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ABSTRACT Deep learning-based image signal processor (ISP) models for mobile cameras can generate
high-quality images that rival those of professional DSLR cameras. However, their computational demands
often make them unsuitable for mobile settings. Additionally, modern mobile cameras employ non-Bayer
color filter arrays (CFA) such as Quad Bayer, Nona Bayer, and Q×Q Bayer to enhance image quality,
yet most existing deep learning-based ISP (or demosaicing) models focus primarily on standard Bayer
CFAs. In this study, we present PyNET-Q×Q, a lightweight demosaicing model specifically designed
for Q×Q Bayer CFA patterns, which is derived from the original PyNET. We also propose a knowl-
edge distillation method called progressive distillation to train the reduced network more effectively.
Consequently, PyNET-Q×Q contains less than 2.5% of the parameters of the original PyNET while
preserving its performance. Experiments using Q×Q images captured by a prototype Q×Q camera sen-
sor show that PyNET-Q×Q outperforms existing conventional algorithms in terms of texture and edge
reconstruction, despite its significantly reduced parameter count. Code and partial datasets can be found
at https://github.com/Minhyeok01/PyNET-QxQ.

INDEX TERMS Bayer filter, color filter array (CFA), demosaicing, image signal processor (ISP), knowledge
distillation, non-Bayer CFA, Q×Q Bayer CFA.

I. INTRODUCTION
As the demand for higher-quality images continues to grow,
mobile camera sensors are becomingmore integrated, leading
to smaller pixel sizes. However, these smaller pixel sizes
directly affect image quality, especially in low-light condi-
tions. Pixel-binning has been proposed to address this issue
by grouping nearby pixels to create larger effective pixel
sizes, which improves the signal-to-noise ratio (SNR) in
low-light settings while maintaining high-resolution images
under bright conditions. Examples of this technique include
Quad and Nona color filter arrays (CFA), used in recent
flagship smartphones such as the Samsung Galaxy S21 Ultra
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and Xiaomi Mi 11 Ultra. The Q×Q Bayer CFA (Figure 1b,
which groups 4 × 4 pixels, has also been proposed.

Camera sensors capture RAW images as single-channel
images since each pixel can only record single-color informa-
tion. Image signal processors (ISPs) then convert these RAW
images into high-quality RGB images through processes such
as demosaicing, denoising, white balancing, and gamma cor-
rection. Although deep learning-based ISP techniques have
greatly improved image reconstruction quality [1], [2], [3],
[4], most existing methods focus on standard Bayer CFAs
(Figure 1a), with only a few considering non-Bayer CFAs [5],
[6]. With non-Bayer CFAs causing different image statistics
compared to standard Bayer filtered images, ISPs should be
re-optimized, particularly for the latest Q×Q Bayer CFAs.
However, no ISPs specifically designed for Q×Q Bayer CFA
currently exist.
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FIGURE 1. Standard Bayer and Q×Q Bayer color filter arrays.

Another challenge for mobile cameras is the lim-
ited computational resources available. The trend of
over-parameterization in deep learning models [7], [8] is not
suitable for resource-constrained environments. PyNET [1],
for instance, achieves impressive performance in RAW to
RGB reconstruction but has a parameter count of 47.55 mil-
lion and a trained parameter size of 181.6 MB.

In this paper, we propose PyNET-Q×Q, a next-generation
deep learning-based ISP model explicitly designed for
resource-constrained environments and Q×Q Bayer CFAs.
We primarily focus on demosaicing, as other tasks like
whitening and gamma correction can be subjectively and tun-
ably adjusted at the software level. PyNET-Q×Q is based on
the recently proposed PyNET [1] but is more mobile-friendly
by significantly reducing the number of model parameters.
In addition, to address the discontinuity issue inherent in
Q×Q images (due to 4 × 4 grouping), we introduce two
additional techniques: 1) introducing skip connection with a
gray image and 2) applying sub-pixel convolution [9], [10].

However, the reduced size of the proposed model results in
lower reconstructed image quality compared to the original
PyNET. To address this, we incorporate a knowledge distil-
lation strategy to improve output image quality. Knowledge
distillation [11] is a process that transfers a distilled soft label
from a larger model (teacher) to a smaller model (student).
We propose progressive distillation for generative models,
which transfers knowledge from different levels of teachers,
allowing the student model to learn from the appropriate
teacher level.

Note that obtaining ground truth images while training
deep learning-based ISP models is challenging. PyNET [1]
is trained with RAW images captured by a Huawei P20
camera phone (as input) and images captured by a Canon 5D
Mark IV DSLR camera (as ground truth output). However,
such datasets can have alignment issues and may depend
on specific ISP systems with subjective components. Most
other works [12], [13], [14] apply Bayer CFA to common
images to obtain input images, but these filtered images
have different statistics from sensor-level images due to ISP
processing. In this work, we train our model with a hybrid
dataset, consisting of RAW 3CCD images captured by a

Hitachi HV-F203SCL and the common dataset DIV2K [15].
Unlike standard cameras, each pixel sensor of a 3CCD cam-
era captures all sensor-level RGB color information, making
it more suitable as ground truth. The corresponding Q×Q
input is a filtered RAW 3CCD image by Q×Q Bayer CFA.
Therefore, the hybrid dataset includes a diverse range of
scenes from DIV2K and more accurate color information
from 3CCD images.We also test the proposedmodel onQ×Q
input images obtained by an actual Q×Q sensor (currently
under development).

Our main contributions can be summarized as follows:

• We propose the first mobile-friendly demosaicing
model for Q×Q Bayer CFA, PyNET-Q×Q. Specifi-
cally, we adapt PyNET for Q×Q inputs by introducing
skip connection with a gray image and sub-pixel con-
volution, and then compress the model (from 181 MB
to 5 MB) for mobile environments.

• We explore a progressive distillation strategy in gen-
erative tasks, which allows for more effective training
of the compressed network.

• We incorporate sensor-level RAW 3CCD images into
the training dataset, making it more suitable for demo-
saicing tasks than common datasets.

• We demonstrate the performance of our model using
actual Q×Q input images obtained from a Q×Q cam-
era sensor.

II. RELATED WORKS
A. DEEP LEARNING BASED DEMOSAICING
Deep learning-based demosaicing models have emerged due
to the impressive success of deep neural networks across
numerous computer vision tasks [12], [13], [14], [16], [17],
[18]. However, most of these models have primarily focused
on Bayer CFA. For non-Bayer CFA demosaicing, Syu et al.
introduced DMCNN [19], based on SRCNN [20], demon-
strating its effectiveness on various non-Bayer CFA inputs,
including diagonal stripe [21], GYGM, and Hirakawa [22].
Kim et al. [23] proposed an efficient end-to-end demosaicing
model comprised of two pyramid networks for Quad CFA
(2×2), while Sharif et al. [24] suggested a joint demosaicing
and denoising scheme utilizing depth and spatial attention.
For Nona CFA (3× 3), Sugawara et al. [5] developed a GAN
based on a spatial-asymmetric attention module to minimize
artifacts. Kim et al. [6] demonstrated that a duplex pyramid
network (DPN) [23] achieves low visual artifacts and effec-
tive edge restoration in demosaicing images captured by a
SAMSUNG CMOS sensor.

In addition to demosaicing-specific models, several deep
learning-based ISP models have been proposed to replace
traditional ISPs [25]. Recent work has concentrated on hier-
archical structures, such as U-Net [26], to manage local
and global features. U-Net is a U-shaped network that pro-
cesses fine and coarse features through contracting and
expanding paths. EEDNET [2] employed a U-Net struc-
ture with a channel attention residual dense block and
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FIGURE 2. The architecture of the original and enhanced PyNET. Enhancements (sub-pixel convolution, and skip connection with a gray image) are
highlighted in magenta.

clip-L1 loss. W-Net [27] utilized a two-cascaded U-Net
architecture with a channel attention module, while Camer-
aNet [28] also employed two-cascaded U-Nets, consisting of
Restore-Net and Enhance-Net. Beyond U-Net-based models,
DeepISP [29] introduced a network by connecting twoCNNs.
PyNET [1] significantly enhanced performance by using an
inverted pyramidal structure with various convolution filters.
PyNET-CA [30] incorporated a channel attention mechanism
into PyNET, further improving the reconstruction quality.

It is worth mentioning that super-resolution [31], which
aims to reconstruct a high-resolution (HR) image from a
low-resolution (LR) image, shares similarities with demo-
saicing as it fills in the missing information of an image.
Traditional approaches to super-resolution construct an HR
image based on prior knowledge [32], [33]. In contrast,
CNN-based [9], [20], [34], [35], [36], [37], [38] and GAN-
based [39], [40] super-resolution models generate photore-
alistic output images, surpassing classical methods without
using hand-crafted elements.

While other network models exist in computer vision, such
as vision transformer (ViT) [41], [42], and regression-based
approaches [43], most of them are computationally intensive
and not suitable for mobile environments. Our model is based
on PyNET due to its proven performance in ISP-related tasks
and its compressible CNN-based architecture.

B. PyNET
As our model structure heavily relies on PyNET [1], we
provide a comprehensive review of PyNET in this section.

PyNET features an inverted pyramidal structure with five
levels, where level 5 is the lowest and level 1 is the high-
est. Each level works with differently scaled images; the
lower levels operate on lower resolution images and focus
on learning global features, while the higher levels work with
higher resolution images and learn local details. Each level of
PyNET is composed of multi-convolution blocks. The lower
level contains blocks with two convolution layers that have
a kernel size of 3 × 3, whereas the higher level has parallel
convolution layers with various kernel sizes (3 × 3, 5 × 5,
7 × 7, and 9 × 9). Above level 1, PyNET features at level
0 that includes a convolution layer and an activation function,
which scales up the level 1 output to the target resolution.

PyNET is trained sequentially from the lowest level to the
highest level. The outputs of the lower levels are upsam-
pled to align with the scale of features in the subsequent
level. Before applying convolution layers, the higher level
concatenates the upsampled feature maps (from the previ-
ous level) and an intermediate scaled input. All pre-trained
lower levels are trained simultaneously when training the
higher level. Figure 2a depicts the network architecture
of PyNET.

Despite PyNET’s exceptional performance, the inverted
pyramidal structure necessitates a large number of param-
eters, which is not ideal for mobile environments. We also
note that the input image of PyNET comprises four channels
with a half-resolution of the original RAW image, as shown
in Figure 4. This makes it more susceptible to discontinuity
issues, particularly when the input is a Q×Q image.
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FIGURE 3. The architecture of the proposed PyNET-Q×Q.

C. KNOWLEDGE DISTILLATION
In knowledge distillation [11], a pre-trained, complex teacher
model provides a distilled output (soft labels) to a smaller stu-
dent model, transferring the teacher’s knowledge. Although
it seems intuitive that the student model should learn better
from a stronger model, Cho and Hariharan [44] demonstrated
that a highly accurate teacher is not always the best choice.
They revealed that a less-trained network might be a more
suitable teacher when the student network has limited capac-
ity. This suggests that the teacher’s knowledge should align
with the student’s capabilities. Furthermore, Rezagholizadeh
et al. [45] proposed progressive distillation for natural lan-
guage processing (NLP) and classification tasks to minimize
the capability gap between the student and teacher. Progres-
sive distillation gradually distills knowledge from a smoother
teacher to a fully-trained teacher, allowing the student to learn
from a teacher at the appropriate level.

There are various knowledge distillation methods. Feature
distillation [46], [47] transfers the teacher model’s interme-
diate feature maps to a student model, while online distilla-
tion [48], [49], [50], [51], [52] trains both the teacher and
student models simultaneously. Adaptive distillation [53],
[54] enables the student network to learn frommultiple teach-
ers adaptively. Du et al. [53] update the weights of knowl-
edge distillation losses and feature losses during training
based on teachers’ gradients. Liu et al. [54] transfer features

frommultiple teachers and adaptively adjust weights between
teachers’ soft targets.

However, in generative tasks that produce an image (such
as super-resolution and demosaicing), directly applying dis-
tillation techniques is challenging since they do not have a
notion of soft labels. Consequently, many super-resolution
networks distill teacher networks’ features [55], [56], [57]
using an additional tool like a regressor to address dimension
mismatches between the teacher and student. Gao et al. [55]
transfer the first-order statistical map (e.g., average, max-
imum, or minimum value) of intermediate features, while
FAKD [56] proposed spatial affinity of features-based distil-
lation to utilize rich high-dimensional statistical information.
LSFD [57] introduced a deeper regressor comprising 3 ×

3 convolution layers to achieve a larger receptive field and
an attention method based on the difference (between teacher
and student) that selectively focuses on vulnerable pixel
locations. PISR [58] added an encoder that leverages priv-
ileged information from ground truth and transfers knowl-
edge through feature distillation. Beyond super-resolution,
Aguinaldo et al. [59] proposed a distillation method for gen-
eral GANs by transferring knowledge based on the pixel-level
distance between images generated by the student and the
teacher. KDGAN [60] suggested a three-player distillation
with a student, a teacher, and a discriminator. Park et al. [61]
utilized knowledge distillation for CNN-based demosaicing
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on FPGA. However, most knowledge distillation approaches
depend on a pre-trained fixed teacher, overlooking the stu-
dent’s incapabilities during early training. In the context
of denoising tasks, HKDS [62] shares similarities with our
proposed method by using a two-stage distillation process
with two teachers, each trained on different noise levels.
Nevertheless, our approach differs from HKDS in that we
employ two teachers with varying training levels and it is not
restricted to the denoising setup.

III. PyNET-Q×Q
A. MODEL ARCHITECTURE
Since PyNET can handle RAW input types and boasts
extraordinary performance with an easily compressible archi-
tecture, we propose PyNET-Q×Q, which is based on PyNET.
PyNET-Q×Q is specifically designed formobile devices with
a lighter structure and additional network design tailored for
Q×Q input. To create a lighter model, we retain only levels
0 and 1, removing lower levels (levels 2-5). Additionally,
since multi-convolution blocks significantly increase FLOP
counts, PyNET-Q×Q reduces the number of filters in all
blocks by half. We compensate for the model degradation
resulting from compression with a distillation technique,
which we discuss in Section III-B.
Recall that Q×Q Bayer CFA groups 4 × 4 patches to

obtain single-color information; the distance between the
same color patches is larger than the regular Bayer pattern
input. Therefore, Q×Q input generates output images with
blocking effects, which are further amplified when the model
has reduced parameters and lower capacity. To overcome this
issue, we introduce two additional components to PyNET for
Q×Q images: 1) skip connection with a gray image and 2)
sub-pixel convolution. We present the network architecture
of PyNET-Q×Q in Figure 3.

1) SKIP CONNECTION WITH A GRAY IMAGE
The Q×Q input image provides true pixel values in part,
and the corresponding pixels in the model’s output should
maintain consistent values. In other words, the model should
preserve information from the input Q×Q RAW image and
reconstruct the input’s missing parts. Hence, it is natural
to supply an input image to the model’s (near) final layer,
allowing it to focus solely on the missing part. PyNET [1]
has skip connections in the residual block of each level, but
level 0 does not, as it only upsamples level 1 output.

The proposed model includes a skip connection that pro-
vides a single-channel gray image to the final layer at level 0.
A gray image is a single-channel, full-resolution image
obtained by CFA, different from a 4-channel (RGBG), half-
resolution PyNET input, as depicted in Figure 4. Note that
there is a global skip connection in level 1, but it does not
complement the overall shape and location information. Sim-
ilar to DenseNet [63], the final layer at level 0 concatenates
(instead of adding) a gray image and level 1’s output. The gray
image provides a subset of the true pixel value, which assists

the next convolution layer in refining level 1’s results. The last
convolution layer then produces the sensor-level RGB output
image.

The gray image offers a partial ground truth for the input
image, making residual learning more effective. The effec-
tiveness of this approach is validated by experimental results.
We provide a more detailed discussion on the gray image skip
connection’s effect in Section IV-B. Note that the additional
skip connection only increases nine parameters per filter of
the last convolution layer, which is negligible.

2) SUB-PIXEL CONVOLUTION
PyNET’s inverted-pyramidal structure necessitates multiple
upsampling steps to transform features from lower levels to
higher levels. PyNET [1] upsamples features using bilinear
interpolation followed by a 3 × 3 convolution, which results
in cumulative noise in the feature and information loss due
to non-invertibility. On the other hand, deconvolution [10],
another upsampling technique with fractional stride, exhibits
a checkerboard artifact that is more critical for Q×Q inputs.

Motivated by the upsampling in super-resolution [9], we
replace interpolation-based upsampling with sub-pixel con-
volution. Sub-pixel convolution expands the channel by the
square of the upscaling factor and rearranges it, while decon-
volution adds padding first, followed by a standard con-
volution. Sub-pixel convolution is invertible and has fewer
checkerboard artifacts [64]. By incorporating sub-pixel con-
volution, we address the issues related to interpolation-based
upsampling methods and improve the overall performance of
the model for Q×Q input.

B. PROGRESSIVE DISTILLATION
To address the performance reduction resulting from param-
eter and level reduction, we employ knowledge distillation
with an enhanced PyNET as the teacher model. The teacher
model is a full-size PyNET with all five levels, the original
number of filters, and additional components for Q×Q input,
such as a skip connection with a gray image and sub-pixel
convolution. The enhanced PyNET teacher model is depicted
in Figure 2b, with the enhancements highlighted in magenta.
Taking inspiration from progressive distillation [45] in clas-
sification settings, we propose progressive distillation for
generativemodels, which also adaptively adjusts the teacher’s
level to smooth the knowledge transfer during the distillation
process.

The idea behind progressive distillation for generative
models is to progressively switch the teacher model to a more
advanced one as the student becomes ready. More specifi-
cally, let {T1, . . . ,Tk} represent the collection of teachermod-
els that share the same network architecture but have been
trained for a different number of epochs. A lower index indi-
cates a less-trained teacher, with T1 being the least trained and
Tk being the most trained. Initially, the student model trains
independently without assistance from a teacher. When the
difference between the student’s output and the ground truth
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FIGURE 4. Difference of gray image and 4 channel (RGBG) half resolution input.

plateaus, the student begins learning from the least-trained
teacher (T1). Then, as the agreement between the student’s
output and the teacher’s output reaches a saturation point,
the student transitions from a less-trained teacher (Ti) to a
more-trained teacher (Ti+1). It is important to note that Tk is
not a fully-trained teacher, as the student network’s capacity is
significantly smaller than the teacher’s capability. Progressive
distillation enables the unprepared student to easily imitate
the teacher in the early stages and follow the teacher’s learn-
ing process by adaptively switching teachers. In the context
of classification model distillation, the distilled output can be
seen as a label-smoothing regularizer. In our case, less-trained
teachers contribute to this process.

C. TRAINING
Similar to PyNET [1], we sequentially train each level of
PyNET-Q×Q, starting from level 1 and moving to level 0.
Level 1 training does not involve distillation, and the student
is trained with a 2× downscaled ground truth image. During
level 0 training, we utilize the progressive distillation scheme
outlined earlier.

1) LEVEL 1 TRAINING
Level 1 of the proposed model is trained with 2× down-
scaled images, without any distillation. This is because level
1 training already provides a sufficient initialization for level
0 training due to the 2× downscaled images. Let I (1)S and
I (1)GT represent the demosaiced image (output of level 1) and
the downscaled ground truth image, respectively. Then, level
1 training minimizes the original PyNET model [1] loss,
given by

L(1)
DE =

∥∥∥I (1)S − I (1)GT

∥∥∥2
2
+ λ1 · L(1)

VGG, (1)

where L(1)
VGG is a VGG [65]-based perceptual loss that mea-

sures semantic differences of level 1 outputs with weight
λ1 > 0.

2) LEVEL 0 TRAINING
During level 0 training, we train the entire PyNET-Q×Q
model, initializing level 0 randomly and level 1 with the

trained parameters from level 1 training. The loss function
consists of PyNET loss and distillation loss. Let IS and IGT
denote the demosaiced image (output of the model) and the
ground truth image, respectively. Similar to level 1 training,
the PyNET loss is given by

LDE = ∥IS − IGT ∥
2
2 + λ1 · LVGG + λ2 · LMS−SSIM , (2)

where LDE , LVGG, and LMS−SSIM denote demosaicing loss,
VGG loss, and MS-SSIM loss, respectively.

For distillation loss, we distill the intermediate features of
the early layers in level 1. This is because we removed lower
levels of PyNET, and PyNET-Q×Q level 1 should behave
similarly to the combination of all lower levels (levels 2 to 5)
of PyNET. For feature distillation, we calculate the L2 differ-
ence between intermediate features. However, the teacher and
student have different spatial dimensions of features, which
is why previous studies [55], [56], [57] introduced additional
regressors or extracted statistical information from features.
We also add 1×1 regressors R and compare the intermediate
features of level 1. For the i-th step of progressive distillation,
when the student model S learns from the i-th teacher Ti, the
distillation loss L(i)DS is given by

L(i)
DS =

∥∥R(FS ) − FTi
∥∥2
2 , (3)

where FS and FTi denote intermediate feature maps of level
1 from the student S and the teacher Ti, respectively.

Finally, during the i-th step of progressive distillation, we
train PyNET-Q×Q by minimizing the total loss

Ltotal = LDE + α · L(i)
DS , (4)

with weight α > 0. We switch the teacher to Ti+1 if the
feature difference between the student and teacher saturates.
More precisely, we consider the feature difference saturated
when the variance of differences in the last five epochs is
below a certain threshold σ . The progressive distillation pro-
cess is detailed in Algorithm 1.

IV. EXPERIMENTS
In this section, we present experimental results for PyNET-
Q×Q and compare them with traditional demosaicing tech-
niques. These conventional methods are not based on deep
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FIGURE 5. Pipeline for evaluating Q×Q demosaicing performance. PyNET-Q×Q represents our proposed algorithms, which are designed to demosaic
images captured using a Q×Q Bayer pattern. In addition to demosaicing, the pipeline includes ISP steps that aim to enhance the quality of the resulting
images by reducing noise, correcting color balance, adjusting contrast, and applying other techniques.

Algorithm 1 Progressive Distillation
Parameters:

S: the student model
{T1, . . . ,Tk}: the pre-trained teacher models

1: Initialize the student S level 1 using the parameters from
level 1 training

2: Train the student S until ∥IS − IGT ∥
2 saturates

3: for i = 1, 2, . . . , k do
4: Distill Ti to S until ∥R(FS ) − FTi∥

2 saturates
5: end for

learning algorithms and consist of various hand-crafted inter-
polation algorithms, such as four-direction residual inter-
polation and adaptive residual interpolation. Recall that
our focus is on demosaicing, which involves reconstructing
sensor-level RGB images from Q×Q RAW images. The
remaining ISP steps generate the output RGB image, as illus-
trated in Figure 5.
To ensure a fair comparison, we optimize the train-

ing parameters for the base PyNET and apply the same
hyperparameters (including the number of epochs) for all
experiments. All networks are trained using the ADAM
optimizer [66] with β1 = 0.9, β2 = 0.99, ϵ = 10−8, and
a learning rate of 10−4. PyNET-Q×Q is trained sequentially
from level 1 to level 0. Level 1 is optimized with λ1 = 0.1,
while level 0 is optimized with λ1 = 1 and λ2 = 0.4.
In progressive distillation, we have two teachers, T1 and T2,
which are trained with early stopping after the 7th and 20th
epochs, respectively. We set the weight parameter α to 10 to
match the scale of loss values.

A. DATASETS
Most existing deep learning-based models train on high-
quality, common image datasets such as DIV2K [15],
Flickr2K [15], WED [67], and BSDS500 [68]. For instance,
the widely-accepted procedure in super-resolution [42], [43],
[69], [70] involves downsampling the image (using a bicubic
kernel) to obtain a low-resolution input image, while the
original image serves as the high-resolution target image.
Similarly, in demosaicing, one might want to extract an input
RAW image from the dataset by applying the Bayer CFA.

However, this approach can cause problems since high-
resolution images in common datasets are outputs of an ISP
system. Due to the nature of ISP, which includes color cor-
rection, gamma correction, and white balancing, the statistics
of (downsampled) high-resolution images differ significantly
from sensor-level inputs. Consequently, a model trained on
downsampled data may imitate a specific ISP system.

In this work, we incorporate RAW3CCD images (captured
by Hitachi HV-F203SCL) into our dataset. A 3CCD camera
splits incoming light into three RGB color beams using a
dichroic prism, and three color sensors measure each beam’s
intensity. As a result, it can obtain RGB RAW images at the
sensor level without an additional ISP system. There is no loss
of original color information or positional mismatch in 3CCD
RAW images. We train PyNET-Q×Q on a hybrid dataset,
combining 935 RAW 3CCD images and 900 images from
the DIV2K dataset [15] for training and validation. Since
common datasets contain ISP-processed images, we apply an
inverse gamma function with γ = 2.2 (a common choice for
balancingmonitors and true color) to match input statistics by
reverting gamma correction. We demonstrate that the hybrid
dataset enhances the model’s capability in experiments, with
visual comparisons provided in Section IV-B4. Following
PyNET [1], processed images are cropped into 448×448 size
patches. Patches with low pixel variance are discarded for
training stability. The hybrid dataset comprises 14,595 train-
ing patches and 481 test patches. We evaluate the trained
model using Q×Q images acquired from an actual Q×Q
image sensor (under development). Due to their large size
(8000 × 6000), the test Q×Q RAW images are cropped into
2912×2912 patches. Sample 3CCD images andQ×Q images
with detailed descriptions are provided in Appendices. Both
RAW 3CCD data and Q×Q test RAW images are 10-bit
images, offeringmore detailed information than 8-bit images.

1) 3CCD DATASET
We supply 100 3CCD images (1600× 1200), with 50 indoor
and 50 outdoor images. The images are in ‘.RAW’ format,
where all pixel information is cascaded in a single line. The
RAW file first contains red values of all pixels, followed by
green and blue values. Each color information is described in
10 bits and stored using 2 bytes. Consequently, a 3CCDRAW
file contains width× height × 3 × 2 bytes. Additionally, the
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FIGURE 6. Visual comparison between conventional algorithm and deep learning algorithm for Q×Q demosaicing. From left to right, conventional,
PyNET, enhanced PyNET, and PyNET-Q×Q with progressive distillation (Ours).

FIGURE 7. Visual comparison of PyNET based models. From left to right: PyNET, Enhanced PyNET, PyNET-Q×Q, PyNET-Q×Q with knowledge
distillation, and PyNET-Q×Q with progressive distillation (Ours).

file includes a global black level offset of 64, requiring a black
level compensation of 64 from all pixel color values.

2) Q×Q DATASET
We offer six sample Q×Q images (8000 × 6000) obtained
from an actual Q×Q camera sensor (under development).
Since these Q×Q images are sensor-level images, they pos-
sess different characteristics compared to other common
images. For example, pixel values of green have a bias even
in plain white regions, resulting in a green color bias in
the demosaiced image. Later ISP steps will adjust this color
bias. Since each pixel in the Q×Q image contains single
color information, a single-channel image is stored. Similar to

3CCDRAWfiles, all pixel values are cascaded in a single line
in the Q×Q RAW file. Each color information is described
in 10 bits and stored using 2 bytes. Thus, a Q×Q RAW
file contains width × height × 2 bytes. The Q×Q RAW file
also has a black level offset of 64, necessitating black level
compensation.

B. RESULTS
1) COMPARISON WITH OTHER METHODS
As this is the first demosaicing model for Q×Q images, we
compare PyNET-Q×Q with other PyNET variants (PyNET
and enhanced) and conventional logic. Throughout the exper-
iment, we train all models (proposed and for comparisons)
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TABLE 1. PSNR, MS-SSIM, and FLOPs of test images (448 × 448). The bold and blue text indicate the best and second-best scores, respectively. (KD:
knowledge distillation, PD: progressive distillation).

FIGURE 8. Ablation study on enhancement of PyNET-Q×Q. (SC: skip connection with a gray image, SP: sub-pixel convolution).

FIGURE 9. Visual comparison of trained PyNET with different datasets.

TABLE 2. Ablation study. The baseline is the PyNET with two levels (level
0 and 1) and half of the filters. (SC: skip connection with a gray image, SP:
sub-pixel convolution).

using a hybrid dataset. We assess the models on actual
Q×Q images by visually examining reconstructed outputs, as
shown in Figure 6.1 The conventional method lacks smooth
edge reconstruction, while PyNET-based models exhibit
smooth edges, as depicted in the upper figures. Moreover,

1Q×Q images cannot be evaluated quantitatively because there are no
ground truth images.

the conventional method tends to intensify pixels of different
colors in the RAW Q×Q image, as shown in the blue box
in the upper figure. The high-frequency reconstruction of the
conventional method is somewhat blurry, while PyNET-based
models recreate more defined shapes, as demonstrated in
the lower figures. Surprisingly, PyNET-Q×Q displays visual
quality comparable to enhanced PyNET even with a 1/50
parameter reduction. Additional visual comparisons between
the conventional method and PyNET-Q×Q can be found in
Appendices.

2) IMPACT OF PROGRESSIVE DISTILLATION
We investigate the effectiveness of progressive distillation.
In Table 1, the enhanced PyNET outperforms other PyNET
variants in terms of PSNR and MS-SSIM. Despite having
fewer parameters, PyNET-Q×Q with progressive distilla-
tion (PD) achieves the second-highest PSNR score, even
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FIGURE 10. Example of the Q×Q RAW image and demosaiced image. The demosaiced image is before applying other ISP steps.

FIGURE 11. Visual comparison of detailed texture reconstruction.

surpassing the original PyNET. Notably, PyNET-Q×Q with-
out distillation presents lower scores than the original PyNET,
indicating that our enhancement and progressive distilla-
tion successfully compensate for level removal. Besides the
scores, PyNET-Q×Q without distillation exhibits a lower
visual quality of reconstruction, particularly in texture. For

instance, it contains a blue-ish shadow in Figure 7. This is
because PyNET-Q×Qwithout distillation struggles to handle
global texture and colors, roles played by lower levels in the
original PyNET. However, progressive distillation transfers
the ‘knowledge’ of lower levels from enhanced PyNET to
PyNET-Q×Q, enabling more realistic reconstructions.
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FIGURE 12. Visual comparison of reconstruction at high frequency.

FIGURE 13. Visual comparison of edge reconstruction.

Compared to the original PyNET, which has the second-
best MS-SSIM, the proposed model with progressive distil-
lation exhibits comparable MS-SSIM. However, the original

PyNET reveals some artifacts in shadows, as shown in
Figure 7. On the other hand, PyNET-Q×Q with progressive
distillation improves these artifacts.
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FIGURE 14. Visual comparison of false color removal.

3) ABLATION STUDY
To confirm the effectiveness of progressive distillation, we
conducted experiments with PyNET-Q×Q (a) without distil-
lation, (b) with regular knowledge distillation, and (c) with
progressive distillation, as shown in Table 1. To evaluate the
additional components of enhanced PyNET, we performed
the following supplementary experiments. For a fair com-
parison, the number of model parameters is the same across
all experiments. Since the aim of the proposed demosaicing
algorithm is to make PyNET lighter and enhance perfor-
mance, we use PyNET with two levels (level 0 and 1) and
half of the filters as our baseline.

The proposed enhancements are 1) a skip connection with
a gray image (SC) and 2) sub-pixel convolution (SP). The
scores (PSNR and MS-SSIM) of baseline models with and
without each enhancement are presented in Table 2. The skip
connection with a gray image improves PSNR by 1.2 dB
compared to the baseline. It also exhibits a better MS-SSIM
result, confirming that the skip connection with a gray image
enhances perceptual image quality. The visual evaluation also
demonstrates the contribution of the skip connection with
a gray image, as depicted in Figure 8a and Figure 8b. The
baseline exhibits a red false color artifact and distorted tone
and texture. However, the model with a skip connection with
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FIGURE 15. Visual comparison of text reconstruction.

FIGURE 16. Visual comparison of edge reconstruction.

FIGURE 17. Visual comparison of reconstruction at high frequency.

a gray image preserves the original color and more accurately
restores the original texture.

The sub-pixel convolution upsampling increases PSNR by
1.38 dB compared to the baseline. The significant improve-
ment in PSNR and MS-SSIM highlights the importance of
the appropriate upsampling method. The sub-pixel convo-
lution upsampling also yields better color reconstruction,
while the baseline displays color deviation, as illustrated
in Figure 8a and Figure 8c. The result suggests that
sub-pixel convolution upsampling outperforms interpolation-
based upsampling. By incorporating both skip connection

with a gray image and subpixel-based upsampling, the model
substantially improves PSNR, MS-SSIM, and visual quality,
as shown in Figure 8d.

4) IMPACT OF 3CCD AND HYBRID DATASETS
We investigate the influence of datasets on demosaicing
model training. We train PyNET models using a 3CCD RAW
dataset, DIV2K dataset, and hybrid dataset, respectively. The
3CCD dataset consists of 5,827 images (400× 400) cropped
from 528 RAW 3CCD images (1600 × 1200), whereas
the DIV2K dataset is comprised of 10,715 images cropped
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from 800 DIV2K HR images, and the hybrid dataset utilizes
both DIV2k and 3CCD data. We maintain the same number
of epochs, so the learning amount differs due to varying
dataset sizes. Output images generated by these models are
displayed in Figure 9. The model trained with the DIV2K
dataset exhibits color mismatches in monochromatic regions.
In contrast, the model trained with the 3CCD dataset demon-
strates better color restoration in low-light environments but
has a color bias where gray blocks exhibit a purple tone.
Using the hybrid dataset, color restoration is further enhanced
without color bias.

V. CONCLUSION
We introduced PyNET-Q×Q, the first deep learning-based
demosaicing model for Q×Q images. By incorporating a skip
connection with a gray image and sub-pixel convolution, we
enhanced PyNET to better suit Q×Q inputs. We then com-
pressed the enhanced PyNET and trained it using progressive
distillation. The proposed model is considerably smaller in
size (2.3% compared to PyNET) while maintaining a compa-
rable demosaicing capability. We evaluated our model with
input captured by an actual Q×Q image sensor and demon-
strated high-quality demosaiced images.
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