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ABSTRACT In order to tackle the robot trajectory planning problem with the short running time as the
optimization goal, a time-optimal trajectory planning algorithm was presented based on improved simplified
particle swarm optimization (ISPSO). The robot’s trajectory was constructed by 3-5-3 polynomial interpo-
lation in the joint space of the robot. Under the condition of satisfying the velocity constraint, the objective
function was constructed by the sum of the time intervals between each node. ISPSO was used to optimize
the objective function. The algorithm was improved by optimizing the inertia weight updating method and
introducing a golden sine segmentation algorithm as an optimization operator. Compared with other particle
swarm optimization algorithms, ISPSO had higher search velocity and accuracy. The effectiveness of the
proposed algorithm was demonstrated through simulations using the PUMA 560 industrial robot, which
resulted in a 19% reduction in time compared to the simplified particle swarm algorithm. The simulation
results show that ISPSO achieved time optimization under the condition of velocity constraint, which proved

its superiority in trajectory planning.

INDEX TERMS Trajectory planning, time-optimal, PSO, polynomial interpolation.

I. INTRODUCTION

Path planning is the basic field of robot kinematic research.
The terminal trajectory planning of industrial robots deter-
mines whether the robot can accurately complete the task.
Trajectory planning of industrial robots has very impor-
tant practical significance because it determines the robot’s
energy consumption, production efficiency, and service
life [1], [2], [3]-

The trajectory planning of robots is a highly complex and
nonlinear control problem. According to different optimiza-
tion objectives, trajectory planning can be divided into time
optimization [4], operational stability [5], mechanical life [6],
and optimal combinations [7], [8], [9]. The main purpose
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of optimal path planning is to obtain the optimal trajectory
through the path points according to the path points given
by the task under the condition of satisfying the motion con-
straints [ 10]. To meet the constraint conditions of path points,
it is necessary to introduce a trajectory planning algorithm.
The commonly used trajectory planning algorithm is an inter-
polation algorithm divided into polynomial functions and b-
spline curves. Su and Zou [11] proposed an algebraic and
trigonometric polynomial that can replicate the continuity of
displacement, velocity, and acceleration in the joint space
of the robot and realize the continuous and smooth opera-
tion of the robot. Sidobre and Desormeaux [12] proposed
a solution method based on a cubic polynomial function
segment sequence. Liu et al. [13] proposed a design method
combining polynomial and b-spline planning to ensure the
smooth motion of the robot and the tracking performance.
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Wang et al. [14] proposed an improved b-spline interpola-
tion method to improve the tracking accuracy and motion
smoothness of the b-spline by adding correction functions.
Despite the progress reported in the literature, these tradi-
tional algorithms have high computational order and lack of
convex, which is difficult to solve using the traditional opti-
mization method. Thus, intelligent optimization algorithms
for problem solving and trajectory planning [15], [16] have
gained popularity and represent a promising area for future
research. The commonly used intelligent optimization algo-
rithms [17] include the genetic algorithm [18], particle swarm
algorithm [19], and ant colony algorithm [20], among others.
Because of its few parameters, simplicity and easy imple-
mentation, particle swarm algorithm has been a research
hotspot [21], [22].

Mazhoud et al. [23] proposed a new particle swarm con-
straint mechanism to transform constrained problems into
unconstrained two-objective optimization problems through
arithmetic intervals for global optimal and historically opti-
mal particles. Zhang and Xing [24] proposed a fuzzy particle
swarm algorithm for the uncertainty of conditions in indus-
trial engineering, which can effectively solve the problem of
time and quality optimization of engineering, but it is limited
because it can only generate a single solution according to
preference. Literature [25] proposed a particle swarm algo-
rithm based on the mixed coding method, which randomly
selects excellent particles by the CR method. This improved
the convergence and diversity of populations. However, the
correlation between discrete and continuous variables needs
further study. Through multiple strategies, Xia improved the
performance of particle swarm algorithms. A particle swarm
algorithm with multiple adaptive strategies has also been
proposed, effectively improving the comp algorithm’s com-
prehensive performance through various rm and population
adaptive strategies [26]. Three new renewal strategies were
introduced to improve the population’s exploration and devel-
opment capacity, and the population’s ability to escape the
local optimal was improved [27].

The time-optimal trajectory planning problem can be
expressed by an objective mathematical function [28] and
then the established objective function can be optimized
using optimization tools. In a recent study, Sadhu et al.
[29] explored a trajectory planning algorithm using the syn-
ergistic effect of the firefly algorithm and Q-learning, which
improved the velocity and stability of the robot. Wang et al.
[30] reported a smoothed point-to-point trajectory plan-
ning method for industrial robots, which obtains the near-
time-optimal trajectory by maximizing the isokinetic part;
compared with the classical description, the arduous stage
of solving many polynomial coefficients could be simplified.
Wang et al. [31] proposed a trajectory optimization algorithm
inspired by Beetle, which has good search velocity and con-
trol performance without increasing algorithm complexity.
Finally, Zhao et al. [32] used a hybrid improved whale opti-
mization and PSO algorithm to effectively reduce the jitter of
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the robot and improve the working efficiency of the robot.
All the above methods achieve high quality and efficient
solutions to a certain extent, but they need many iterations
and complex parameter debugging.

An optimal-time 3-5-3 polynomial interpolation trajectory
planning algorithm based on an improved, simplified par-
ticle swarm optimization (ISPSO) algorithm under veloc-
ity constraints is proposed in this paper. First, the ISPSO
uses random inertia weight to balance the development and
utilization of simplified PSO. Then, the golden sine algo-
rithm is introduced into the latter stage of PSO as an opti-
mization operator to improve the convergence accuracy of
PSO to improve convergence velocity and accuracy. Finally,
an ISPSO algorithm is applied to joint space trajectory
planning, which reduces the running time of the robot and
improves production efficiency.

The research content of this paper includes four parts: the
first part reviews and introduces the current relevant research.
The second part mainly introduces the polynomial interpo-
lation trajectory of the robot. The third part proposes a new
simplified particle swarm algorithm. The fourth part verified
by testing the function and establishing the robot model.
Finally, the fifth part summarizes the article and discusses the
result.

Il. PROBLEM DESCRIPTION AND TRAJECTORY
CONSTRUCTION

A. PROBLEM DESCRIPTION

This paper deals with the time optimization of a point-to-
point trajectory in joint robot space. First, according to the
robot’s activity range and application scenario, several spatial
pose points must pass through the Cartesian space. Then, the
joint angles and nodes in the joint space can be obtained
through the inverse kinematics of the robot. If the time for the
robot to reach each joint node is t,,, m is the number of nodes
(m = 0,1,2...); the optimization goal is to enable the robot
to pass through each joint node in the shortest time under the
condition that the constraint conditions are met. The interval
between adjacent nodes is denoted as h; = t;y1 — t;. The
objective optimization function is the minimum running time
of each joint satisfying the velocity constraint condition. The
objective function is shown in equation (1) and the velocity
constraint condition is shown in equation (2).

m—1

minT = Z hy (1)
i=0

16i] < Vimax 2)

where T is the total time to run, v, is the limiting velocity
of the joint, and 6; is the real-time velocity of the polynomial
trajectory segment.

B. TRAJECTORY CONSTRUCTION

If we use only cubic polynomials for trajectory planning,
the angular acceleration is discontinuous, and using only
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five-degree polynomials for trajectory planning will result
in more computation. Xu et al. [33] proposed a 3-5-3 spline
splicing method, which can specify the angular velocity at the
intermediate target point arbitrarily, and the angular accel-
eration is continuous. This paper uses a 3-5-3 polynomial
curve to fit the starting, intermediate, and ending points. The
general formula of the 3-5-3 spline polynomial is shown in
the following equation.

3 2 1

0i1 = apst” + ajzt” +ajpit + aijno 3
5 4 3 2 1

O = apst” + apat™ + apst” + apat” +apit +apo (4)
3 2 1

0i3 = a;at” + apt” +aizit + aizo (5)

where the coefficient a;1;, apj, a;3; is the j-th coefficient of
the interpolation function at the first, second, and third sec-
tions of the trajectory of the i-th joint and j represents the
polynomial trajectory at the k-th section of the i-th joint.

In the process of trajectory planning, the constraints
include the velocity and acceleration (generally 0) of the
initial point Xjp, the intermediate point X;; and Xj,, and the
termination point X;3 of each joint. The velocity and accelera-
tion between the path points are continuous. According to the
above conditions, the relationship equations (6)-(8) between
the coefficient a;; and interpolation point are deduced, where,
Xim represents the interpolation position of the i-th joint and
m represents the serial number of interpolation points, m =
0,1,2,3.
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Ill. IMPROVED SIMPLIFIED PARTICLE SWARM
OPTIMIZATION(ISPSO)

A. SIMPLIFIED PARTICLE SWARM OPTIMIZATION

Particle swarm optimization (PSO) is a swarm-based stochas-
tic optimization algorithm derived from the simulation of
group predation behavior of birds. Each particle evolves in
search of an optimal solution, guided by group and individual
experience. The updating formula of position and velocity of
the standard particle swarm with inertial weight is shown in
equation (9)-(10).

k+1 k k
Vig =W XV +c1 x rand X (Dpesr — Xjy)
k
+ ¢z X rand X (8pest — x,’d) ©)]
k+1 _ _k k+1
Xy =Xyt vy (10)

where k is the number of iterations. w is inertial weight. c|
and c; are learning factors. rand is a random number between
[0,1]. ppes: is the individual historical optimal position of the
particle. gp. is the optimal global position of the particle.

In their study, Hu et al. conducted an analysis of the
velocity term of the standard particle swarm algorithm [34].
They demonstrated that this term was not a necessary com-
ponent for the evolutionary process of PSO, and that, in fact,
could lead to the particle deviation from the correct evolution
direction. Therefore, the simplified particle swarm algorithm
(SPSO) was proposed and the particle position is updated
through the following expression in equation (11).

k+1 k k k
Xy = wxiy + crrand(ppest — Xy) + corand(gpest — X;y)

(In

By comparing equations (9), (10), and (11), it can be
concluded that there is no particle velocity parameter in
the renewal method of equation (11), which simplifies the
particle control process and avoids the influence of an arti-
ficially determined velocity parameter [V, Vinax] on the
particle convergence velocity and accuracy (Vg and Vi,
refer to the upper and lower limits of the particle’s flight
velocity).
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B. IMPROVEMENT OF INERTIA WEIGHT

Inertia weight is one of the important parameters of the
simplified PSO algorithm. From equation (11), it can be seen
that the size of w determines the influence of the position of
the last particle in this iteration. For a large size w, the early
stage of search is conducive to global search, while for a small
size w the late stage is conducive to improving local mining
ability. Thus far, many improved strategies for inertia weight
have been proposed, but it has been shown that among the
total 18 inertial weight strategies, random inertial weight is
superior to all other inertial strategies except constant inertial
weight [35].

Aiming at the tedious parameter debugging for the inertia
weights of constant terms, this paper proposes a new random
inertia weight strategy based on swarm information updating.
Using the characteristics of random variables to adjust the
inertia weight can make the algorithm jump out of the local
optimal quickly, which is beneficial to maintain the diversity
of the algorithm and improve the global search ability of
the algorithm. When the optimal global value g, does not
change within a certain searching algebraic range, a larger
value w is given randomly to expand the searching range
and jump out of the optimal local. When it can be updated
constantly, the weight is expected to balance the global search
ability and local development ability. In this paper, the aver-
age fitness information of the swarm, the optimal, and the
worst particle information are introduced into the inertial
weight, so that the particles can use the swarm information
to balance the global search and local search ability in the
iterative process. Finally, an updating method of random
weight is proposed based on the above analysis.

When the algorithm is judged to be trapped in the local
optimal, the updating mode of inertia weight is shown in
equation (12).

w = rand(r, — r1) + r (12)

When the algorithm does not fall into an optimal local, the
updating mode of inertia weight is shown in equation (13).

_ fmean - fbesl
f wrost — f best

where f,,¢q, 15 the average fitness value of the current iteration
swarm. fp.s; is the minimum fitness value in the current
iteration. fi,5 1S the worst fitness target value in the current
iteration. The selection interval of r; and rp is [0.5, 1.2].
When the optimal global value gy, does not change for five
consecutive times, it is judged to be trapped in the optimal
local value and the weights are updated using Equation 12;
otherwise Equation 13 is used.

w (13)

C. GOLD SINE GUIDING MECHANISM

The golden Sine algorithm [36] (GSA) is a meta-heuristic
algorithm that constructs a mathematical model based on
a sine function to solve optimization problems. The strong
global search ability of GSA arises from its ability to traverse
all points on the unit circle through the geometric relationship
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between the unit circle and the sine function. This, coupled
with its convergence characteristics, few control parameters,
strong robustness, and few operator numbers, has made GSA
a widely used in algorithm improvement and engineering
applications. At the same time, the golden section coefficient
is introduced to accelerate the convergence velocity of the
algorithm, allowing for each iteration to explore the region
near the optimal solution and promoting strong local develop-
ment ability. The location update formula for GSA is shown
in equation (14).

X! = X!|sin (R) | + Rasin (R2) |x1 P — x2X!|  (14)
where, ¢ is the number of iterations. Xi’ is the position of
the i-th individual in the t iteration. R; and R, are random
numbers, Ry € [0,27],Ry € [0,m]. Ry determines the
moving distance of the individual in the next iteration. Ry
determines the moving direction of the individual in the next
iteration. P! represents the optimal position of the optimal
individual i in the ¢ iteration. x; and xp are gold sinusoidal
segmentation coefficients used to refine the search space.
To balance search and development, the Golden Segmenta-
tion achieves the following:

x; =a(l —h) +bh
X2 =ah+b(l —h)

15)
(16)

where: a and b are the initial values of the golden section, the
golden sine section is divided by the standard sine interval,
since the period of the sine division function sinx is 2w,
according to its definition and the relationship with the unit
circle, to traverse the whole search space, here take a =
p, b = —m. h is the golden section ratio, usually 7 =

V5 - 1) /2 =~ 0.61833. A specific derivation can be found
in [36].

In this paper, an ISPSO algorithm is proposed to improve
the convergence accuracy and accelerate the convergence
velocity of the swarm. Furthermore, the golden sine segmen-
tation algorithm is introduced into the later stage of the PSO
as an optimization operator. In ISPSO, the search agent is
updated twice in equation (14).

The golden sine guiding mechanism continuously splits
the search space to obtain the best search space for the
search agent optimization process, resulting in two large
improvements:

(1) The particle search is carried out within the optimal
range, and thus it is easier for the particle to find the optimal
global position;

(2) The search range of particles is reduced by the golden
ratio, which enables the particle swarm to approach the opti-
mal area quickly and improves the convergence velocity of
the algorithm.

D. ISPSO ALGORITHM STEPS
The algorithm steps of ISPSO are summarized as follows:

44499



IEEE Access

X. Hu et al.: Robot Time Optimal Trajectory Planning Based on ISPSO Algorithm

TABLE 1. Test functions.

Function Range Min
Ex) = x [-100,100] 0
i=1
B =2 Ix |+ ].1xI [~10,10] 0
i=1
=" (Zj:1 x,) [~100,100] 0
F,(x) = max,{| x, |,| <i < n} [-100,100] 0
E(x)=-) " xsin(, f[x, ) [-500,500] —418.95%n
F,(x) = 0.1% {sin’ 37z, + 3" (x, =1)’[1+sin’ Bz, + D]+ (x, = 1) *[1+sin’ Qzx)]} + ) u(x,,5,100,4) [-50,50] 0
1 n 2 1 n
F,(x) = -20exp(-0.2,[— D" x7)—exp(— D" c0os(27x,))+20+e [-32,32] 0
n=—"r n=—="r
T . n-1 .
E® = o {10sin(7y,) + ZH (V) *[1+sin® (zy, D]+ (v, =D}
k(x; —a)",x; > a [-50,50] 0

X.
y,=1+—,u=|0,-a<x,<a

k(—x,—a)",x, <a

Stepl: Set parameters. The maximum number of iterations
T, the number of particles N, and the dimension Dim of the
fitness function.

Step2: Initialization. The particle position is initialized
randomly, the fitness value of each particle is calculated, and
the optimal particle is recorded.

Step3: Update of the inertia weight coefficient of the
swarm according to equation (12).

Step4: Update of the position of the particle swarm accord-
ing to equation (11), calculation of the particle’s fitness, and
update of the historical position of the optimal swarm particle
and the individual optimal particle.

Step5: For the particles generated in step 4, generation of
a new particle swarm guided by the golden sine according to
equation (14).

Step6: Calculation of the fitness of the swarm again and
update of the swarm’s optimal particle and the individual’s
historical optimal particle.

Step7: Repetition of steps 3-6 until the maximum number
of iterations is reached.

IV. SIMULATION AND ANALYSIS

A. TEST AND ANALYSIS OF SEARCH ABILITY

1) PARAMETER SETTINGS AND SIMULATION RESULTS

The simulation environment is a 64-bit window 10 operating
system, Intel Core i5-6300hq CPU, Matlab 2018a. To ver-
ify the optimization ability of the algorithm, PSO [37],
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TABLE 2. Parameter settings.

Algorithm Parameter settings

PSO ¢ =¢,=0.05, w=0.5(1+rand)
SPSO =¢=2, w=0.8

DPSO ¢ =c,=2

DSMPSO W =09, w,,, =02, 5=0.1
GSA a=n,b=-n1

ISPSO ¢ =c,=2

SPSO, GSA, double-swarm particle swarm optimization
(DPSO) [38], dynamically adjusted simplified particle swarm
optimization (DSMPSO) [39], and the ISPSO proposed in
this paper are compared by 8 test functions [40] in Tabl. 1,
which include single-peak (F1—F4) and multi-peak (F5—Fg)
functions.

To ensure the fairness of the experiment, the swarm size
of all algorithms was set to 30, the maximum number of
iterations was set to 1,000, and the dimensions were set to
3 classes for testing (i.e., D = 10, 20 and 30). The settings of
various algorithms are presented in Table 2. After 30 indepen-
dent operations, the mean value and standard deviation were
calculated as the evaluation indexes. The experimental results
are shown in Table 3 to 5, and the convergence curve of the
test function is shown in Figure 1.

VOLUME 11, 2023



X. Hu et al.: Robot Time Optimal Trajectory Planning Based on ISPSO Algorithm

IEEE Access

TABLE 3. Results obtained by different algorithms (D = 10).

FUNCTION PSO SPSO DPSO DSMPSO GSA ISPSO
F MEAN 9.86 533E-25 1.57E-87 5.46E-101 0 0
! STD 1.99E + 01 2.01E-24 6.09E-87 1.55E-100 0 0
F MEAN 4.10E-01 2.63E-16 2.01E-54 1.09E-46 2.08E-299 0
2 STD 3.80E-01 8.6E-16 7.80E-54 4.16E-46 0 0
7 MEAN 4.57E+01 273E-21 6.99E-119 3.01E-77 0 0
3 STD 434E+01 1.055E-20 2.67E-118 1.16E-76 0 0
F MEAN 321 8.009E-16 9.79E-50 2.041E-44 2.65E-296 0
4 STD 1.96 1.45E-15 3.79E-49 7.90E-44 0 0
F MEAN —2.381E+03 —4.18979E+03 2.352E+03 ~4.18981E+03 —4.1837E+03 —4.18982E+03
> STD 2.82E+02 8.09E-02 2.38E+02 1.03E-02 1.52E+01 2.10E-03
7 MEAN 353 2.32E-05 1.52E-1 2.02E-05 1.40E-2 1.74E-05
6 STD 3.90 2.65E-05 2.67E-2 2.54E-05 8.36E-3 2.05E-05
F MEAN 3.49 1.64E-13 4.44E-15 8.88E-16 8.88E-16 8.88E-16
7 STD 131 3.58E-13 0 0 0 0
P MEAN 3.45 1.74E-06 3.2E-2 7.99E-06 5.9E-3 3.46E-06
§ STD 4.16 2.39E-06 1E-2 1.05E-05 3.8E-3 3.88E-3
TABLE 4. Results obtained by different algorithms (D = 20).
FUNCTION PSO SPSO DPSO DSMPSO GSA ISPSO
MEAN 5.12E+02 1.04E-26 6.84E-102 1.031E-85 0 0
! STD 3.03E+02 3.95E-26 2.65E-101 3.99E-85 0 0
it MEAN 4.69 3.28E-16 7.03E-58 2.28E-43 6.30E-302 0
STD 1.60 1.14E-15 2.72E-57 8.86E-43 0 0
MEAN 1.99E+03 8.18E-17 1.22E-89 2.38E-84 0 0
F STD 1.11E+03 3.16E-16 4.76E-89 8.75E-84 0 0
MEAN 1.61E+01 6.28E-15 2.69E-48 9.47E-48 1.12E-297 0
Fy STD 2.90 1.63E-14 1.04E-47 3.58E-47 0 0
7 MEAN —4.218E+03 —8.37962E+03 —3.153E+03 —8.3796E+03 —8.376E+03 -8.379649E+03
> STD 4.17E+02 4.03E-02 2.86E+02 6.25E-02 6.14 8.249E-03
MEAN 421E+03 4.69E-05 8.19E-01 4.07E-05 6.8E-02 6.74E-06
F STD 1.38E+04 8.99E-05 8.0E-02 5.10E-05 2.65E-02 5.49E-06
MEAN 8.81 1.36E-15 491E-15 8.81E-16 8.81E-16 8.81E-16
F STD 1.143 1.25-15 1.25E-15 0 0 0
7 MEAN 1.27E+01 2.63E-06 0.121 5.45E-06 8.11E-03 1.76E-06
8 STD 1.05E+01 5.62E-06 3.09E-02 8.55E-06 4.04E-03 1.45-06

2) SIMULATION RESULT ANALYSIS

The results obtained were synthesized in conjunction with
Tables 3 to 5. For the single-peak test function F to Fjy,
it can be seen that when D = 10, 20, 30, the optimization
effect of GSA is almost the same as that of ISPSO, but
combined with the optimization curve of D = 30, the con-
vergence speed of only ISPSO’s algorithm is much better
than that of GSA. Moreover, it can be seen from the results
in the table that the optimization effect of ISPSO in each

VOLUME 11, 2023

dimension of the single-peak function is far better than that
of several other algorithms. From the optimization results of
the multi-peak function from F’5 to Fg, when the dimension
D = 10, 20, 30, the optimization accuracy of ISPSO is better
than that produced by other algorithms; only on the function
F7, GSA, DSMPSO, and ISPOS have the same optimization
accuracy. From comparing the test function results in the
three dimensions, IMOPSO emerges as being generally better
than several other algorithms.
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TABLE 5. Results obtained by different algorithms (D = 30).

FUNCTION PSO SPSO DPSO DSMPSO GSA ISPSO
F MEAN 1.648E+03 1.40E-24 3.25E-78 9.70E-92 0 0

! STD 5.97E+02 7.01E-24 1.63E-77 4.82E-91 0 0
F MEAN 1.49E+01 4.24E-14 1.46E-55 5.04E-43 1.59E-303 0

2 STD 3.9E+00 2.05E-13 7.28E-55 2.51E-42 0 0
F MEAN 5.232E+03 1.91E-20 1.85E-94 4.12E-67 0 0

3 STD 1.608E+03 9.54E-20 9.16E-94 2.04E-66 0 0
F MEAN 2.15E+01 2.14E-14 7.98E-39 1.80E-48 1.34E-298 0

4 STD 4.04E+00 1.01E-13 3.99E-38 9.01E-48 0 0
r MEAN —5.389E+03 —1.25693E+03 —3.9184E+03 —1.25693E+03 —1.25115E+03 -1.25695E+03

5 STD 7.59E+02 1.73E-01 2.78E+02 3.12E-01 791E+01 1.6892E-02
F MEAN 6.62E+03 2.86E-05 2.04E+00 2.72E-05 1.58E-1 1.33E-05

6 STD 1.168E+05 4.22E-05 2.68E-01 2.88E-05 4.42E-2 1.88E-05
F MEAN 1.06E+01 1.69E-13 5.86E-15 8.88E-16 8.88E-16 8.88E-16

7 STD 1.096E+00 6.89E-13 1.78E-15 0 0 0
F MEAN 1.57E+02 3.49E-06 2.21E-01 4.56E-06 1.32E-02 6.97E-07

8 STD 4.28E+02 5.74E-06 3.42E-02 6.73E-06 6.844E-03 8.10E-07

TABLE 6. Results obtained for different algorithms.

Algorithm Dim PSO SPSO DPSO DSMPSO GSA ISPSO
Average Rank 30 5.3750 43125 3.7500 3.1875 2.8750 1.5
Average Rank 20 5.875 3.875 4.125 325 2.6250 1.2500
Average Rank 10 5.875 4.000 4.125 3.000 2.625 1.375

TABLE 7. Algorithm run time (D = 30).
FUNCTION
PSO SPSO DPSO DSMPSO GSA ISPSO
F 0.301 0.335 0.479 0.325 0.304 0.496
F2 0.326 0.365 0.501 0.329 0.312 0.464
F3 0.321 0.326 0.459 0.320 0.247 0.490
F, 0.309 0.338 0.484 0.351 0.30 0.493

Because the article is limited in space, the particular case

of D = 30 and the curve iteration are analyzed in detail.
As seen from the experimental results in Table 5 and Figur. 1,
for all test functions, the mean and standard deviation of the
ISPSO algorithm is significantly better than that of PSO,
SPSO, DSMPSO, and DPSO. The seeking value of some
GSA test functions is tied for first place with ISPSO, but
the convergence speed of this part of the function is much
lower than that of ISPSO. In the tables, the best results of the
experiment are marked in bold.

Each single-peak function has only one optimal solu-
tion, which is used to evaluate the algorithm’s develop-
ment performance and convergence velocity. For ISPSO,
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the single-peak test functions F; to F4 produce the theo-
retical optimal value, the success rate of the optimization
reaches 100%, and the standard deviation is 0. This shows
that the ISPSO algorithm has good robustness and stabil-
ity, and the accuracy and convergence velocity improve by
about 10 orders of magnitude compared with the SPSO
algorithm. Compared with the performance of PSO, DPSO,
and DSMPSO comparison algorithms from F; to Fy, ISPSO
is significantly better in velocity and accuracy. For the test
functions, GSA has the same mean and standard deviation
as ISPSO; both are 0. However, it can be seen from the
iterative comparison curves in Figur. 1(a) and Figur. 1(c)
that the convergence velocity and accuracy of ISPSO are

VOLUME 11, 2023



X. Hu et al.: Robot Time Optimal Trajectory Planning Based on ISPSO Algorithm

IEEE Access

F1
10° O o O O
AR
v
KN EN
\ =
\ T
~ < “
2 NG T e ===
= *
=) N O—
o0 1 ~-200 | \ PSO ]
S 10 . ——SPSO
\\ DPSO
, — — — -DSMPSO
\_\ ————— GSA
\. ISPSO
M M hY r r
0 200 400 600 800 1000
Iteration
(a)
0 Q= O 0, i 0, O
10 o\ <
\‘\ T -~
' Vi
‘\. _‘_.h_————.___l
@ \
172) N
2 Ry
g \
- .
o 1200 F \\. ©—rso ]
S 10 \ —— SPSO
\.\ DPSO
\ — — — -DSMPSO
\ ————— GSA
. ) k-\. i ISI.’SO
0 200 400 600 800 1000
Iteration
(c)
F5
-10° . . . .
§ [ O O O O
= 4 I ]
=2 107 o . .
%D « 104 —@—PSO
- % —%— SPSO
-1 1 S DPSO
| ~.— — — — - DSMPSO
-1.2 o ——— GSA
109 10 20 30. ISPSO
0 200 400 600 800 1000
Iteration
(e)

FIGURE 1. The function evolution curve.

much better than those of GSA. For the test functions F;
and F4, the mean value of ISPSO is slightly better than
that of GSA, which corresponds to an improvement of about
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3 orders of magnitude, and the number of iterations required
is about 5% of the interactions for SPSO, which is a signif-
icant increase in speed. The performance of ISPSO in test
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FIGURE 1. (Continued.) The function evolution curve.
TABLE 8. D-H parameters of the robot. TABLE 10. Joint space interpolation point.
Joint no. a, / mm a,/(°) d, /mm 0, Position Angle /°
Starting  Intermediate  Intermediate  Ending
1 0 90 0 0, point point 1 point 2 point
2 431.8 0 0 o, Joint 1 0 —6.85 -36.3 —60
3 203 -90 150.1 0, Joint 2 -15 —4.75 22.6 36
4 0 90 4318 0 Joint 3 0 6.1 -8.09 =30
. 4
5 0 -90 0 o,
6 0 0 0 0 TABLE 11. Joint interpolation results of ISPSO.
[
TABLE 9. Cartesian space path points. T@e Is T To Ts
Joint 1 0.231699 0.268667 0.627397
- - Joint 2 0.334496 0.265567 0.387221
Starting point | Mtermediate - Intermediate i Joint 3 0.37329 0.299207 0.621277
point 1 point 2
(548,-150,300) (419,-201,396) (161,-304,589) (32,-356,685) TABLE 12. Optimal robot time of different algorithms.
functions demonstrates the good development performance Algorithm PSO_ SPSO  DPSO DSMPSO GSA  ISPSO
Optimaltime /s 1.9395 1.6178 1.6567 13186 1.469 1.299894

of ISPSO.

The multi-peak function has only one global optimal solu-
tion and the rest are local optimal solutions, which can be
used to evaluate the global search ability of the algorithm.
For the multi-peak test functions F5 to Fg, the convergence
curves of ISPSO are shown in Figure 1 (e)-(h). For the test
functions F5 and Fg, the average searching value of SPSO is
basically the same as ISPSO. For the test function F7, the
average seeking values of ISPSO and SPSO are 8.88E-16
and 1.69E-13, and ISPSO is improved by three orders of
magnitude relative to SPSO. The average searching value is
3.49E-06 and 6.97E-07, respectively, increasing by 1 order of
magnitude. Overall, ISPSO ranks first or is tied for first place
in the average search value. This shows that the improved
algorithm somewhat avoids the problem of falling into local
optimal solutions.

3) FRIEDMAN TEST
To further illustrate the comprehensive performance of the
algorithm, the Friedman test was performed and is described
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in this section. The test results are listed in Table 6, where the
algorithm test results for dimensions d = 10, 20, and 30 are
given. Again, the algorithm’s results are given in descending
order, and the lower the result, the better.

The IMOPSO results are optimal for all dimensions of the
test results, so the overall performance of IMPSO is optimal
for other algorithms (Table 6).

The ISPSO algorithm generally has high convergence
accuracy, good robustness, and more stable optimization per-
formance. Based on the analysis results of the above two
kinds of test functions, it can be concluded that the ISPSO
algorithm has good development performance and global
searchability.

However, ISPSO also increases the time complexity of the
algorithm to a certain extent, increases the execution time of
the algorithm, and obtains the execution time of function F1—
F4 1,000 times under each algorithm in the case of D=30
dimensions (Table 7). It can be seen that the execution time
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FIGURE 3. Joint 1 displacement curve.
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FIGURE 4. Joint 2 displacement curve.

of the algorithm has indeed increased, but compared with the
improved accuracy and convergence speed of the algorithm,
combined with this paper is an offline trajectory planning, this
cost is considered acceptable.
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B. TIME-OPTIMAL TRAJECTORY PLANNING

BASED ON ISPSO

Combined with the 3-5-3 polynomial trajectory interpolation
proposed in Section II. and the improved algorithm men-
tioned above, the trajectory interpolation model is introduced
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FIGURE 10. Joint 2 acceleration curve.

to the simulation verification algorithm. The key formula
of the algorithm finds three interpolation times and optimal
values. The time t and matrix a of equation (8) are variables
in the text. If matrix a is used as the independent variable,
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then the dimension of the algorithm is 14, and the algorithm
is computationally large and complex, so this article directly
searches the time and reduces the dimension to 3 dimensions
to reduce the amount of calculation. The algorithm steps were
as follows:

Stepl: Population produces three-dimensional particle
variables t, t, and t3.

Step2: Substitution of the time variable combination into
equation (6) - equation (8) to solve the matrix a.

Step3: Substitution of the coefficient of matrix a into the
3-5-3 polynomial, and at the same time, determination of
whether it meets the speed constraint.

Step4: Introduction of the speed constraint, update: If the
speed constraint is not satisfied, this paper selects a large fit-
ness value, and the algorithm will replace it during iteration.

Step5: Used until the end of the algorithm.

Simulation experiments were conducted on the first three
joints of the PUMA 560 robot to verify the performance of
the proposed algorithm. The D-H parameters of the manip-
ulator are shown in Tabl. 8. The Matlab Robotics Toolbox
was used to model the robot [41], [42]. PSO, SPSO, GSA,
DPSO, DSMPSO, and ISPSO were selected for trajectory
planning simulation. For all algorithms, the swarm size was
set to 20, the number of iterations was set to 50, the particle
position was constrained at [0.1, 4], and the maximum joint
angular velocity was setto 115°/s (2.0071 rad/s). The specific
parameter settings for each algorithm are shown in Table 2.

In the Cartesian coordinate system, the position of the
robot’s starting point, intermediate points, and ending point
are given (Table 9).

Through the inverse kinematics of the robot, the starting
point, the intermediate point 1, the intermediate point 2, and
the ending point in Cartesian space were transformed into the
angle values in joint space (Tabl. 10).

Under the velocity constraint, the three interpolation times
of joint 1 were solved by ISPSO and the optimal interpolation
time gpesr in each iteration was recorded to obtain the inter-
polation time gpes; evolution of joint 1 (Figure 2). It can be
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observed that the optimal particle of joint 1 converges rapidly
after about 40 iterations at most. The time required for joint
1 to run the three-segment interpolation is denoted as.

The above method was also used to optimize other joints
to obtain the optimal operation time of each joint under the
velocity constraint (Table 11).

Since each joint of the robot moves at the same time,
the maximum interpolation time of each joint segment was
selected to ensure the arrival of each joint at the same
time. 71 = max{T;}, T» = max{Tp}, T3 = max {T;3},
(i=1,2,3). Then T} = 0.37329s, T» = 0.299207s, T3 =
0.627397s, the total running time of the robot based on ISPSO
was T =T + T2 + T3 = 1.299894s. Similarly, PSO, SPSO,
DPSO, DSMPSO, and GSA were used to solve the trajectory
interpolation time of the robot joints. The optimal running
time obtained by each algorithm is shown in Tabl. 12.

The ISPSO trajectory planning method can shorten the
running time of the robot and improve the working efficiency
(Table 12). Compared with SPSO and GSA, the ISPSO algo-
rithm increased by 19.6% and 11.5%, respectively, and the
time decreased from 1.617s and 1.469s to 1.299s. PSO and
the two-particle swarm improvement algorithms DPSO and
DSMPSO trajectory planning times were 1.93395s, 1.6567s,
and 1.3086s, respectively, while that of ISPSO was 1.299s.
ISPSO improved about 33%, 14.1%, and 1.15% over PSO,
DPSO, and DSMPSO, respectively.

Figures 3 to Figure 11 show the displacement, velocity,
and acceleration curves of each robot joint obtained by var-
ious algorithms. The displacement, velocity, and accelera-
tion of each joint are smooth and without mutation. From
the comparison of the diagrams of the joint velocity in
Figures 6 and 8, it can be concluded that ISPSO satisfies
the velocity constraint conditions, and the optimized joint
velocity tends to the ultimate velocity but does not exceed
it. Compared with the other five algorithms, ISPSO can run
at the maximum velocity for longer without exceeding the
limit velocity in joints 1 and 2. At the same time, it can be
seen from the comparison of the acceleration of each joint in
Figures 9,10, and 11 that the acceleration at the starting and
ending joint is 0. Continuous acceleration during movement
not only ensured the stability of the joint movement but also
reduced the vibration of the joint.

In summary, according to the analysis of the above simula-
tion results, ISPSO trajectory planning can effectively shorten
the running time of the robot and improve work efficiency
while ensuring the robot’s safety.

V. CONCLUSION
Aiming at the optimal-time trajectory planning problem of
robot joint space, a 3-5-3 polynomial interpolation curve
model was established and ISPSO was proposed to solve
the problem. Furthermore, the following conclusions were
obtained through testing and verification.

(1) ISPSO is proposed as an improvement of SPSO by
introducing random inertia weights and GSA. PSO, SPSO,
GSA, DPSO, DSMPSO, and ISPSO were applied to eight
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groups of test functions (including single-peak functions and
multi-peak functions). In the four groups of single-peak func-
tions from F1-F4, ISPSO converged to the theoretical optimal
value, and the success rate of the search was 100%. In four
groups of multi-peak functions from Fs-Fg, the average
search value and standard deviation of ISPSO were ranked
first in the three groups and tied for first in one group.
The results obtained by the test function demonstrated that
ISPSO improved the convergence accuracy and efficiency of
the algorithm and solved the problem of low convergence
accuracy and slow speed.

(2) The ISPSO was applied to joint space trajectory plan-
ning and compared with the optimal-time trajectory planned
by the above five algorithms. Compared with SPSO and
GSA, the simulation result time of ISPSO was reduced by
about 19.6% and 11.5%, respectively, and also improved
compared to some improved particle swarm algorithms. It is
verified that the algorithm could make the robot’s trajectory
smooth and optimal, and that the displacement, velocity, and
acceleration curves had no mutation and met the kinematic
constraints. The joint optimized by ISPSO could operate at
a maximum velocity for a long time without exceeding the
limit velocity. It was proved that the algorithm has strong
practicability in time-optimal trajectory planning and can
improve the working efficiency of the robot.

In this paper, the algorithm of time optimal trajectory is
studied and simulated under off-line condition. The next step
of this paper is to improve the real-time performance of the
algorithm in trajectory planning, and the research direction is
real-time online trajectory planning algorithm research.
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