrix H to be processed next. Here, the step i is
initialized with m, as indicated at line 2 of Algorithm 1.
In contrast, the matrix index is initialized with |H|, i.e.,
the number of matrices in H, and decremented until the
matrix index reaches zero, which means that no matrices
are left for the current step i. Then, the main thread resets
the matrix index, increments the step i, and iterates the
same operations while i < n.

• Task assignment. The worker threads exclusively access
the buffer to find the task to be executed next. Once an
idle worker thread finds a task, it decrements the matrix
index in the buffer.

• Thread termination. All worker threads are joined to the
main thread when the buffer holds the matrix index of
0 for code length n.

In this study, we implemented the abovementioned
method using the std::thread class in the 2011 C++
language standard. Besides, we deployed the function
SetThreadAffinityMask for better cache utilization.

B. FINE-GRAINED PARALLELIZATION FOR GPU CORES
The fine-grained parallel method exploits the data parallelism
in loop 2 using 2m GPU threads. Given 2m GPU threads, the
method processes Algorithm 1 in O(n2m) time if m≪ n and
t = O(1). Here, the j-th thread is responsible for calculating
p(i)j , where 1 ≤ i ≤ l and 0 ≤ j < 2m. The CPU is
responsible for iterating the i loop at line 2 of Algorithm 2
and calling a kernel function [21] that processes loop 2 in
parallel on the GPU. The CPU also manages the data transfer
between the CPU and GPU. The initial probabilities p(0)0 and
p(0)1 are transferred from the CPU to GPU prior to entering
the i loop at line 2. After completing the kernel execution,
the calculated probability vector p(l) is transferred from the
GPU to the CPU. During the iterative kernel calls, there is
no need to exchange data between the CPU and the GPU if
Algorithm 3 is executed on the GPU.
We implemented these methods using the compute unified

device architecture (CUDA) [21]. There are two important
aspects relative to maximizing the application performance
on CUDA-enabled GPUs: (1) minimizing data transfer
between the CPU and GPU, and (2) realizing coalesced mem-
ory access [21].

In terms of minimizing the data transfer between the CPU
and GPU, we decided to parallelize Algorithm 3 on the
GPU. This allows us to avoid the iterative transfer of vector
p, i.e., the input to Algorithm 3, because Algorithm 3 can
access p directly after completing Algorithm 2 on the GPU.
Otherwise, the total amount of data transfer would beO(n4m),
which cannot be ignored compared to the time complexity of
the proposedDP and greedymethods. The computational part
of Algorithm 3 performs a reduction operation that merges
multiple values into a single value. Here, we parallelized this
operation using a well-known tree-based algorithm, in which
values are combined along with the paths from leaves to
the root in a binary tree. Consequently, Algorithm 3 can be
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FIGURE 2. Examples of coalesced memory access. (a) single strided access, (b) permutation between warps, and (c) permutation between threads
in the same warp. Warps in these examples access a 128-byte aligned segment.

processed in O(logm) time with 2m threads, implying that
Algorithm 2 still determines the time complexity of the fine-
grained parallel method.

Memory access coalescing is an important technique
to maximize the kernel performance on the GPU. Here,
we assume that the corresponding data are stored in the
float data type, and the data are cached in both L1 and
L2 cache memory. As shown in Fig. 2(a), memory trans-
actions from 32 threads in a warp [21] can be coalesced
into a 128-byte memory transaction if the threads access a
128-byte aligned data segment on global memory [21]. Based
on this assumption, loop 2 of Algorithm 2 can be parallelized
with realizing coalesced memory access on the GPU. In the
following, we demonstrate this by analyzing each memory
access required by line 4 of Algorithm 2.
Lemma 1: Reading p(i−1)j at line 4 of Algorithm 2 can be

performed with a 128-byte memory transaction on the GPU,
and writing p(i)j at line 4 can be performed with a 128-byte
memory transaction.

Proof: Consider a task assignment scheme where the
j-th thread is responsible for reading p(i−1)j and writing p(i)j .
With this scheme, 32 threads in the same warp access 32 con-
tiguous elements if dimension j is contiguous in the array.
These 32 elements exist in a 128-byte aligned segment,
as shown in Fig. 2(a); thus, each of the reading and writing
operations from a warp can be performed with a 128-byte
memory transaction. □

Before analyzing the remaining access to p(i−1)j⊕hi at line 4,
we introduce the following lemmas.
Lemma 2: Let X be a finite set of non-negative integers,

where X = {0, 1, . . . , 2m − 1} and m ≥ 1. In addition, let
f : X → X be a function given as f (x) = x⊕ h, where h ∈ X
is a constant value. Function f is then a permutation.

Proof: The property of the bitwise XOR operator ⊕
gives the proof. Function f is injection because f −1(x) =
f (x), for all x ∈ X . This explains that f is bijection because f
is defined over a finite set. A bijective function from a set to
itself is a permutation. □
Lemma 3: Reading p(i−1)j⊕hi at line 4 of Algorithm 2 can be

performed with a 128-byte memory transaction on the GPU.
Proof: Consider a task assignment scheme where the

j-th thread is responsible for reading p(i−1)j⊕hi . All threads cre-
ated from a kernel launch have the same value for variable
i because the value is given as an argument to the kernel
function; thus, we replace hi with constant value h ∈ X to
simplify the formulation. Then, the index for p(i−1)j⊕hi can be

expressed as f (j) = j ⊕ h. Given such an access pattern,
an arbitrary warp accesses a 128-byte aligned segment, which
can be classified into the following two cases.
• h ≥ 32. For all j, both j and f (j) have the same values at
the five least-significant bits, which indicates that (1) the
warp causes a single strided access and (2) the accessed
data exist in a 128-byte aligned segment, as shown in
Fig. 2(b).

• 0 ≤ h < 32. Lemma 2 indicates that the warp performs
a permutation operation; thus, the data in a 128-byte
aligned segment will be swapped between threads in the
warp, as shown in Fig. 2(c).

As a result, the reading operation can be processed with a
128-byte memory transaction. □

Finally, we present the following theorem, which implies
that loop 2 can be parallelized on the GPU with efficient
memory access.
Theorem 4: Loop 2 of Algorithm 2 can be processed with

three 128-byte memory transactions.
Proof: The body of loop 2 comprises two memory read,

and one memory write operations. According to Lemmas 1
and 3, these operations can be processed with three 128-byte
memory transactions. □

VI. EXPERIMENTS
In this section, we present experimental results of the pro-
posed DP and greedy methods compared to the previous
method [7] in terms of the execution time and parallel effi-
ciency. We also evaluate the equivocation rate of the gener-
ated codes.

We used two different systems to evaluate our coarse-
grained and fine-grained parallel methods. Table 3 shows
specifications of the experimental systems #1 and #2.

For GPU execution, we determined the number of threads
in a block experimentally. Here, we used 64 threads for the
thread block size, which demonstrated better performance
than other typical configurations, e.g., 128 and 256 threads.

A. SEQUENTIAL PERFORMANCE
Figure 3 shows the sequential execution time of the com-
pared methods with different m and n values on system #1.
As shown in Fig. 3(a), where the message length m var-
ied with fixed n, t , and g, the execution time of the
three methods increased roughly four times as the message
length m was increased by one. Theoretically, these results
are reasonable because the measured behaviors agree with
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FIGURE 3. Execution time of sequential BEC generation methods on CPU system #1: (a) results for different m with fixed n = 50, t = 20, and
g = 2, shown in log scale, (b) results for different n with fixed m = 12, t = 20, and g = 2.

TABLE 3. Specifications of experimental systems.

Theorems 1, 2, and 3, which indicate that the three methods
have a time complexity of O(4m) if n, t , and g are fixed
as constant values. Note that the time complexity of the
proposed greedy method involves two terms, i.e., n22m and
gn4m; however, the latter term dominates the execution time
in Fig. 3(a), where n2 ≪ 4m.

Figure 3(b) shows the results obtained with different code
lengths n and fixed values for m, t , and g. The previous
method roughly increased the execution time four times when
n was doubled. In contrast, the proposed DP and greedy
methods were more robust against increasing n. Similar to the
results shown in Fig. 3(a), these results are also theoretically
reasonable. Note that the time complexity of the proposed
greedy method can be considered O(n2) if m, g, and t are
fixed as constant values. However, the greedymethod demon-
strated a similar tendency as the DPmethod, which has a time
complexity ofO(n) ifm, g, and t are fixed as constant values.
The reason for this behavior can be explained by the value
of m, which dominates the time complexity of the proposed
greedy method. As mentioned previously, the second term
gn4m determines the execution time in Fig. 3(b).

Figure 3 also shows that the proposed DP and greedy
methods reduced the execution time compared to the previous
method. This advantage comes from the reduced time com-
plexity as summarized in Table 1. As a result, as shown in
Fig. 3(b), the proposedDPmethod increased the speedup over
the previous method from 1.8× to 5.2× as n was increased
from 20 to 150. In contrast, the speedups shown in Fig. 3(a)
were in the range of 2.1× to 2.4× when m > 8. Thus, the
proposed methods can effectively accelerate BEC generation

TABLE 4. Breakdown analysis of sequential BEC generation methods on
CPU system #1. Times in seconds are shown for m = 12, n = 150, t = 20,
and g = 2.

for large m and n values, especially with larger values of n
relative to m.

As shown in Fig. 3, we found that the proposed greedy
method was approximately 1.5 times faster than the proposed
DP method. The greedy method achieved a faster execution
time because it dropped some of the top t matrices, whereas
the DP method extended all of the top t matrices in each
step. This can be confirmed by Table 4, which shows the
breakdown of execution time for m = 12, n = 150, t = 20,
and g = 2. As shown in this table, the acceleration of the
greedy method mainly comes from that of equivocation rate
evaluation, which means that set H in Algorithm 7 has less
matrices than that in Algorithm 1. Table 4 also shows that
both the DP and greedy methods significantly reduced the
time for distribution calculation, which is the bottleneck of
the previous method.

B. PARALLEL PERFORMANCE
Table 5 shows the speedup measured on multicore CPU
system #1. Here, we varied the number c of worker threads
for the previous method, proposed DP method, and proposed
greedy method. We found that all three parallel methods
achieved linear speedupwhenm ≥ 8. In contrast, themethods
failed to achieve a linear speedup for small problems where
m < 8 because the fraction of the parallelizable part in
sequential time was not sufficiently high to achieve linear
speedup, as described by Amdahl’s law [22].

We also evaluated the impact of the algorithmic improve-
ment. The previous method required 16,047 s on c = 8
worker threads to generate codes for m = 15. In contrast,
the proposed DP and greedy methods completed the same
task in 17,091 s and 12,633 s on c = 2 worker threads,
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FIGURE 4. Strong and weak scaling analysis of coarse-grained parallel methods on multicore CPU system #2 with different number c of
worker threads: (a) speedup for fixed m = 13, n = 50, t = 20 and g = 2, (b) parallel efficiency, i.e., the ratio of speedup on c , for fixed amount
of work per worker thread. The value for n was appropriately scaled according to the time complexity analysis in Sections III and IV.

TABLE 5. Speedup of parallel BEC generation methods on multicore CPU
system #1 with different number c of worker threads. Results are shown
for different m values with fixed n = 50, t = 20, and g = 2.

respectively. Thus, the proposedmethods reduced the number
of worker threads to one-quarter of that used by the previous
method. Note that this impact increases with the code length
n, as described in Section VI-A.

We next evaluated the coarse-grained parallel method on
multicore CPU system #2. Figure 4 shows strong and weak
scaling results obtained with the previous method, proposed
DP method, and proposed greedy method. For the strong
scaling in Fig. 4(a), we varied the number c of worker threads
with fixed m = 13, n = 50, t = 20, and g = 2. For the weak
scaling in Fig. 4(b), we varied both n and c so that every thread
processed fixed amount of work for different n. In more
detail, given cworker threads, we set n =

√
c(n̄2 − m̄2)+ m̄2

for the previous method and n = c(n̄− m̄)+ m̄ for the DP and
the greedy methods, where m̄ = 13 and n̄ = 50 are values
used for the single worker configuration (c = 1).
As shown in Fig. 4(a), the previous and the greedymethods

had better strong scaling than the DP method. A similar ten-
dency can be found at the weak scaling results in Fig. 4(b); the
parallel efficiency of the DP method was around 0.9 whereas
the other methods were around 1.0. The DP method had
lower efficiency because it accelerated the equivocation rate
calculation on worker threads. Therefore, the sequential part,
i.e., task assignment on the main thread, becomes relatively
larger than the parallel part, degrading the parallel efficiency
of the DP method. In fact, the three methods assign tasks in
the same manner.

Note that there are c+1 threads in total because the master
thread forks c worker threads. Consequently, the main thread
can disturb one of the worker threads if they run on the same
core. Because our system #2 had 12 CPU cores, this resource
conflict degraded both strong and weak scaling performance
when c = 12 (Fig. 4).

We then measured the execution time of the fine-grained
parallel method on the GPU system #1. Figure 5(a) shows
that our fine-grained parallel method successfully accelerated
the BEC generation task on the GPU. For the proposed greedy
method, the GPU implementation was 17 times faster than the
eight-core CPU implementation. The execution time shown
in Fig. 5(a) doubled as we increased m by one, which implies
that the time complexity is O(2m) if n, t , and g are fixed.
In addition, the execution time shown in Fig. 5(b) increased
linearly with n. In fact, given fixed t and g values, the fine-
grained parallel method deployed 2m GPU threads to pro-
cess O(n4m) algorithms, which means that each thread was
responsible for O(n2m) computations.
We also analyzed the kernel performance in terms of

achieved occupancy and memory throughput, which can be
obtained by NVIDIA Nsight Compute. As for the target
kernel, we instrumented the distribution calculation kernel
that processes Loop 2 of Algorithm 2. Figure 6 shows the
execution time (per kernel launch), achieved occupancy, and
memory throughput on GPU system #1. When m = 18, the
achieved occupancy and memory throughput reached 80%
and 60%, respectively, demonstrating efficient execution on
the GPU. In contrast, both metric values were less than
7% when m ≤ 11, where the fine-grained parallel method
was slower than the coarse-grained parallel method; the for-
mer and latter took 101 s and 66 s to process the previous
method on the GPU and eight-core CPU, respectively. Such
small problem instances generate at most 211 GPU threads,
which are not sufficient to maximize the performance on
2944 cores on the experimental GPU. Consequently, the
memory throughput steadily increased withm if GPU threads
are enough to hide the memory access latency with GPU
computation on the single instruction,multiple thread (SIMT)
architecture [21]. It also should be noted that coalesced
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FIGURE 5. Execution time of parallel BEC generation methods on GPU system #1: (a) results for different m values with fixed n = 50, t = 20, and
g = 2 (shown in log scale), (b) results for different n with fixed m = 12, t = 20, and g = 2.

FIGURE 6. Efficiency analysis of distribution calculation kernel for
different m values on GPU system #1. Execution time in µs was measured
for a single launch of the kernel, which processes loop 2 in Algorithm 1,
with n = m + 1.

memory accesses are useful to maximize the memory
throughput.

C. IMPACT OF EXECUTION PARAMETERS
We investigated the performance of the proposed methods
in terms of execution parameters t and g. Figure 7 shows
the execution time of the proposed methods with different
execution parameter t on CPU system #1. In this figure, the
execution time increased linearly with t . For the proposed DP
method, this linear behavior can be explained byAlgorithm 4,
which extends matrices from the top t matrices. In contrast,
the proposed greedy method saves some of the top t matrices.
Figure 4 shows that in this experiment, the number ofmatrices
for extension was proportional to t when m = 13, n = 50,
and g = 2.

Figure 8 shows the execution time of the proposed greedy
method with different values for parameter g on CPU system
#1. As shown, the greedy method increased its execution
time with g. This behavior is reasonable with the theoretical
analysis summarized in Table 1. To be more specific, the
execution time was proportional to the number of matrices
saved at line 11 of Algorithm 7. Although the greedy param-
eter g cannot specify this number directly, our timing results
indicate that g controls the execution time indirectly.

FIGURE 7. Execution time of the proposed DP and greedy methods for
different t values with m = 13, n = 50, and g = 2.

FIGURE 8. Execution time of the proposed greedy method for different g
values with m = 13, n = 50, and t = 20.

Another interesting behavior that can be observed in Fig. 8
is that the execution time with g = 0 was relatively fast on
both the CPU and GPU systems. Although the configuration
of g = 0 minimizes the execution time for BEC generation,
it is equivalent to that of t = 1, which strictly limits the search
space for matrix H . In other words, the proposed greedy
method with g = 0 saves only the highest equivocation rate
at line 11 of Algorithm 7 because H (i)

≤i−g = H (i)
≤i when g = 0.

D. EQUIVOCATION RATE
Here, we discuss how t and g affect the equivocation rate
of BECs. Table 6 shows the equivocation rates of the BECs
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TABLE 6. Equivocation rates of the BECs generated by the compared
methods. The proposed DP method generated the same code as the
previous method [7]. Bold numbers show the highest equivocation rate
for specific m, n, and t values.

generated by the previous method, the proposed DP method,
the proposed greedy method, and a randommethod. Here, the
random method generated matrix H = [Im | Q] 100 times,
where Q ∈ {0, 1, }m×(m−n) is the random vector for given
m and n, and calculated the average equivocation rate from
the generated matrices. Note that the BECs with the same
equivocation rate shown in Table 6 were different codes.
Table 6 shows that higher t sometimes failed to produce a

higher equivocation rate. For example, the previous method
and the proposed DP method obtained the highest equiv-
ocation rate for m = 12 and n = 70 when t = 10.
Similar behavior was observed for the greedy method, which
obtained the highest rate form = 10, n = 50, and g = 4 when
t = 3. Note that the execution time linearly increased with t;
thus, we consider that smaller t , e.g., t = 10, is an efficient
setting for BEC generation methods.

We also suggest using a smaller g value, e.g., g = 2, for the
proposed greedy algorithm. As shown in Table 6, there is no
significant difference between g = 2 and g = 4 in terms
of the equivocation rate. In contrast, the proposed greedy
method exhibited a longer execution time with g (Fig. 8).
Thus, we consider that a smaller g (≥ 0) is preferred to
obtain a high equivocation rates with shorter execution time.
Here, that g = 0 must be avoided to obtain high equivocation
rates because it strictly limits the search space for matrix H ,
as mentioned previously.

Given specific n, m, and t values, the greedy algorithm
tended to yield lower equivocation rates than the previous
method and the proposed DP method; however, it produced
much higher equivocation rates than the random codes.

In addition, the proposed greedymethod produced the highest
equivocation rate for some cases. Thus, we think that the
greedy method is useful for generating competitive codes
compared to the previous method.

VII. CONCLUSION
In this paper, we proposed DP and greedy methods for the
BEC generation task. Under the assumption that m ≪ n
and t = O(1), the proposed DP method reduces the time
complexity from O(n24m) to O(n4m) while generating the
same codes as the previous method. In contrast, the pro-
posed greedy method accepts a heuristic approach that pro-
duces different codes but reduces the time complexity to
O(n22m + gn4m).
We also parallelized the proposed DP and greedy methods

for multicore CPU and GPU systems. These methods exploit
coarse-grained parallelism on multicore CPU systems and
fine-grained parallelism on GPU systems, which decreases
the time complexity by a factor of c, i.e., the number of
threads. We theoretically showed that the GPU-based meth-
ods can realize efficient coalesced memory accesses with
GPU threads.

In our experiments, we also found that the proposed DP
and greedy methods successfully reduced execution times,
as indicated by a theoretical complexity analysis. The impact
of time complexity reduction was equivalent to deploying
four times as many cores. Exploiting the coarse-grained par-
allelism realized a linear speedup on the multicore CPU sys-
tem, and exploiting fine-grained parallelism realized memory
access coalescing on the GPU, yielding 17 times acceleration
over the eight-core CPU implementation. In addition, in terms
of the quality of the generated codes, we found that the pro-
posed greedy method generated codes that differ from those
generated by the previous method; however, the generated
codes exhibited a much higher equivocation rate than the
random codes. We believe that the proposed parallel methods
are useful in terms of accelerating the BEC generation task
for messages transmitted with relatively long codes.

In the future, we plan to improve the greedy method using
the advantages of coding theory techniques. For example, the
search space could be reduced by finding upper bounds on
the equivocation rate.
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