
Received 6 April 2023, accepted 30 April 2023, date of publication 3 May 2023, date of current version 10 May 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3272750

Learn to See Fast: Lessons Learned From
Autonomous Racing on How to Develop
Perception Systems
FLORIAN SAUERBECK 1, (Member, IEEE), SEBASTIAN HUCH 1, FELIX FENT 1,
PHILLIP KARLE 1, DOMINIK KULMER 1, AND JOHANNES BETZ 2, (Member, IEEE)
1Department of Mobility Systems Engineering, TUM School of Engineering and Design, Institute of Automotive Technology, Technical University of
Munich (TUM), 85748 Munich, Germany
2Department of Mobility Systems Engineering, Professorship of Autonomous Vehicle Systems, TUM School of Engineering and Design, Technical University of
Munich (TUM), 85748 Munich, Germany

Corresponding author: Florian Sauerbeck (florian.sauerbeck@tum.de)

This work was supported in part by the Technical University of Munich, in part by the Bavarian Research Foundation (BFS), in part by the
Leibniz Supercomputing Centre, in part by the FlexLab, and in part by the Allgemeiner Deutscher Automobil-Club (ADAC) Foundation.

ABSTRACT The objective of this work is to provide a comprehensive understanding of the development of
autonomous vehicle perception systems. So far, most autonomy perception research has been concentrated
on improving perception systems’ algorithmic quality or combining different sensor setups. In our work,
we draw conclusions from participating in the Indy Autonomous Challenge 2021 and its follow-up event
in Las Vegas 2022. These were the first head-to-head autonomous racing competitions that required an
entire perception pipeline to perceive the environment and the opposing surrounding vehicles. Our research
includes quantitative results from collected vehicle data and qualitative results from simulation, video,
and multiple race analysis. The Indy Autonomous Challenge was one of the few research projects that
considered the entire autonomous vehicle. Therefore, our findings indicate insights on the system level,
including hardware setup and full-stack software. We can demonstrate that different sensor modalities in the
vehicle have strengths and weaknesses when they are deployed. Our results further show the difficulties
and challenges that emerge when multi-modal perception systems must run in real-time on real-world
autonomous vehicles. The most concise finding from our investigation is the summary of critical learnings
when developing and deploying perception systems for autonomous systems. Given the background of the
study, it was inevitable that our conclusions were influenced by driving on the racetrack and only one
hardware setup available. Therefore, in the discussion, we draw further parallels to driving on public roads
in dense traffic. More studies are needed to investigate the development and deployment of multi-modal
perception systems for autonomous road vehicles with different hardware setups and various object detection,
localization, and prediction algorithms. The novel contributions of this work are given by 12 lessons learned,
summarized in 5 categories. These were derived and validated through a realized real-world application
project. The videos of the final events in Indianapolis and Las Vegas can be watched here:
IAC: https://www.youtube.com/watch?v=ERTffn3IpIs&ab_channel=CNETHighlights
AC@CES: https://www.youtube.com/watch?v=df9f4Qfa0uU&ab_channel=CNETHighlights
Multiple modules of the software stack are open source: https://github.com/TUMFTM.

INDEX TERMS Autonomous racing, autonomous vehicles, perception systems, software development.

The associate editor coordinating the review of this manuscript and

approving it for publication was Junho Hong .

I. INTRODUCTION
Competition stimulates not only business, but also research.
This has been demonstrated by various competitions and

44034
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 11, 2023

https://orcid.org/0000-0001-5373-4890
https://orcid.org/0000-0003-4351-4493
https://orcid.org/0000-0002-8857-1275
https://orcid.org/0000-0003-3223-6969
https://orcid.org/0000-0001-7886-7550
https://orcid.org/0000-0001-9197-2849
https://orcid.org/0000-0001-5035-8260


F. Sauerbeck et al.: Learn to See Fast: Lessons Learned From Autonomous Racing on How to Develop Perception Systems

challenges in the past. In the field of autonomous driving,
the DARPA Grand Challenges in the mid-2000s led the way
for the entire industrial sector as we know it today [1].
Building on this, another competition was launched in 2021:
The Indy Autonomous Challenge (IAC) and its successor,
the Autonomous Challenge at CES in Las Vegas (AC@CES)
in 2022 [2]. The goal was to advance the state of the art in
autonomous vehicles (AVs) by taking them to the racetrack
and teaching them to compete against each other in a high-
speed wheel-to-wheel competition. The TUM Autonomous
Motorsport race car can be seen in Fig. 1 during an overtake.

FIGURE 1. TUM overtaking Euroracing’s AV-21 during the high-speed
event at the Las Vegas Motor Speedway. Own foto.

A. STRUCTURE OF THIS PAPER
First of all, we want to introduce the structure of this paper
for better comprehension during reading. In the Introduction,
we present the necessary information about the challenges we
are referring to, namely the IAC and the AC@CES. We also
present the used vehicle platform and its sensor setup and
motivate this work based on the experiences we had through-
out the challenges. After the Introduction, we review related
workwhich can be summarized into three subcategories: soft-
ware and hardware, software only, and autonomous racing.
On the basis of the previous work presented, we derive the
research gap, and thus the novel contributions of this work.
After giving a short overview of the challenges and the results
we achieved, the 12 different lessons learned are presented,
which can be categorized into five categories. Fig. 2 visually
shows the learnings and their categorization. These lessons
learned are the main contribution of this work. The Discus-
sion section explains open research topics and discusses how
our findings from racing can be translated into public traffic.
In the end, everything is concluded comprehensively. The
lessons learned are summarized and can be taken as advice
for future robotics and autonomous driving projects.

B. INDY AUTONOMOUS CHALLENGE
The participants of the challenges were nine research teams
from universities around the world. Each team participated
with a copy of the autonomous race car developed specifi-
cally for the challenge, the Dallara AV-21. Thus, the whole
hardware setup was the same for all teams and the scope of
the challenge was limited to software. The teams’ task was

FIGURE 2. Main contribution of this work: the lessons learned presented.

to develop, deploy, validate, and test a complete autonomous
driving stack, from sensor data to vehicle actuation. Because
of the challenge’s tight schedule, software development had
to begin before the vehicles were built. This made the simu-
lation of the vehicles and the environment an important task
to be successful in the final competition.

The IAC took place on October 23, 2021, in Indianapolis,
and the AC@CES was held during the CES in Las Vegas on
January 07, 2022. The details and rules for both events can be
found in [3] and [4].

C. VEHICLE PLATFORM
The specially developed Dallara AV-21 was based on a Dal-
lara IL-15 chassis known from the Indy Lights Series [5].
The computing platform, perception sensors, and additional
components such as low voltage (LV) batteries were installed
inside the cockpit. Therefore, the driver seat and steering
wheel were removed. All components of the system are listed
in Table 1. The central computer from ADLink incorporated
an 8-core Intel Xeon E-2278GE CPU with 64GB RAM and
an Nvidia Quadro RTX8000 GPU with 48GB of memory.
All sensors were connected via Ethernet to a network switch,
which transfers all data to the computer via a 40Gbit QSFP+
interface.

The global navigation satellite system (GNSS) consisted of
two dual-antenna setups withNovAtel PwrPak7D receivers to
provide redundancy. Each of them contained a dedicated iner-
tial measurement unit (IMU). For environmental and object
detection, the system used camera, light detection and rang-
ing (LiDAR) as well as radio detection and ranging (RADAR)
sensors. The camera setup used a total of six cameras to
cover a 360◦ area around the vehicle. The cameras that were
aimed at the sides and rear of the vehicle had a field of view
(FoV) of 102.8◦ horizontally and 77◦ vertically each. They
used an Edmund Optics lens with a focal length of 3.5mm.
The two front cameras used lenses with a higher focal length

VOLUME 11, 2023 44035



F. Sauerbeck et al.: Learn to See Fast: Lessons Learned From Autonomous Racing on How to Develop Perception Systems

TABLE 1. The perception components of the AV-21. The FoV is given horizontally and vertically (h x v).

(12mm) to enable higher detection ranges. They had a FoV
of 34◦ horizontally and 24◦ vertically and were placed in a
stereo setup with a baseline of 24 cm. The three LiDARs also
covered a FoV of 360◦ in total. Each of them had a horizontal
FoV of 120◦ and a configurable vertical FoV between 0◦ and
30◦. The RADARs were placed with one facing forward and
one on each side at ± 90◦ horizontally. The front RADAR
alternated between short-range and long-range detection.

Fig. 3 shows the arrangement of the perception sensors of
the AV-21.

FIGURE 3. Perception sensor setup of the AV-21.

The vehicles were equipped with a state-of-the-art sensor
suite and computing platform. Since most sensor suites of
autonomous vehicles are equipped with fewer sensors, this
also allowed us to draw conclusions for other vehicles with
other arrangements.

D. MOTIVATION
At the overtaking competition in Las Vegas, our car spun out
at a speed of about 270 kmh−1. The root cause of this lies
in the perception system: Instead of one car, the perception
pipeline predicted multiple opponent cars and initiated an
evasive maneuver that could not be controlled at such a speed.
Subsequent investigations showed that this failure could have

been prevented in various ways: by adapting the object detec-
tion or the tracking and prediction pipeline. This led us to the
question of how to find and implement an ideal perception
system for a real-world application as given in this work.

II. RELATED WORK
Autonomous vehicles have already competed against each
other in the past, starting with the DARPA Grand Challenges
in the mid-2000s [1]. In contrast to many existing algorithmic
challenges such as the KITTI benchmarks [6], the Argoverse
competitions [7], or the Waymo Open Dataset Challenge [8],
not only specific algorithms, but a whole running system had
to be developed, deployed, and tested at the DARPA Grand
Challenges.

A. DARPA CHALLENGES
An overview of autonomous vehicle research conducted
through the DARPAGrand Challenges is provided in [9]. The
Stanford Artificial Intelligence Laboratory, the winner of the
first challenge, published its software and development struc-
ture in [10]. Since the publication explains the entire software
stack of the team, the perception system was dealt with from
a high-level perspective. Also, the DARPA Robotics Chal-
lenge (DRC) initiated robotics systems research. Here, the
focus was not on the automotive application, but on legged
robotic systems for rescue applications. In 2015, the Florida
Institute for Human &Machine Cognition (IHMC) published
its conclusions from the DRC trials [11].

B. AUTONOMOUS DRIVING SOFTWARE SURVEYS
In the field of autonomous vehicle research, Yurtsever et al.
[12] gave a detailed overview of the state of the art in
autonomous driving and autonomous vehicle systems. They
summarized and compared existing survey papers. Different
approaches were considered, from highly modular software
stacks to end-to-end driving. Naz et al. [13] provided a survey
of intelligent autonomous vehicle systems with a focus on
state-of-the-art artificial intelligence (AI)-based algorithms.
The survey ofMa et al. [14] also presented AI applications for
autonomous driving. Perception algorithms were explained,
however, the focus was on the whole autonomous driving
software stack. An overview of deep learning perception

44036 VOLUME 11, 2023



F. Sauerbeck et al.: Learn to See Fast: Lessons Learned From Autonomous Racing on How to Develop Perception Systems

software with a focus on object detection and semantic seg-
mentation was published by Jebamikyous and Kashef [15].
Other surveys focused more on hardware and mainly sen-
sor technologies. Mohammed et al. [16] presented a review
of different sensor technologies for different functionalities
under various conditions. Vargas et al. [17] also focused
on sensors and investigated their vulnerability under harsh
weather conditions.

C. SENSOR SETUP AND FUSION
Research has been carried out in the field of sensor modalities
and their optimal purposes of use. According to the current
state of research, different sensors have to be fused to enable
Society of Automotive Engineers (SAE) Level 5 autonomous
driving in different situations, e.g. adverse weather condi-
tions. Marti et al. [18] compared different sensor modali-
ties and outlined their potential use cases. They came to
the conclusion that different sensor modalities are suited for
different applications in the field of autonomous driving,
which leads to the need for sensor fusion. Wang et al. [19]
and Yeong et al. [20] also highlighted the importance of
fusing heterogeneous sensor data to create reliable perception
systems and compared different implementation approaches
on the algorithmic side. LiDAR sensors are currently the
most precise range sensors, however, it is difficult to extract
semantic descriptions from point clouds [21]. To reduce these
problems, a multisensor data fusion is needed according
to [22].

The current state of the art in sensor fusion was presented
by Fayyad et al. [23]. Methods based on deep learning were
presented and further research topics were derived. However,
aside from the harsh weather conditions, they focused only
on algorithmic improvements at the software level, without
considering hardware or workflow limitations.

A detailed overview of perception systems and simulators
for autonomous driving was presented by Rosique et al. [24].
Sensors and their operating principles were compared and
evaluated, and methods for combining and simulating data
were presented. However, a combined view at hardware and
software is missing. Furthermore, their findings were not
related to an implemented application.

D. FULL-STACK SOFTWARE
Devi et al. [25] gave an overview of the state-of-the-
art software for autonomous driving with a focus on
camera-based perception approaches. This work focused on
the algorithmic side and did not include different sensor
setups, development workflows, deployment, or hardware.
Velasco-Hernandez et al. [26] also added hardware consid-
erations to their survey. The main challenge, which was out-
lined, is the demand for more accurate and robust algorithms,
powerful computation platforms for real-time capability, and
system validation. Lin et al. [27] focused on the devel-
opment of a whole autonomous driving stack that includes
hardware and software constraints. To analyze the system

performance, a software stack based on state-of-the-art algo-
rithms was implemented. The identified limiting software
modules were the perception parts of the pipeline, namely
localization, object detection, and object tracking. According
to the authors, computing power remains the bottleneck for
autonomous vehicles, even preventing these systems from
benefiting from improved sensors such as higher-resolution
cameras.

Zong et al. [28] presented a whole hardware and software
stack. They showed the design process and architecture of the
entire autonomous vehicle with a focus on low-cost hardware.
Initial perception results were presented. A section on the
software development and deployment workflow is lacking.

Recently, Kowalczyk et al. [29] proposed a framework
to characterize automotive datasets for the development of
perception systems. With their method, existing datasets can
be assessed and weaknesses identified. However, it did not
propose a way to develop perception systems for future
autonomous driving applications.

Additionally, investigations have been carried out on the
influence of the perception stack on the performance of the
system. Falanga et al. [30] determined the maximum speed
of drones depending on the perception system and the latency
used.

E. SAFETY
The field of safety and risk assessment partially focuses on
system-level considerations. Since most crashes are due
to perception failures, and even a high number and cover-
age of sensors cannot account for this, autonomous vehi-
cle (AV) safety research is carried out in the perception
domain [31]. An overview of the implications of the entire
AV software stack on safety considerations was published by
Wang et al. [32]. Taeihagh and Lim [33] assessed differ-
ent risks stemming from autonomous vehicles and used this
information to rank government strategies. Ren et al. [34]
provided security guidelines for AVs, including the percep-
tion system. In [35], a camera perception pipeline was
used to quantify the safety of AVs. To work with models
of whole autonomous driving stacks, Tlig et al. [36] tried
to model whole software stacks to build a safety concept
upon. Almeaibed et al. [37] used a digital twin approach
for future safety considerations. It is shown how perception
approaches can mitigate the risk of cyber attacks. Also, the
DARPA Grand Challenges have generated research in the
area of safety for automated vehicles. McBride et al. [38]
drew conclusions for the safety of AVs from the DARPA
Grand Challenges.

F. FORMULA STUDENT DRIVERLESS
Within the Formula Student Driverless (FSD) competitions,
student teams develop kart-sized race cars from scratch,
including the vehicle platform and the autonomous system.
This resulted in research in the field of hardware and software
development for AVs. On the perception side, vehicles must

VOLUME 11, 2023 44037



F. Sauerbeck et al.: Learn to See Fast: Lessons Learned From Autonomous Racing on How to Develop Perception Systems

be able to detect cones that mark the track and map the
racetrack online. Since there is no head-to-head racing, other
cars do not have to be detected. KA-Raceing, the FSD team
from the Karlsruhe Institute of Technology, presented its
vehicle and software stack for the FSD competitions in [39]
and [40]. The perception pipeline was mainly based on 3D
LiDARs and was built on open-source algorithms, such as
GraphSLAM [41] to build a track map. Nekkah et al. [39]
also gave a brief insight into the development process and
how the cars evolve from year to year.

In addition, AMZ Driverless, the FSD team of the ETH
Zurich, published its approach [42]. They had parallel
pipelines for camera and LiDAR perception and used fast-
SLAM [43] for mapping. Based on their results, some lessons
learned were also presented. It is pointed out that the perfor-
mance is defined by the whole system rather than by individ-
ual algorithms. Thus, slimmer algorithms might outperform
more enhanced ones through better manageability [42].

G. INDY AUTONOMOUS CHALLENGE
The TUM Autonomous Motorsport team introduced its

software for the IAC and the AC@CES in [3] and [4].
Based on this software, the results of this work were pro-
duced. Furthermore, [3] contained some lessons learned for
autonomous vehicle systems in general. In contrast to that
work, the present paper focuses on the perception system and
the related lessons learned.

Team KAIST from the Korea Advanced Institute of Sci-
ence and Technology published their full-stack approaches
for the IAC [44]. They also explain their perception
approach which is similar to the one presented by the TUM
Autonomous Motorsport team and mainly focuses on LiDAR
combined with a GNSS-based localization.
H. NOVEL CONTRIBUTIONS
Table 2 summarizes what topics are covered by the above-
mentioned literature. Most research focuses on either algo-
rithm development or sensor setups. The only works that
have a scope similar to our work are from the DARPA
challenges [10] and the Formula Student Driverless competi-
tion [39], [40], [42]. We are trying to close the research gap
by providing a paper based on a realized application with a
full state-of-the-art sensor and software setup.

It becomes clear that the systems engineering of AVs and
especially their perception systems are a limiting factor for
autonomous driving and an ongoing research topic. Currently,
a holistic view of all aspects of engineering, development,
testing, and deployment is lacking.

Building on our experiences from the IAC and the
AC@CES, we want to present our main lessons learned
from perception system development. This paper provides a
system-level overview of the perception pipeline and derives
lessons learned based on the results we obtained with it.
Therefore, we will discuss the relevant topics from the hard-
ware setup of the race cars to the software tools and develop-
ment to the final target platform deployment.

Summarized, the novel contributions of this paper are the
following:

• Development from scratch to a complete autonomous
driving perception software stack for the final races,

• Development of a perception software pipeline plus a
whole simulation environment,

• Consideration of the entire pipeline and processes:
development, software, hardware, simulation, workflow,
tooling, etc.,

• Real-world application: Everything described in this
work was applied to a real race car.

III. EXPERIMENT AND RESULTS
The findings published here are based on the experiences of
the TUM Autonomous Motorsport team during the concept,
development, implementation, validation, and testing phases
for the IAC and the AC@CES, respectively. During the chal-
lenges, the team proved that the entire software stack can
reach speeds of up to 74m s−1 (266.4 kmh−1) and still safely
overtake detected opposing cars [3], [4].

IV. LESSONS LEARNED
In the following, we present and explain the core findings
we have gained about the development and deployment of
a perception stack for an AV. In this work, we will not focus
on detailed explanations of the algorithms but on the system
level, how themodules work together, and how they influence
the overall performance. Since the hardware was predeter-
mined for the IAC and we could not design the perception
hardware for our vehicle ourselves, we cannot consider the
selection and arrangement of the sensors and hardware. How-
ever, we had the freedom to set up and configure the available
hardware as we wanted.

The tight schedule of the IAC and the AC@CES enforced
a fast and agile development workflow as the teams had only
roughly 18 months from the first concept to the final race.

A. THE SYSTEM DEFINES THE PERFORMANCE
First of all, the most important thing we learned is that vehicle
performance is determined by the overall system. Thus, even
the best and most advanced algorithms will not improve
system performance if they do not fit the overall concept
of the system. The weakest link in the chain limits overall
performance. Most of the time from concept generation to
implementation to deployment and testing was spent on the
application and debugging of the software. This increases
not only the development time, but also the time needed to
properly set up the software. Our experience shows that a sim-
ple algorithm with lower theoretical potential often performs
better than advanced algorithms because more time can be
invested in parameterization and optimization as well as inte-
gration into the overall software. The high potential of algo-
rithms, which is usually presented in associated publications,
cannot be reached in many cases under real-world conditions
and without perfect fine-tuning for a specific dataset.

44038 VOLUME 11, 2023



F. Sauerbeck et al.: Learn to See Fast: Lessons Learned From Autonomous Racing on How to Develop Perception Systems

TABLE 2. Overview of related work for perception systems of autonomous vehicles. Most research focuses on algorithms and sensor setup.

Another important point about the overall performance
of the system is the interaction of the individual software
modules. Latency is often not considered in scientific publi-
cations. However, end-to-end latency has an enormous influ-
ence on software performance and robustness [45]. As a result
of this, it is crucial to test the algorithms in conjunction with
each other.

For example, we used several parallel object detection
pipelines from different sensor modalities. These were fused
and tracked in a separate module. When evaluating the per-
formance of the object detection pipelines as standalone
modules, the absence of objects as false negatives (FN) or
outputting false positives (FP) has a huge impact on the
conventional performance metrics such as mean average pre-
cision (mAP). However, in conjunction with the temporal
relationships considered in the tracking module, many of
these errors can be neglected, while other correlations, which
might not be covered by standard metrics, show greater influ-
ences. Therefore, we tried to validate every software change
in the context of the entire software stack.

B. KEEP IT SIMPLE
One of our key performance factors for the challenges was
to keep the perception system simple and understandable.
This allowed us to identify the most significant performance
limitations and improve them accordingly. After evaluating
various additional sophisticated approaches, the validation
of these in the full software stack simulation revealed that
there was no overall performance improvement mainly due to
lower robustness, more complex parameterization, or higher
end-to-end latency. Thus, we ended up winning the IAC with

seemingly simple approaches on the sensing and perception
side: Due to limited resources, our car did not have time syn-
chronization between the computer and the sensors, nor were
the sensors triggered synchronously. Therefore, we managed
to develop robust software that allowed for maximum test
time on track.

In terms of algorithms, we ended up using neither LiDAR
nor visual localization algorithms. Localization was based on
real-time kinematic (RTK)-corrected GNSS fused with raw
IMUmeasurements using an Extended Kalman Filter (EKF).

For the detection of other vehicles, the main pipeline was
based on LiDAR clustering with preceding point cloud filter-
ing. A deep learning-based pipeline was also developed and
deployed, but since the GPU did not work in the final race,
object detection was based on LiDAR clustering fused with
RADAR for long-range detections and velocity measurement
in the tracking algorithm. A major advantage of conventional
algorithms we experienced is the limited data dependence.
Deep learning-based approaches are heavily dependent on
available data. Thus, data collection has to be done before
we can use these algorithms effectively. However, it has to
be mentioned that with sufficient data, these algorithms will
probably outperform simpler approaches. This can be seen in
the object detection benchmarks [6], [7], [8].

Table 3 shows a short comparison of the deep learning-
based PointRCNN and the CPU-based clustering algorithm.
It can be seen that for our application and our limited labeled
data sources, the clustering is capable of even outperforming
the PointRCNN. However, it has to be mentioned that this
comparison already excludes some FPs from clustering that
are neglected as they are outside the track. We tuned the

VOLUME 11, 2023 44039



F. Sauerbeck et al.: Learn to See Fast: Lessons Learned From Autonomous Racing on How to Develop Perception Systems

TABLE 3. Comparison of PointRCNN and point cloud clustering.

clustering to fit within our overall perception concept. There-
fore, we allowed more FPs as the tracking filtered them out
in the next step. Also, with more data and more training
iterations, the performance of the PointRCNN will further
improve.

Due to the short time, limited human resources, and mainly
limited compute and network resources, we did not use a
camera object detection pipeline. This simplified the sen-
sor fusion in bird’s-eye view. In summary, our perception
pipeline was not based on any deep learning algorithms dur-
ing the final events. Due to the shift of resources to a better
tuning of the simpler approaches, we still achieved a stable
detection range of around 80m.

To save time during software development, large parts
of the software were written in Python. This enabled sim-
pler ‘‘quick-and-dirty’’ implementations compared to C++.
Also, debugging is easier and sometimes more meaningful as
the code is not compiled but interpreted at runtime. The result
is a compromise between the investment in development time
and the performance at runtime of the implemented software.

An example of the development of an advanced module
that was simplified to the relevant functionalities for opti-
mal overall software performance is the localization mod-
ule (Fig. 4). Here, the original localization module intro-
duced in [46] is shown. The plan was to use a combination
of LiDAR and camera with known track information and
the possibility to map the track before racing. LiDAR was
planned to detect the boundary and calculate distance and ori-
entation relatively. The camera should use an adapted visual
SLAM for longitudinal localization which requires features
that could only be found outside the LiDAR range due to the
racetrack environment with few features. With information
on the track layout, a transformation into xy-coordinates is
possible. The first tests on the track have revealed that a
combination of GNSS and IMU is sufficient, takes only a
small part of the setup time on the track, and additionally
saves a lot of computational resources. Thus, the modules

FIGURE 4. Originally planned localization algorithm and simplified final
localization (without gray box).

within the gray box of Figure 4 were removed from the final
software stack.

To be compliant with the 2D-based path planning algo-
rithm, we even localized in 2D. Since the racetracks showed
banking in turns of up to 20◦, the y-acceleration had to
be compensated so that the Extended Kalman Filter (EKF)
could calculate as if it were on a flat surface. We made the
assumption that the car drives parallel to the track boundaries
and thus did not compensate for longitudinal acceleration.

The KAIST team took a similar approach for their per-
ception pipeline [44]. They also relied on a relatively simple
concept: GNSS-based localization and state estimation and a
LiDAR detection pipeline consisting of ground filtering and
clustering.

However, for other applications, such as drones, for exam-
ple, and other circumstances, this approach might not work.
Therefore, new assumptions will have to be found to simplify
the system.

C. PROGRAMMING LANGUAGE
The choice of programming language is a key decision at
the beginning of every software project. Due to the general
constraint that we wanted to use the Robot Operating System
(ROS 2) as a middleware, the decision was mainly between
Python and C++. ROS 2 allows writing separate nodes in
different languages, so there was no global decision to be
made. This allows ‘‘offloading’’ of runtime critical applica-
tions to C++ without the need of rewriting everything. Here,
a modular software approach has great benefit.

As mentioned in the previous chapter, compared to C++,
in general, Python code is relatively easy to understand and
to write, leading to an accelerated development process.
Many packages are available and can be easily integrated.
Developers do not have to worry about build systems, etc.
This lowers the entrance barrier to robotic systems as less
experienced developers have an easier start into this field.
However, Python has major drawbacks and limitations. First,
weaknesses in performance and power efficiency should be
mentioned [47]. Also, in terms of safety, C++ is advanta-
geous as the memory is handled by the developer and the data
types are fixed. Our car triggered emergency stops several
times because the data types in the Python nodes did not
match. This mainly occurred, when there were empty lists,
for example for RADAR detections. Since C++ nodes are
compiled, these errors would occur at compile time and not
at runtime. Furthermore, some performance-relevant imple-
mentations of ROS 2 are currently not available in Python:
Shared memory, zero-copy transport, and compilation of
nodes into components, similar to the nodelets in ROS 1,
are currently only available in C++. In general, Python can
be said to allow fast development, but C++ is significantly
better in terms of performance and safety.

D. DEFINE YOUR WORKFLOW
To reduce development, deployment, and testing times, it was
important for us to define a suitable workflow. Especially

44040 VOLUME 11, 2023



F. Sauerbeck et al.: Learn to See Fast: Lessons Learned From Autonomous Racing on How to Develop Perception Systems

larger teams working on extensive software projects bene-
fit greatly from established well-designed workflows. The
overall development workflow of TUM Autonomous Motor-
sport is depicted in Fig. 5. Each new commit on the develop
branch is automatically tested via GitLab CI/CD functional-
ity. If the tests are successful, Docker images for all software
modules are automatically built and pushed to the container
registry. These images could be deployed directly on the
race car. Before that, they were all manually deployed to
our Hardware-in-the-Loop (HiL) simulation environment and
tested in race simulations. During the development phase,
there were fixed software releases every month that were
marked with GitLab tags. Later, when the actual race car was
available, a new tag was released for each test session on a
daily basis. The automatically built Docker images, tested
through the CI pipeline, were manually deployed and tested
on our HiL simulator, where different scenarios were covered.
Thus, only fully tested images were deployed to the race car.

FIGURE 5. Software development, release, deployment, and testing
workflow.

We decided to base our software design on container
virtualization to avoid ‘‘it-works-on-my-machine’’ kind of
problems with dependency management. In addition, this
workflow allows the deployment and launch of ready-built
containers instead of having to build the software stack on
the target machine. To allow developers to easily exchange
individual software modules, we used Docker to run the
modules as a kind of microservice, as shown in Fig. 6. Since
the message types between the modules were fixed, it was
easy to swap and compare individual containers with their
previous versions. A custom base image was used to base all
images on. This prevented compatibility issues between soft-
ware parts used by several modules, such as message types
for communication between individual nodes. To launch
and orchestrate the containers and their included software,
we used Docker Compose. It allowed us to allocate sufficient
resources for each software component by allocating specific
cores for the tasks. The resources needed for each software
module were measured before assembling all of the modules.
This workflow turned out to be suited for our use case.
However, for other projects or other software setups, different
development and deployment processes have to be evaluated.

Also, the fixed allocation of computing resources is not only
a benefit but can also limit software performance in specific
situations, where a certain module needs more resources.
Another critical point that will have to be addressed in future
works is the overhead introduced by containerization. In our
case, it was negligible, however, it can make a difference in
other projects.

FIGURE 6. Applications running in Docker containers as microservices.

Establishing our development and deployment workflow
from the beginning of the concept phase allowed us to win
the IAC even though we were handed our own vehicle only
six weeks before the race.

E. TIME INVESTED IN TOOLING PAYS BACK
Proper tooling has been an important accelerator for the
progress of our software development from the beginning.
Visualization is important when working with sensor data.
Therefore, we mainly used ROS 2 RViz. For plotting recorded
data from rosbags, the standard ROS 2 data recording format,
and also for live visualization of our telemetry, we made
extensive use of the open-source tool PlotJuggler.1 In addi-
tion to these standardized tools, each software module had
its own data recording pipeline and data playback tooling.
To allow smooth operation for each user, these tools were
virtualized in Docker containers. Shell scripts and parameter
files took care of the launch process of these tools.

For automatic labeling of detected vehicles, GNSS data
was shared between teams. Based on these data and the
timestamps contained, we developed a tool that automatically
generates ground-truth data for each frame with an opponent
vehicle. This was done by transforming the GNSS coordi-
nates of the other vehicle into the local ego coordinate system
and generating a 3D bounding box around it with the known
vehicle dimensions. In the second step, the labels were refined
more precisely before the quality of the labels was manually
checked and assessed. Therefore, the 3D point clouds and
bounding boxes were visualized and the label was manually
shifted to perfectly fit the opponent race car if necessary.

Although we had to invest a lot of time in the development
process of these tools, this time was saved many times in
the end, as the entire development and software optimization

1https://github.com/facontidavide/PlotJuggler

VOLUME 11, 2023 44041



F. Sauerbeck et al.: Learn to See Fast: Lessons Learned From Autonomous Racing on How to Develop Perception Systems

process was greatly accelerated. It will lead to an accelerated
evolution of the software as those tools support it. For exam-
ple, we could use the automatically generated bounding box
labels to develop more advanced deep learning-based object
detection algorithms.

F. USE WHAT IS ALREADY THERE
To minimize development overhead, especially for software
and debug tools, we have resorted to many available open-
source projects. Small adjustments for the specific use case
can improve the development process and also the quality of
the final project. For our case, in particular due to the tight
schedule, we had to use our resources as well as possible
to develop a fast and robust software stack for autonomous
racing.
ROS 2 provides an ideal platform for the development of

robotic projects of different scales. It can handle individual
software modules and control the communication between
them. This also makes it ideal for team collaboration. Many
existing nodes and tools such as RViz can be easily integrated
into the workflow. As mentioned above, PlotJuggler has been
an important tool for many teams. It allows the analysis of
recorded rosbags and visualization of the contained data.
It was also used as a live telemetry display to visualize current
sensor and vehicle data while the car was on track. Foxglove2

provides great capabilities for replaying and visualizing data
directly from rosbagfiles. For the deployment of our software
modules, we relied on Docker and Docker Compose.
The great possibilities that existing open-source algorithms

offer can be seen by a quick look at our perception and espe-
cially object detection pipelines. The camera object detection
pipeline was based on Yolo v53 [48], and the two LiDAR
pipelines were based on a clustering algorithm from the
PCL library4 and Autoware5 and a deep learning pipeline
based on PointRCNN6 [49]. An overview of the originally
planned object detection pipeline is shown in Fig. 7. Orig-
inally, the primary and main pipeline was planned to be a
deep learning-based LiDAR algorithm, supported by deep
learning-based camera detections. The LiDAR clustering was
planned as a backup detection pipeline and for debris detec-
tion. The algorithm is a euclidean cluster extraction that uses
pre-filtered non-ground points as input. First, these points are
brought into a Kd-tree representation. Then, the algorithm
iterates through all points and searches for neighbors within
a defined radius [50]. The clustered points were planned to
be compared with the geometry of the race car to decide if
the object is another car or something else. All of the men-
tioned algorithms are available open source which gave us the
possibility to implement multiple approaches and compare
them. If we had to implement entire object detection algo-
rithms from scratch, the decision on the final concept would

2https://foxglove.dev/
3https://github.com/ultralytics/yolov5
4https://pcl.readthedocs.io/en/latest/cluster_extraction.html
5https://www.autoware.org/
6https://github.com/sshaoshuai/PointRCNN

have had to be made significantly earlier. In the end, the
main pipeline was LiDAR clustering, even without geometry
matching. Using this easier algorithm made us independent
of real-world test data and training data, and made object
detection less dependent on the fine-tuning of the algorithm
and training process. This, again, shows the importance of
another major lesson learned: keep it simple.

FIGURE 7. Initially planned object detection pipeline. The main pipeline
used in the final races was LiDAR clustering, originally only planned as
backup and debris detection.

G. SIMULATION IS KING
Due to the tight schedule of the challenges, it was crucial
to start developing the software pipeline long before the
final configuration of the vehicle was known. To enable
different levels of simulation, we developed three simulation
environments:

• Module-specific simulations, e.g. to replay a single
module: Module-in-the-Loop (MiL)

• Software-in-the-Loop (SiL)
• Hardware-in-the-Loop (HiL)

In SiL, we were able to replay the entire software stack
except for the perception. To also simulate perception mod-
ules, we developed sensor models based on Unity [3]. The
high flexibility of the simulation environment allowed us to
always update the vehicle model with the current configu-
ration planned by the organizers and to evaluate the current
performance of our perception software. This progressing
simulation of the full-stack software meant that we already
had executable software before we touched our race car for
the first time.

Even in the early phases, where the simulation results did
not come close to the real-world data, the use of simula-
tion enforced running software with working communication
between all modules and tolerable runtimes for real-time
execution. In later phases with more realistic simulation, syn-
thetic data was also crucial for including new features in the
working software stack. Each new feature was tested in HiL
in various scenarios and compared to previous performance.
When all tests were passed, a Docker image was built and
pushed to our GitLab container registry. Only previously
tested software versions were deployed to the real vehicle
and validated on the racetrack. The time shift between the
racetracks in the United States and the simulation team in

44042 VOLUME 11, 2023



F. Sauerbeck et al.: Learn to See Fast: Lessons Learned From Autonomous Racing on How to Develop Perception Systems

FIGURE 8. Comparison of real-world data and simulated data.

Germany allowed complementary working shifts to make the
most efficient use of time.

Also for the assessment of non-functional performance,
simulation was of great benefit. This allowed us to deter-
mine interfaces between the software modules early and thus
make the individual development processes more indepen-
dent. Even before we knew the hardware specifications of
the final computer and were able to measure the computation
times of our algorithms, we were able to determine the rela-
tive times compared to other modules. In this way, we were
able to identify computational bottlenecks at an early stage of
the development process and adjust the software architecture
accordingly.

What we identified to have the greatest room for improve-
ment in terms of perception simulation are sensor mod-
els, especially the camera and the RADAR model, and the
environment model. LiDAR models based on ray tracing
with additional noise provide relatively realistic data for
non-deep learning algorithms. However, deep learning algo-
rithms exhibit completely different behavior, even if the sim-
ulated data look comparable to the human eye. A comprehen-
sive analysis of the sim-to-real gap in our LiDAR simulation
was conducted by Huch et al. [51]. Future research is needed
to reduce this gap and make simulated sensor data even more
valuable for perception algorithm development. To the best
of our knowledge, no physical RADAR model is currently

publicly available in any open-source simulation environment
for autonomous driving. Our camera model only depicted the
environment from the camera’s perspective. Camera-typical
effects, such as motion blur, were not taken into account.
Fig. 8 shows a comparison of simulated and real sensor data.
The quality of the simulated camera data highly depends on
the 3D environment model, since textures mainly determine
the appearance of the image. A major drawback of all sim-
ulation environments is the high computational effort which
makes it impossible to generate synthetic data for the whole
sensor setup in real-time. Thus, to simulate closed-loop in
real-time, a simplified perception simulation and inference
had to be used. The whole realistic sensor setup could be
simulated slower to generate synthetic datasets for algorithm
validation.

H. LIDARS PROVIDE GOOD DATA ‘OUT OF THE BOX’
During the challenges, we took full advantage of the com-
parably easy-to-use LiDAR data. LiDAR sensors output the
captured information directly in the real-world 3D frame.
Thus, no additional assumptions have to bemade to transform
the data from a 2D plane into the real-world frame as for
cameras. This also leads to less dependence on the quality
of the internal calibration. Typically, LiDARs do not require
internal calibration. Only LiDAR-to-LiDAR and/or LiDAR-
to-chassis calibrations need to be done.

VOLUME 11, 2023 44043



F. Sauerbeck et al.: Learn to See Fast: Lessons Learned From Autonomous Racing on How to Develop Perception Systems

FIGURE 9. LiDAR point cloud with an opponent vehicle at a distance
of 50 m.

To maximize the performance of LiDAR-based algorithms
and the information content of the sensor data, intelligent
pre-processing of the point clouds was crucial for us. The pre-
filtering consisted of a geometric filter (conditional removal),
a voxel filter, and a ground filter to reduce the number of
points. Fig. 10 shows the reduction of contained points
throughout the pre-filtering steps. The filtered point cloud
contains less than 20% of the points in the raw input point
cloud. The computation time for this step is around 22ms [3].

FIGURE 10. Reduction of points in point clouds for the final race of
the CES [3].

The complete point cloud (a) and the point cloud after
filtering (b) are depicted in Fig. 9. Unnecessary information
is removed, and it becomes less computationally expensive
to detect the opposing race car. The ground filter is based on
the one integrated in the Autoware software stack. It iterates
from the ego vehicle through the reflection rings (as seen in
Fig. 9) and checks if the next ring is within a certain slope to

determine whether it also belongs to the ground or another
object. This approach is highly dependent on parametriza-
tion, especially to work in difficult situations like the banked
turns. More research is needed to develop ground filtering
algorithms that are more general and perform better.

Due to the representation of the data in point clouds and
the smaller amount of data compared to cameras for a 360◦

FoV around the ego vehicle, no compression is required for
the communication or recording of LiDAR data.

The specific information representation of the sensor data
contained in LiDAR point clouds also makes it possible
to obtain decent perception results with conventional algo-
rithms without the need for deep neural networks (DNNs).
In our case, a clustering algorithm applied to the pre-filtered
point clouds provided stable detection results over a range of
about 80m. A major advantage of these algorithms is their
adaptability from simulation data to sensor data. Since clus-
tering is not as data-centric as DNNs, the dependence on the
data source is limited, as no training data are needed.

Since the data are sparser, LiDAR algorithms show a
runtime benefit on conventional computing resources. This
makes them more independent of hardware accelerators or
GPUs. Furthermore, many existing open-source algorithms
and tools in ROS 2 can be used directly with the default
PointCloud2 data format.

I. CAMERAS ARE HARD TO HANDLE. HOWEVER, THEY
HAVE GREAT POTENTIAL
During the final events in Indianapolis and Las Vegas, most
teams did not have a camera perception pipeline in use. The
main reason for this was the limited time available to develop
and set up the perception system. Unlike the LiDARs, the
camera drivers did not output directly usable sensor data.

A big issue when processing camera image data is enor-
mous data throughput. In our case, we had to provide a
Gigabit interface for each of the six cameras. The switch, the
network, and the central computer must be able to handle this
amount of data. Additionally, when recording rosbags, the
writing process on the drive can be limiting. To prevent this,
data compression is required. Compression can be performed
on dedicated hardware, the CPU, or the GPU. However, this
requires computational resources that may also be needed for
perception algorithms and adds latency.

Another topic that complicates the integration of cameras
into a perception system compared to LiDARs is calibration.
To compensate for distortions, etc., cameras require internal
calibration. This is usually done by using dedicated checker-
boards. Algorithms can be quite sensitive to the quality of
the calibration. The exposure has to be set properly to obtain
good images under different lighting conditions. Automatic
exposure can be slow and fixed exposure can make it difficult
to detect vehicles in the shade or in direct sunlight. Fig. 11
shows the comparison of camera, LiDAR, and RADAR data
under unfavorable lighting conditions. Due to reflections and
problems with automatic exposure, it is difficult to detect the
car in the camera image even though it is only around 35m

44044 VOLUME 11, 2023



F. Sauerbeck et al.: Learn to See Fast: Lessons Learned From Autonomous Racing on How to Develop Perception Systems

FIGURE 11. Comparison of camera, RADAR, and LiDAR data in harsh
lighting conditions.

ahead. The LiDAR and also the RADAR have no problem
detecting the car, as they are not operating with visible light.

When object detection is running on camera images, it is
state of the art to execute the detection algorithm on each
image stream separately which costs a lot of computing
power. However, it is hard to fusemultiple camera images into
a single image. This is because the data are not acquired in
the real-world-3D frame as LiDAR point clouds. Therefore,
with LiDARs, it is easy to transform different sensors into
a common frame. Since cameras record data in their own
2D coordinate system, assumptions have to be made to fuse
images and also estimate depth. On the algorithmic side,
even a simple implementation of object detection requires
DNNs. There are no basic algorithms such as LiDAR point
clustering that can handle a complex task such as the detection
of opponent race cars on the track properly. This also means
that GPUs are crucial for efficient perception algorithms
based on cameras - even more crucial than for LiDAR data.
What makes development even more challenging is simula-
tion. Currently, available simulators cannot produce realistic
camera images.

In summary, we can say that, compared to LiDARs, cam-
eras are generally more difficult to:

• fuse,
• calibrate,
• simulate,
• recover 3D data,
• and handle the data load.

What we noticed on the other side during the challenges
was the enormous potential that cameras offer. Fig. 12 shows
data from the three LiDARs (top) and the front left camera
(bottom). In the camera image, the safety car can still be seen,
although it is more than 400m ahead of the ego vehicle. The
LiDARs do not receive any measured points from that dis-
tance. It should be mentioned here that this is also due to the
high focal length of the front camera. The usage of different
lenses allows adapting a camera sensor for its specific use
case, e.g. using a telephoto lens for long-range and a fisheye
lens for short-range detection. Furthermore, depending on the
settings, cameras offer higher resolution and color detection.
This allows the environment to be represented in more detail.

FIGURE 12. Range difference of camera and LiDAR.

In summary, we can say that range-measuring sensors
such as LiDAR and RADAR offer an easier starting point
to extract relevant information from the data. They are also
less sensitive to external conditions as they are active sensors
and offer algorithms which are less data-dependent. Having
said that, cameras offer huge potential due to their low price,
optical adaptability, high resolution, and color output.

J. FUSION OVERCOMES LIMITATIONS
The only way to combine the advantages of sensors is to fuse
their data in a multi-modal perception pipeline. Generally,
there are three options to do so:

• early fusion on raw sensor data,
• mid-level fusion on extracted feature level,
• late fusion on object level.

We decided on an EKF-based late fusion approach incorpo-
rated into the object tracking module, which was introduced

VOLUME 11, 2023 44045



F. Sauerbeck et al.: Learn to See Fast: Lessons Learned From Autonomous Racing on How to Develop Perception Systems

in [52]. This approach provides more flexibility, as it is not
dependent on a single pipeline but can handle the available
detection results. With it, heterogeneous detection pipelines
with different measured features, update frequencies, sensor
ranges, and detection accuracies can be used to output an opti-
mized unique object list. Additionally, the fusion enables the
completion of measured features. As an example, we fused
the precise position measurement of the LiDAR detection
with the RADAR detection, which measured the speed of
objects. Furthermore, it is less dependent on a precise cali-
bration as the raw sensor data are not transformed, but only
the already detected bounding boxes are. Thus, the detection
algorithms themselves do not depend on external calibra-
tion. This tracking method supported our modular software
approach, as it could grow with the detection pipelines.

By means of the implemented fusion method, the tracking
of surrounding objects with less than 0.1m positional resid-
uals and speed residuals below 0.15m s−1 at the AC@CES
at object speeds of up to 75m s−1 were achieved. The fused
detection range was up to 105m to the front and 57m to the
rear [52].

For the next evolutions of our autonomous racing software
stack, also other fusion methods will be taken into account.
Especially early and mid-level fusion promise to outperform
separate detection pipelines when applied correctly. How-
ever, this will increase implementation and test time and
also increase the requirements for the data and the external
sensor calibration, and thus, the late fusion was chosen for
the presented approach.

K. BENEFIT FROM SOFTWARE CONFIGURABLE SENSORS
The AV-21 was equipped with three LiDAR sensors, each
covering a horizontal field of view (FoV) of 120◦, resulting
in a total horizontal FoV of 360◦. Since the LiDAR sensors
were identical, only one driver was needed to transform each
sensor’s individual point clouds directly into the vehicle coor-
dinate system and merge the three point clouds into a single
point cloud. The sensor driver also provided the ability to
dynamically configure the settings of each sensor, which we
took advantage of. For our sensor, it was possible to adjust
the scan rate, scan FoV, FoV center, and vertical scan pattern
during runtime.

All three sensors operated at a constant scan rate of 20Hz
and a constant vertical FoV of 17.5◦ for the front and 20◦ for
the left/right LiDAR, respectively. The scan pattern defines
the vertical line distribution and has presets such as Uniform,
Gaussian, or Exponential. We chose a Gaussian scan pattern
that provided an increased resolution around a specified ver-
tical region of interest (ROI). The ROI of the front LiDAR
sensor was dynamically adapted on the basis of the vehicle’s
position on the track to react to different banking angles on
straights and turns. On the front and back straights of the Las
Vegas Motor Speedway, the banking angle is only about 6◦.
Here, a narrow ROI aligned to the horizon is important for a
high detection range. However, with a banking of up to 20◦ in
turns, this narrow ROI aligned with the horizon could result

in the absence of LiDAR beams hitting vehicles at a higher
distance in turns. Therefore, we increased the ROI width
(increased standard deviation of the Gaussian distribution)
and shifted the ROI center upward. In this way, we could scan
the entire area in front of our vehicle in a turn. When entering
the straight again, we resetted the ROI width and center.

The capability of dynamic sensor configuration pro-
vided a greater overall detection range throughout the track.
In general, object detection performance can benefit from
dynamically configurable sensors, also for road vehicles.
For example, in combination with an IMU, the sensor’s
FoV can be adjusted to be constantly aligned parallel to
the road surface and not be affected by the vehicle’s pitch
due to acceleration or deceleration. Additionally, the beam
configuration can be dynamically adapted to different tasks,
such as object detection or localization. In the future, sensor
configuration can also be included in software optimization
problems, as already shown [53].

L. SENSOR INTEGRATED COMPUTATION POWER CAN
BE BENEFICIAL
An autonomous vehicle is a complex system that has to
manage several computationally expensive tasks simultane-
ously. Therefore, computers in self-driving cars often exceed
their limits, or algorithms have to be adapted to computing
resources. Another problem is network traffic. When all raw
sensor data are transmitted, also a lot of unusable data are
transmitted. For systems with a large number of sensors, the
network may reach its limits. Thus, the sensor data have to be
reduced by a lower resolution, frequency, etc.

To mitigate the effects of these problems, it can be of great
benefit to integrate the first processing steps directly into
the sensors. By doing this, the amount of unused transmitted
information can be reduced, computing power of the vehicle
computer can be saved, transmission times of the data can
be minimized and the amount of recorded data can also be
reduced. The research progress in the field of low-power
AI accelerators, based on field programmable gate arrays
(FPGAs) or application-specific integrated circuits (ASICs),
will boost this development, as lightweight machine learning
tasks can also be directly executed on sensors. However, there
are also disadvantages to this concept. The complexity of the
system increases as the distributed software has to be devel-
oped and deployed. Therefore, centralized deployment of the
vehicle computer is not possible. In addition, the hardware
and programming limitations of the computing platform have
to be considered.

For future perception systems, the technology of
sensor-integrated computing power will definitely be inter-
esting and should be pursued further.

V. DISCUSSION
In this work, we showed the importance of system and
workflow considerations for the overall performance of
autonomous vehicle perception systems. Our lessons learned
and findings were generated and validated through the IAC

44046 VOLUME 11, 2023



F. Sauerbeck et al.: Learn to See Fast: Lessons Learned From Autonomous Racing on How to Develop Perception Systems

and the AC@CES real-world applications. In the following
section, we want to discuss our work. Therefore, we will
discuss how perception system performance can be evaluated
and how the learnings from autonomous racing can be trans-
lated into public transport.

A. PERCEPTION SYSTEM EVALUATION
It is difficult to quantify perception system performance.
Generally, the measurability of system performance will be
an important research topic in the future. In the current
state of research, there are many metrics that quantify the
performance of individual algorithms and compare different
approaches. At this point, there is no standardized evalua-
tion metric for autonomous vehicles. Some new evaluation
metrics that cover a few of the problems have recently been
suggested [54], [55], [56]. However, none of them could
establish as a new standard, since not a single one covers all
of the problems.

In industry, the most widely used metric is kilometers
or miles driven per disengagement. However, this does not
include the complexity of the environment, and it also does
not allow one to track the reasons for disengagements, and
thus identify the weak points of the current software stack.
Also in the scientific and research world, more focus should
be placed on system-level results. Even the best working
and most sophisticated algorithms will not contribute to
overall performance if they are not properly integrated into
the autonomous system. Sensitivities should not only be
quantified for the output of a specific task (e.g. mAP for
object detection) but also for the whole system: What ben-
efit does a higher mAP bring, do we prefer precision or
runtime, etc.

In our work, we took the vehicle hardware set-up as given
and only configured it according to our needs, as partially
explained in Section IV-K. Future research projects should
consider the whole system as a problem to solve. In this
way, perfect synergies between hardware and software can
be found. On the one hand, it is desirable to design mod-
ular software that can be deployed to any hardware setup.
On the other hand, hardware and software cannot be separated
without compromise, as they depend heavily on each other.
To validate the performance of the whole perception system,
the hardware and hardware-software implications will have
to be looked at.

B. WAY TO GO TO LEVEL 5
The autonomous driving application considered in this
work represents a highly limited operational design domain
(ODD), as we

• only drove in good weather conditions,
• knew the racetrack before racing,
• only had to consider objects of one type, and thus did
not need any classification,

• and all other teams had to stick to strictly defined race
rules.

Only the strict limitation of the application made these
events possible. When aiming for Level 5 autonomous driv-
ing, the ODDs will have to be gradually increased. The
limitation of working only in good weather conditions is
still a big topic in autonomous driving. The importance of
ODDs to reach high levels of automation was pointed out by
Velasco-Hernandez et al. [26]. They emphasize the need of a
well defined life cycle development from ODD definition to
the final product release. Girdhar et al. [57] gave an overview
of the implications of perception systems for autonomous
vehicles if the goal is Level 5. Weather is one of the biggest
problems for autonomous vehicles today [58], [59].

The handling of more complicated scenarios is another
major challenge. More scalable and automatable mapping
approaches will have to be developed. In our application,
the map was still manually refined. For the mapping of
large cities, this is not feasible. In addition, each vehicle
will have to be able to detect changes in the map on the go
and publish them so that other vehicles are informed. Traffic
participants on public roads are not as predictable as opposing
race cars during strictly regulated events. Different types of
participants exhibit different behaviors: Pedestrians, bicycles,
cars, trucks, etc. Driving in urban areas is a different task
from driving on the highway and may need to be addressed
separately at this point.

The requirement that autonomous vehicles must be able to
manage these completely different challenges underlines the
importance of data-driven deep learning algorithms, as not
every single scenario can be covered with conventional algo-
rithms. The use of deep learning leads to the problem of scal-
ability and a chicken-and-egg problem: to develop such algo-
rithms, we need huge amounts of data that depict a lot of edge
cases, which only appear rarely; to collect data and havemany
autonomous vehicles driving on public roads, exactly these
algorithms are required. The only solution to this dilemma is
to develop better generalizing algorithms and refine the usage
of data. Current models are not able to transfer the learnings
from one domain to another, e.g., from simulation to reality,
from an American city to a European one, or even from
one sensor setup to a different one. Domain adaptation and
scalability of deep learning remain key challenges in the field
of autonomous driving. However, as explained above, more
complex scenarios will require more complex algorithms and
these will have to be data-driven. The creation of novel and
more versatile publicly available data sets will be the key to
quickly overcoming these hurdles.

In summary, autonomous driving has to be solved by solv-
ing sub-problems and merging solutions. Therefore, chal-
lenges such as the IAC and the AC@CES can be of great ben-
efit to the entire community. However, many key problems
remain unsolved and the road to level 5 autonomous vehicles
is still long.

VI. CONCLUSION
The experiences and results of the TUMAutonomous Motor-
sport team throughout the IAC and the AC@CES showed

VOLUME 11, 2023 44047



F. Sauerbeck et al.: Learn to See Fast: Lessons Learned From Autonomous Racing on How to Develop Perception Systems

that perception systems have a huge impact on the perfor-
mance of autonomous vehicles. System design and analysis
are still open research topics. Since system performance is
often limited by a conglomerate of causes rather than by
specific algorithms, this topic should be of greater importance
in future research.

To improve in these areas, well-defined and well-proven
workflows are important. Additionally, simulation environ-
ments as well as well-thought strategies for testing and val-
idation will have to be established and standardized. This
applies not only to race cars but also to road vehicles. When
developing novel perception systems, it is a good way to start
with the available basic algorithms and first set up a running
system. In the next step, more advanced algorithms can be
included in a working system to improve and validate the
system performance further. We could show that different
sensors provide different advantages and disadvantages. For
limited ODDs, it might be sufficient to rely heavily on one or
two specific modalities. However, if we want to strive toward
Level 5 autonomous driving and cover different use cases,
applications, and circumstances, sensor fusion is inevitable.

Summarizing our entire findings as concisely as possible,
we want to conclude this paper with the most important learn-
ings. These can be taken as advice when starting a robotic
project.

A. FOCUS ON THE SYSTEM
Every component should be evaluated for the influence it has
on the overall system performance, rather than on the perfor-
mance of a single algorithm. An early and clear definition of
software interfaces allows for easy enhancement of the soft-
ware stack and integration of novel approaches. A modular
overall software pipeline makes it easier to gradually enhance
the software stack and individual modules.

B. KEEP IT SIMPLE
This accounts for hardware and software. For a first working
prototype, choose a sensor that allows easy development of a
first processing pipeline. In our case, this was the LiDAR.
Also, for algorithms, it is recommended to start with con-
ventional and understandable solutions. Many of them are
already available, for example onGitHub7 and can be quickly
integrated. Often, it is worth starting with a Python node to
get a first working implementation. Later, the software can
be extended with advanced approaches.

C. DEVELOP YOUR WORKFLOW
Establishing a well-thought workflow can be a real boost for
a robotic project. This includes the whole pipeline, from soft-
ware development, testing, CI/CD, and simulation, to deploy-
ment and validation on the target hardware. Tools such as
Docker and GitLab-integrated tools (e.g. container registry,
or build and test automation) allow to set up an advanced
workflow even for smaller projects. In addition, many tools

7https://github.com/

for software and data visualization, e.g. PlotJuggler, are
available open source.

D. SIMULATION IS KING
Usually, software development has to be started before the
final hardware is ready to be used. Simulation is the only
way to test a robotic system before it can be evaluated in a
real-world application. By doing so, first findings can also
be taken into account for hardware development. Moreover,
it forces developers to have an early version of a working
software stack with defined interfaces. Thus, the transition
to the actual application is accelerated significantly. Another
point is that simulation allows for conducting a multitude of
experiments that could be done in reality.

E. ADVANCED PERCEPTION SYSTEMS
Currently, perception is the limiting factor for autonomous
vehicles. Advanced sensors incorporate functionalities that
allow them to adapt to different situations. These can be
software-definable specifications such as FoV, frame rate,
or resolution, but also sensor integrated compute power for
a first data pre-processing. However, each sensor modality
still faces physical limitations. The only way to develop a
perception system capable of Level 5 autonomous driving
is to compensate for the disadvantages of single modalities
using sensor fusion. The level of data fusion depends on
sensor setup and application and will have to be investigated
more detailed in future research.

ACKNOWLEDGMENT
This article was written by the Autonomous Motorsport Per-
ception Team, Technical University of Munich (TUM). The
authors would like to thank all the other team members
and students who contributed to the performance throughout
the competitions. Without the whole team, such research
would not be possible! They would like to thank the Indy
Autonomous Challenge organizers, Juncos Hollinger Racing,
and all other participating teams for the countless efforts to
make the Indy Autonomous Challenge and all of those exper-
iments with multiple full-scale autonomous racing vehicles
possible. Furthermore, this project was made possible with
the generous support and contributions of the basic research
funds of the Institute of Automotive Technology and the
Chair of Automatic Control of TUM as well as several private
donors and sponsors.

REFERENCES
[1] M. Buehler, K. Iagnemma, and S. Singh, The 2005 DARPA Grand Chal-

lenge: The Great Robot Race, vol. 36. Berlin, Germany: Springer, 2007.
[2] (2022). Indy Autonomous Challenge. [Online]. Available: https://www.

indyautonomouschallenge.com/
[3] J. Betz, T. Betz, F. Fent, M. Geisslinger, A. Heilmeier, L. Hermansdorfer,

T. Herrmann, S. Huch, P. Karle, M. Lienkamp, B. Lohmann, F. Nobis,
L. Ögretmen, M. Rowold, F. Sauerbeck, T. Stahl, R. Trauth, F. Werner, and
A. Wischnewski, ‘‘TUM autonomous motorsport: An autonomous racing
software for the Indy Autonomous Challenge,’’ J. Field Robot., vol. 40,
no. 4, pp. 783–809, Jun. 2023.

44048 VOLUME 11, 2023



F. Sauerbeck et al.: Learn to See Fast: Lessons Learned From Autonomous Racing on How to Develop Perception Systems

[4] A. Wischnewski, M. Geisslinger, and J. Betz, ‘‘Indy Autonomous
Challenge—Autonomous race cars at the handling limits,’’ in Proc.
12th Int. Munich Chassis Symp. Cham, Switzerland: Springer, 2022,
pp. 163–182.

[5] (2022). Indy Lights—Dallara IL15. [Online]. Available: https://www.
dallara.it/en/racing/indy%20lights

[6] A. Geiger, P. Lenz, and R. Urtasun, ‘‘Are we ready for autonomous driving?
The KITTI vision benchmark suite,’’ in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., Jun. 2012, pp. 3354–3361.

[7] B.Wilson, W. Qi, T. Agarwal, J. Lambert, J. Singh, S. Khandelwal, B. Pan,
R. Kumar, A. Hartnett, J. K. Pontes, D. Ramanan, P. Carr, and J. Hays,
‘‘Argoverse 2: Next generation datasets for self-driving perception and
forecasting,’’ in Proc. Neural Inf. Process. Syst., 2021, pp. 1–27.

[8] P. Sun, H. Kretzschmar, and X. Dotiwalla, ‘‘Scalability in perception for
autonomous driving: Waymo open dataset,’’ in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jun. 2020, pp. 2446–2454.

[9] S. Pendleton, H. Andersen, X. Du, X. Shen, M. Meghjani, Y. Eng,
D. Rus, and M. Ang, ‘‘Perception, planning, control, and coordination for
autonomous vehicles,’’Machines, vol. 5, no. 1, p. 6, Feb. 2017.

[10] S. Thrun, M. Montemerlo, H. Dahlkamp, D. Stavens, A. Aron, J. Diebel,
P. Fong, J. Gale, M. Halpenny, and G. Hoffmann, ‘‘Stanley: The robot
that won the DARPA grand challenge,’’ J. Field Robot., vol. 23, no. 9,
pp. 661–692, Sep. 2006.

[11] M. Johnson, B. Shrewsbury, S. Bertrand, T. Wu, D. Duran, M. Floyd,
P. Abeles, D. Stephen, N. Mertins, and A. Lesman, ‘‘Team IHMC’s lessons
learned from theDARPA robotics challenge trials,’’ J. Field Robot., vol. 32,
no. 2, pp. 192–208, 2015.

[12] E. Yurtsever, J. Lambert, A. Carballo, and K. Takeda, ‘‘A survey of
autonomous driving: Common practices and emerging technologies,’’
IEEE Access, vol. 8, pp. 58443–58469, 2020.

[13] N. Naz, M. K. Ehsan, M. R. Amirzada, M. Y. Ali, and M. A. Qureshi,
‘‘Intelligence of autonomous vehicles: A concise revisit,’’ J. Sensors,
vol. 2022, pp. 1–11, Apr. 2022.

[14] Y.Ma, Z.Wang, H. Yang, and L. Yang, ‘‘Artificial intelligence applications
in the development of autonomous vehicles: A survey,’’ IEEE/CAA J.
Autom. Sinica, vol. 7, no. 2, pp. 315–329, Feb. 2020.

[15] H.-H. Jebamikyous and R. Kashef, ‘‘Autonomous Vehicles Perception
(AVP) using deep learning: Modeling, assessment, and challenges,’’ IEEE
Access, vol. 10, pp. 10523–10535, 2022.

[16] A. S.Mohammed,A.Amamou, F. K.Ayevide, S. Kelouwani, K. Agbossou,
and N. Zioui, ‘‘The perception system of intelligent ground vehicles in
all weather conditions: A systematic literature review,’’ Sensors, vol. 20,
no. 22, p. 6532, 2020.

[17] J. Vargas, S. Alsweiss, O. Toker, R. Razdan, and J. Santos, ‘‘An overview
of autonomous vehicles sensors and their vulnerability to weather condi-
tions,’’ Sensors, vol. 21, no. 16, p. 5397, Aug. 2021.

[18] E. Marti, M. A. de Miguel, F. Garcia, and J. Perez, ‘‘A review of sensor
technologies for perception in automated driving,’’ IEEE Intell. Transp.
Syst. Mag., vol. 11, no. 4, pp. 94–108, 2019.

[19] Z. Wang, Y. Wu, and Q. Niu, ‘‘Multi-sensor fusion in automated driving:
A survey,’’ IEEE Access, vol. 8, pp. 2847–2868, 2020.

[20] D. J. Yeong, G. Velasco-Hernandez, J. Barry, and J. Walsh, ‘‘Sensor and
sensor fusion technology in autonomous vehicles: A review,’’ Sensors,
vol. 21, no. 6, p. 2140, 2021.

[21] Y. Li and J. Ibanez-Guzman, ‘‘LiDAR for autonomous driving: The prin-
ciples, challenges, and trends for automotive LiDAR and perception sys-
tems,’’ IEEE Signal Process. Mag., vol. 37, no. 4, pp. 50–61, Jul. 2020.

[22] J. Van Brummelen,M. O’Brien, D. Gruyer, and H. Najjaran, ‘‘Autonomous
vehicle perception: The technology of today and tomorrow,’’ Transp. Res.
C, Emerg. Technol., vol. 89, pp. 384–406, Apr. 2018.

[23] J. Fayyad, M. A. Jaradat, D. Gruyer, and H. Najjaran, ‘‘Deep learning sen-
sor fusion for autonomous vehicle perception and localization: A review,’’
Sensors, vol. 20, no. 15, p. 4220, Jul. 2020.

[24] F. Rosique, P. J. Navarro, C. Fernández, and A. Padilla, ‘‘A systematic
review of perception system and simulators for autonomous vehicles
research,’’ Sensors, vol. 19, no. 3, p. 648, 2019.

[25] S. Devi, P. Malarvezhi, R. Dayana, and K. Vadivukkarasi, ‘‘A comprehen-
sive survey on autonomous driving cars: A perspective view,’’ Wireless
Pers. Commun., vol. 114, pp. 2121–2133, May 2020.

[26] G. Velasco-Hernandez, D. J. Yeong, J. Barry, and J. Walsh, ‘‘Autonomous
driving architectures, perception and data fusion: A review,’’ in Proc. IEEE
16th Int. Conf. Intell. Comput. Commun. Process. (ICCP), Sep. 2020,
pp. 315–321.

[27] S.-C. Lin, Y. Zhang, C.-H. Hsu, M. Skach, M. E. Haque, L. Tang, and
J. Mars, ‘‘The architectural implications of autonomous driving: Con-
straints and acceleration,’’ in Proc. 23rd Int. Conf. Architectural Support
Program. Lang. Operating Syst., Mar. 2018, pp. 751–766.

[28] W. Zong, C. Zhang, Z. Wang, J. Zhu, and Q. Chen, ‘‘Architecture design
and implementation of an autonomous vehicle,’’ IEEE Access, vol. 6,
pp. 21956–21970, 2018.

[29] P. Kowalczyk, M. Komorkiewicz, P. Skruch, and M. Szelest, ‘‘Effi-
cient characterization method for big automotive datasets used for per-
ception system development and verification,’’ IEEE Access, vol. 10,
pp. 12629–12643, 2022.

[30] D. Falanga, S. Kim, and D. Scaramuzza, ‘‘How fast is too fast? The role
of perception latency in high-speed sense and avoid,’’ IEEE Robot. Autom.
Lett., vol. 4, no. 2, pp. 1884–1891, Apr. 2019.

[31] A. S. Mueller, J. B. Cicchino, and D. S. Zuby, ‘‘What humanlike errors
do autonomous vehicles need to avoid to maximize safety?’’ J. Saf. Res.,
vol. 75, pp. 310–318, Dec. 2020.

[32] J. Wang, L. Zhang, Y. Huang, and J. Zhao, ‘‘Safety of autonomous vehi-
cles,’’ J. Adv. Transp., vol. 2020, pp. 1–13, Oct. 2020.

[33] A. Taeihagh and H. S. M. Lim, ‘‘Governing autonomous vehicles: Emerg-
ing responses for safety, liability, privacy, cybersecurity, and industry
risks,’’ Transp. Rev., vol. 39, no. 1, pp. 103–128, Jul. 2018.

[34] K. Ren, Q. Wang, C. Wang, Z. Qin, and X. Lin, ‘‘The security of
autonomous driving: Threats, defenses, and future directions,’’Proc. IEEE,
vol. 108, no. 2, pp. 357–372, Feb. 2020.

[35] B.-J. Kim and S.-B. Lee, ‘‘Safety evaluation of autonomous vehicles
for a comparative study of camera image distance information and
dynamic characteristics measuring equipment,’’ IEEE Access, vol. 10,
pp. 18486–18506, 2022.

[36] M. Tlig, M. Machin, R. Kerneis, E. Arbaretier, L. Zhao, F. Meurville, and
J. Van Frank, ‘‘Autonomous driving system:Model based safety analysis,’’
in Proc. 48th Annu. IEEE/IFIP Int. Conf. Dependable Syst. Netw. Work-
shops (DSN-W), Jun. 2018, pp. 2–5.

[37] S. Almeaibed, S. Al-Rubaye, A. Tsourdos, and N. P. Avdelidis, ‘‘Digital
twin analysis to promote safety and security in autonomous vehicles,’’
IEEE Commun. Standards Mag., vol. 5, no. 1, pp. 40–46, Mar. 2021.

[38] J. R. McBride, J. C. Ivan, D. S. Rhode, J. D. Rupp, M. Y. Rupp,
J. D. Higgins, D. D. Turner, and R. M. Eustice, ‘‘A perspective on emerg-
ing automotive safety applications, derived from lessons learned through
participation in the DARPA grand challenges,’’ J. Field Robot., vol. 25,
no. 10, pp. 808–840, Oct. 2008.

[39] S. Nekkah, J. Janus, M. Boxheimer, L. Ohnemus, S. Hirsch, B. Schmidt,
Y. Liu, D. Borbély, F. Keck, K. Bachmann, and L. Bleszynski,
‘‘The autonomous racing software stack of the KIT19d,’’ 2020,
arXiv:2010.02828.

[40] A. Alvarez, N. Denner, Z. Feng, D. Fischer, Y. Gao, L. Harsch, S. Herz,
N. Le Large, N. Bach, C. Rosero, S. Schaefer, A. Terletskiy, L. Wahl,
S. Wang, J. Yakupova, and Y. Haocen, ‘‘The software stack that won the
formula student driverless competition,’’ in Proc. 2nd Workshop Opportu-
nities Challenges Auto. Racing, 2022, pp. 1–6.

[41] S. Thrun and M. Montemerlo, ‘‘The graph SLAM algorithm with appli-
cations to large-scale mapping of urban structures,’’ Int. J. Robot. Res.,
vol. 25, nos. 5–6, pp. 403–429, 2006.

[42] J. Kabzan, M. I. Valls, V. J. F. Reijgwart, H. F. C. Hendrikx, C. Ehmke,
M. Prajapat, and A. Bühler, ‘‘AMZ driverless: The full autonomous racing
system,’’ J. Field Robot., vol. 37, no. 7, pp. 1267–1294, 2020.

[43] M. Montemerlo and S. Thrun, ‘‘Simultaneous localization and mapping
with unknown data association using FastSLAM,’’ in Proc. IEEE Int. Conf.
Robot. Autom., Sep. 2003, pp. 1985–1991.

[44] C. Jung, A. Finazzi, H. Seong, D. Lee, S. Lee, B. Kim, G. Gang, S. Han,
and D. H. Shim, ‘‘An autonomous system for head-to-head race: Design,
implementation and analysis; Team KAIST at the Indy Autonomous Chal-
lenge,’’ 2023, arXiv:2303.09463.

[45] T. Betz, P. Karle, F. Werner, and J. Betz, ‘‘An analysis of software
latency for a high-speed autonomous race car—A case study in the Indy
Autonomous Challenge,’’ SAE Int. J. Connected Automated Vehicles,
vol. 6, no. 3, pp. 1–11, Feb. 2023.

[46] F. Sauerbeck, L. Baierlein, J. Betz, and M. Lienkamp, ‘‘A combined
LiDAR-camera localization for autonomous race cars,’’ SAE Int. J. Con-
nected Automated Vehicles, vol. 5, no. 1, pp. 61–71, Jan. 2022.

[47] P. Fua and K. Lis, ‘‘Comparing Python, go, and C++ on the N-queens
problem,’’ 2020, arXiv:2001.02491.

VOLUME 11, 2023 44049



F. Sauerbeck et al.: Learn to See Fast: Lessons Learned From Autonomous Racing on How to Develop Perception Systems

[48] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, ‘‘You only look once:
Unified, real-time object detection,’’ in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., Jun. 2016, pp. 779–788.

[49] S. Shi, X. Wang, and H. Li, ‘‘PointRCNN: 3D object proposal generation
and detection from point cloud,’’ in Proc. IEEE/CVF Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jun. 2019, pp. 770–779.

[50] V. M. Raju, V. Gupta, and S. Lomate, ‘‘Performance of open autonomous
vehicle platforms: Autoware and Apollo,’’ in Proc. IEEE 5th Int. Conf.
Converg. Technol. (ICT), Mar. 2019, pp. 1–5.

[51] S. Huch, L. Scalerandi, E. Rivera, and M. Lienkamp, ‘‘Quantifying the
LiDAR sim-to-real domain shift: A detailed investigation using object
detectors and analyzing point clouds at target-level,’’ IEEE Trans. Intell.
Vehicles, early access, Mar. 2, 2023, doi: 10.1109/TIV.2023.3251650.

[52] P. Karle, F. Fent, S. Huch, F. Sauerbeck, and M. Lienkamp, ‘‘Multi-modal
sensor fusion and object tracking for autonomous racing,’’ IEEE Trans.
Intell. Veh., pp. 1–13, 2023.

[53] N. Vodisch, O. Unal, K. Li, L. Van Gool, and D. Dai, ‘‘End-to-end
optimization of LiDAR beam configuration for 3D object detection and
localization,’’ IEEE Robot. Autom. Lett., vol. 7, no. 2, pp. 2242–2249,
Apr. 2022.

[54] G. Volk, J. Gamerdinger, A. V. Bernuth, and O. Bringmann, ‘‘A compre-
hensive safety metric to evaluate perception in autonomous systems,’’ in
Proc. IEEE 23rd Int. Conf. Intell. Transp. Syst. (ITSC), Sep. 2020, pp. 1–8.

[55] J. Philion, A. Kar, and S. Fidler, ‘‘Learning to evaluate perception models
using planner-centric metrics,’’ in Proc. IEEE/CVF Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jun. 2020, pp. 14055–14064.

[56] R. Philipp, J. Rehbein, F. Grun, L. Hartjen, Z. Zhu, F. Schuldt, and
F. Howar, ‘‘Systematization of relevant road users for the evaluation of
autonomous vehicle perception,’’ in Proc. IEEE Int. Syst. Conf. (SysCon),
Apr. 2022, pp. 1–8.

[57] M. Girdhar, Y. You, T.-J. Song, S. Ghosh, and J. Hong, ‘‘Post-accident
cyberattack event analysis for connected and automated vehicles,’’ IEEE
Access, vol. 10, pp. 83176–83194, 2022.

[58] S. Zang, M. Ding, D. Smith, P. Tyler, T. Rakotoarivelo, and M. A. Kaafar,
‘‘The impact of adverse weather conditions on autonomous vehicles:
How rain, snow, fog, and hail affect the performance of a self-driving car,’’
IEEE Veh. Technol. Mag., vol. 14, no. 2, pp. 103–111, Jun. 2019.

[59] R. Heinzler, P. Schindler, J. Seekircher, W. Ritter, and W. Stork, ‘‘Weather
influence and classification with automotive LiDAR sensors,’’ in Proc.
IEEE Intell. Vehicles Symp. (IV), Jun. 2019, pp. 1527–1534.

FLORIAN SAUERBECK (Member, IEEE) rec-
eived the B.Sc. degree from the University of
Erlangen–Nuremberg, in 2016, and the M.Sc.
degree in electrical engineering from the Tech-
nical University of Munich (TUM), Munich,
Germany, in 2020, where he is currently pursu-
ing the Ph.D. degree in mechanical engineering
with the Institute of Automotive Technology. His
research interests include 3D perception, local-
ization, and mapping, with a focus on real-world
applications.

SEBASTIAN HUCH received the B.Eng. degree
from Baden–Wuerttemberg Cooperative State
University (DHBW), Stuttgart, Germany, in 2016,
and the M.Sc. degree from the Technical Uni-
versity of Darmstadt, Germany, in 2018. He is
currently pursuing the Ph.D. degree in mechan-
ical engineering with the Institute of Auto-
motive Technology, Technical University of
Munich (TUM), Germany. His research interests
include LiDAR simulation, LiDAR perception,

and LiDAR domain adaptation for autonomous driving.

FELIX FENT received the B.Sc. andM.Sc. degrees
from the Technical University of Munich (TUM),
Munich, Germany, in 2018 and 2020, respectively,
where he is currently pursuing the Ph.D. degree
in mechanical engineering with the Institute of
Automotive Technology. His research interests
include radar-based perception, sensor fusion, and
multi-modal object detection approaches, with a
focus on real-world applications.

PHILLIP KARLE received the B.Sc. and M.Sc.
degrees from the Technical University of Munich
(TUM), Munich, Germany, in 2017 and 2019,
respectively, where he is currently pursuing the
Ph.D. degree in mechanical engineering with the
Institute of Automotive Technology. His research
interests include multi-object tracking, scenario
understanding, motion prediction, and related
applications for autonomous driving, with a focus
on real-world applications.

DOMINIK KULMER received the B.Sc. and
M.Sc. degrees from the Technical University of
Munich (TUM), Munich, Germany, in 2019 and
2022, respectively, where he is currently pursu-
ing the Ph.D. degree in mechanical engineering
with the Institute of Automotive Technology. His
research interests include sensor fusion, localiza-
tion, and mapping, with a focus on real-world
applications.

JOHANNES BETZ (Member, IEEE) received the
B.Eng. degree from the University of Applied Sci-
ence Coburg, in 2011, the M.Sc. degree from the
University of Bayreuth, in 2012, and the Ph.D.
and M.A. degrees in philosophy from the Tech-
nical University of Munich (TUM), in 2019 and
2021, respectively. He is currently an Assistant
Professor with the Department of Mobility Sys-
tems Engineering, TUM. He is one of the founders
of the Autonomous Motorsport Team, TUM. His

research interests include developing adaptive dynamic path planning
and control algorithms, decision-making algorithms that work under high
uncertainty in multi-agent environments, and validating the algorithms on
real-world robotic systems.

44050 VOLUME 11, 2023

http://dx.doi.org/10.1109/TIV.2023.3251650

