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ABSTRACT Thermal management strategies implemented on-board fuel cell electrified vehicles (FCEVs)
are currently based on heuristic reactive approaches. In this framework, developing predictive thermal
management approaches that anticipate the travel needs of FCEV users could lead to improved hydrogen
savings. However, the theoretical hydrogen saving achievable by predictive thermal management needs
assessment first to quantify the technical and economical viability of the technology proposal. This paper
lays the foundations in this domain by analyzing the a priori optimal thermal management of a fuel cell
system in an FCEV. Initially, an electrochemical and thermal modeling technique for the fuel cell system
is described. A reactive rule-based approach is then selected as the baseline controller for the coolant rate
and the instantaneous radiator fan state of the FCEV. Then, the optimal control problem formulation for the
thermal management of fuel cell systems in FCEVs is discussed and solved using a dynamic programming
(DP) based optimization approach that makes use of a priori information about the entire drivingmission. The
fuel cell system is evaluated while the FCEV performs one to ten repetitions of the Worldwide Harmonized
Light Vehicle Test Cycle (WLTC) at different ambient temperatures ranging from −20 ◦C to 40 ◦C. When
compared to the baseline reactive control technique, the offline optimal benchmark can save up to 10.2%
hydrogen. Results presented in this paper demonstrate the potential of hydrogen saving achievable by
improving the thermal management of automotive fuel cell systems. Moreover, they may be used to develop
and benchmark real-time capable predictive thermal management strategies for fuel cell systems in FCEVs.

INDEX TERMS Dynamic programming, electrified vehicle, fuel cell system, hydrogen economy, optimal
control, thermal management.

I. INTRODUCTION
Several uncertainties in fuel cost and supply, as well as
air pollution, currently pose substantial challenges to the
automobile industry [1], [2], [3]. To address these concerns,
several researchers and car makers began researching and
improving pure electric vehicles and fuel cell electrified
vehicles (FCEV). FCEVs are particularly promising since
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they do not produce tailpipe emissions, they feature extended
driving ranges, they can be refilled quickly, and they have
good overall energy efficiency [4], [5], [6]. The temperature
of a fuel cell system impacts for example the fuel cell stack
humidity, power output capabilities, voltage, leakage current,
catalyst tolerance, and durability [7], [8], [9]. As a result,
a robust thermal management system is essential to ensure the
performance and temperature stability of a fuel cell system
while minimizing the electric power consumption of the aux-
iliary components [10], [11], [12]. In the following up of this
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section, research works from the literature related to thermal
management of FCEVs are reviewed first and the research
gaps are pointed out. Subsequently, the contributions of the
present study are highlighted.

A. LITERATURE REVIEW ON THERMAL MANAGEMENT OF
FCEVs
Many of the control strategies for thermal management of
fuel cell systems described in the literature are of reactive
type [13], [14], [15], [16]. They are primarily concerned with
the operational stack temperature without taking into account
the efficiency of the auxiliary systems in the thermal loop.
On/off switching controllers and PID (proportional integral
derivative) controllers have been widely used in various auto-
motive thermal control applications due to their dependability
and inexpensive cost [17], [18]. For example, a PID controller
is used to set a positive temperature coefficient for an electric
heater that preheats the fuel cell stack by heating the coolant
in [19]. A fuzzy-based temperature controller for electric car
cabin heating is suggested in [20]. Under various start circum-
stances, the control was able to maintain the desired temper-
ature. On the other hand, a fuzzy incremental PID strategy
to control the temperature of a proton exchange membrane
(PEM) fuel cell is presented in [21]. A self-learning intelli-
gent control approach for assuring cabin thermal comfort is
discussed in [22], while multiple control algorithms to adjust
the PEM fuel cell stack temperature to the reference value
under transient settings are examined in [23].

Predictive thermalmanagement techniques recently started
gaining attention as an alternative to state-of-the-art reactive
controllers in the domain of electrified vehicles [24], [25].
They exploit forecasts of future operating conditions (e.g.
based on traffic or road information) to minimize the FCEV
hydrogen consumption and to enhance the overall efficiency
of the fuel cell stack. For example, a feedback controller with
model reference adaptive control to adjust the coolant intake
temperature was recently developed by [23]. Furthermore,
a model predictive control (MPC) technique to regulate the
blowers in the fuel cell system was suggested in [26]. MPC
can also manage water or H2 excess ratio in PEM fuel cell
to improve the performances and efficiency of the fuel cell
system itself, as demonstrated in [27] and in [28], respec-
tively. Nonetheless, the generated predictive controllers were
not benchmarked against the relevant global best solution,
and the studies only took into account a subset of the thermal
loop of a PEM fuel cell system for automotive applications.
In general, in the reviewed literature, a systematic method
to assess the potential of predictive thermal management
for FCEVs in terms of the optimal operation of the fuel
cell system (including the auxiliary components for thermal
management) still needs substantial development. This is
particularly true when considering demanding vehicle use
scenarios, such as when encountering extreme ambient tem-
peratures and long-distance journeys for example. Limited
contributions have already been done by the authors in this

framework, yet much work is still required when it comes to
assess different temperature and driving conditions [29], [30].

B. CONTRIBUTION OF THE PRESENT STUDY
The previous sub-section highlighted how on one hand cur-
rent thermal control strategies for the fuel cell system are
of reactive type, while on the other hand currently avail-
able predictive thermal management approaches regulate sin-
gle parameters or components of the fuel cell system only
(e.g. coolant intake, temperature blower). Predictive thermal
management approaches could regulate the entire fuel cell
system of FCEVs by anticipating the travel needs of the
vehicle users, however this requires first an assessment of
the theoretical efficiency improvement and hydrogen saving
achievable by developing such technology. From the research
works reviewed above, it has emerged how such analysis
is currently missing in the literature. To contribute filling
the highlighted research gap, this paper aims at assessing
the potential of hydrogen saving achievable through off-line
optimal control of fuel cell systems in FCEVs. Three primary
goals are targeted here to contribute addressing the stated
research gap:

1) Identifying optimal working modes for the thermal
management of fuel cell systems in FCEVs by control-
ling at each time instant the radiator fan state and the
coolant mass flow rate provided by the thermal pump.

2) Establishing a reference and a benchmark for the devel-
opment of real-time capable predictive control tech-
niques for thermal management of fuel cell systems in
FCEVs.

3) Performing a sensitivity analysis of the hydrogen sav-
ing capability predicted by the implemented optimal
control approach compared with a baseline reactive
control strategy in different operating conditions for the
FCEV, e.g. extreme ambient temperatures and variable
driving lengths.

The following is how this paper is structured. Section II
describes the fuel cell electrochemical and thermal models
under consideration. Section III proposes a formulation of the
optimal control problem for the thermal management of fuel
cell systems in FCEVs. Finding the global optimal solution
for the illustrated control problem is described by imple-
menting dynamic programming (DP). The baseline reactive
control strategy is illustrated along. Section IV evaluates
the capability of the optimal control solution as a hydrogen
saving enabler by simulating the FCEV in driving missions
at different ambient temperatures and by varying the length
of the performed driving mission. Conclusions are finally
outlined in Section V.

II. FUEL CELL SYSTEM MODELING
This section illustrates the numerical model of the fuel cell
system both from electrochemical and thermal points of
view. In this work, the numerical method used to model
the fuel cell system is semi-empirical and considers also its
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TABLE 1. Representative FCEV parameters.

transient behaviour. It has been developed by Virginia Tech
in collaboration with National Renewable Energy Laboratory
(NREL) and implemented in the Advisor™ 2003 simulation
tool embedded in Matlab® software [31]. Moreover, its per-
formance was evaluated experimentally by comparing it with
the data collected on-board a real vehicle. The fuel cell model
is selected as it can be fully integrated into the optimal control
strategy for thermal management. However, it may be easily
substituted and the approach outlined in the following section
remains applicable. Fig. 1 illustrates a schematic diagram
of the selected fuel cell system highlighting the interaction
between the components of the system. Both electrochemical
and thermal behaviors are assessed for the fuel cell stack and
the related auxiliary system. Here, all the described numerical
models are implemented in MATLAB® software. In the fol-
lowing up of this section, the model inputs will be described
first. Then, the electrochemistry model of the fuel cell stack
will be detailed. The following part will illustrate the ther-
mal model of the fuel cell stack along with the modelling
of the electric power consumption of the auxiliary system
components. Finally, the net electrical power provided by the
fuel cell system will be evaluated. Data considered in this
work for a representative fuel cell electrified passenger car are
reported in Table 1 and have been inherited from Advisor™.
It should be reminded that the thermal management strategy
described in this paper could be applied to any vehicle size
and any powertrain sizing layout in terms of battery capacity
and fuel cell power, other than to the vehicle model that is
representative of the data shown in Table 1.

A. MODEL INPUTS
The profile of the target vehicle speed over time for the
selected driving mission is considered as input. The consid-
ered FCEV is a passenger car powered by an electric motor
that is linked to the wheels through a direct drive. The electric
motor can be powered by both the fuel cell system and a
battery pack. A vehicle supervisory control algorithm and an
FCEV powertrain model are implemented. They allow for
managing the instantaneous electrical power split between the
fuel cell system and the high-voltage battery pack. Here, the
vehicle supervisory control algorithm is a rule-based thermo-
static logic inherited from Advisor™ 2003 [32]. In particular,

the fuel cell system is set to be activated in case either the
battery pack cannot provide the requested power alone, or the
battery state-of-charge (SOC) is below a lower limit (set as
40% here), or the average power request in the precedent
5 seconds is higher than a threshold which is set around
9kW here. Once activated, the fuel cell system is set to be
on until either the instantaneous power request falls below a
lower threshold (set as 7.7kW here), or the battery SOC is
above an upper limit (set as 80% here). When the fuel cell
system is in operation, the value of its controlled power is
set according to the battery SOC. The lower the value of
SOC, the higher the power request to the fuel cell system. The
FCEV is simulated performing the Worldwide Harmonized
Light Vehicle Test Cycle (WLTC)which involves a 30-minute
23.4 km drive cycle. In this case, the fuel cell system power
request obtained by the FCEV supervisory control logic is
highlighted in red in Fig. 2. Moving on, this power profile
over time will be considered as input to the fuel cell system
thermal model. Other than the net fuel cell system power
request (Psystem−request ), the vehicle speed is also received as
input by the fuel cell system model. This latter is organized
in two main sub-models which respectively account for elec-
trochemical and thermal phenomena.

B. ELECTROCHEMISTRY MODEL
The electrochemistry model allows for fulfilling two main
purposes as regards assessing the operating conditions of the
fuel cell system:

1) Determine the system electrical operating conditions in
terms of voltage and current density along with the H2
mass flow rate;

2) Evaluate the heat generated by the system, which is in
turn fed to the thermal model.

In this framework, an iterative solver needs implementa-
tion to make sure that the net electric power generated by the
fuel cell system balances the corresponding vehicle power
request. An initial guess is required for the stack current
density Istack . Then, the cell voltage Vcell can be determined
using the polarization equation developed by Nelson and
reported in (1):

Vcell (Istack ,Tstack , pO2) = OCVcell − Vtafel (Istack)

− Vohmic (Istack ,Tstack)

− Vconcentration (Istack , p02)

+ Vtemperature (Istack ,Tstack) (1)

where OCVcell and Vtafel are the cell open-circuit voltage and
a term related with activation voltage loss as a function of the
stack current density. Vohmic stands for a voltage drop term
related to resistance or ohmic losses in the cell as a function
of the stack current density and temperature Tstack in kelvin
as provided by the thermal model. Vconcentration accounts for
the concentration of mass transportation losses in the cell
as a function of the stack current density and the oxygen
partial pressure at the cathode inlet pO2. Finally, Vtemperature
considers the effects of the stack temperature on the cell
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FIGURE 1. Schematic diagram of the fuel cell system including fuel cell stack and auxiliary system.

FIGURE 2. Time series of the net electric power requests for the fuel cell
system and the battery pack in WLTC according to the FCEV supervisory
control logic.

voltage. The gross fuel cell system power Pstack−gross in watts
can then be obtained using (2):

Pstack−gross = jstack · Vcell ·Acell · ncell + Paux (2)

where jstack is the stack current density, Paux is the power
required by the auxiliary components, Acell and ncell are the
area of a single cell in centimetres square and the number of
cells contained in the stack, respectively. Once the value of
Pstack−gross is known, the H2mass flow rate ṁH2 in kilograms
per second can be evaluated using (3) [33].

ṁH2 =
Pstack−gross · 1.05e−8

Vcell
(3)

which can be derived by (4)

ṁH2∗ =
Pstack−gross
2V cellF

(4)

where H2 mass flow rate is in moles per seconds and F is the
Faraday constant (96458 C · mol−1).
Finally, the instantaneous heat generated by the stack

(Qstack ) can be obtained using (5):

Qstack = ṁH2 · LHVH2 − Pstack−gross (5)

where LHVH2 stands for the hydrogen lower heating value
which is assumed being 1.1968e8 J/kg here.

C. THERMAL MODEL OF THE STACK AND AUXILIARY
POWER CONSUMPTION
Looking at Fig. 1, modelling the thermal behavior of the fuel
cell stack and the electric power consumption of the auxiliary
systems involves six main components represented by the
air compressor, the coolant pump, the radiator fan, and the
condenser fan along with the fuel cell stack and the humidi-
fier. In general, the thermal model receives as instantaneous
input the heat generated by the fuel cell system, the vehicle
longitudinal speed, and the current values of temperatures.
Each component is then modelled according to energy and
mass balances to enable evaluating the corresponding outlet
temperatures and electric power consumptions.

Concerning the air compressor, the air mass flow rate and
the air pressure are needed to evaluate its contribution in
the parasitic power use. The air pressure at the compressor
outlet (i.e. the stack inlet) is obtained by interpolating in
a one-dimensional experimental lookup table which is pro-
vided as a function of the stack current. On the other hand, the
air flow rate (ṁair ) in kilograms per second can be evaluated
according to the instantaneous values for stack gross power
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and cell voltage using the following equation [33]:

ṁair =
3.57e−7·SRair · Pstack−gross

Vcell
(6)

where SRair is the air stoichiometric ratio and it is derived
from (7) in moles per seconds:

ṁair∗ =
SRair · Pstack−gross
0.21 · 4F·Vcell

(7)

where 0.21 is the molar proportion of air that is oxygen.
Empirical lookup tables are consequently used to evaluate

the adiabatic efficiency (ηadiabatic) and the temperature rise
of the compressor as a function of the air flow rate (ṁair )
and the related ratio between inlet and ambient air pressures
(pratio). Then, the air compressor electric power consumption
(Pcompressor ) is evaluated using (8):

Pcompressor (ṁair ,Tamb, pratio)

=
ṁair · cp,air (Tamb) · Tamb · p

k−1
k −1

ratio

ηelec · ηadiabatic (ṁair , pratio)
(8)

where cp,air and k stand for the air specific heat as a function
of the ambient temperature Tamb, and the specific heat ratio
for the air, respectively. ηelec is the compressor motor drive
electrical efficiencywhich is assumed having a constant value
here.

When it comes to the radiator, two one-dimensional lookup
tables are considered that map the heat transfer coefficient
between coolant and external air (hrad ) as a function of the
vehicle speed (speedveh) for the radiator fan being activated
or de-activated, respectively [34]. The radiator fan state is
considered in the binary variable statefan. Then, the temper-
ature of the coolant at the radiator outlet (Tcoolant,out ) can be
calculated as follows:

Tcoolant,out
= Tcoolant,in − 0.5

·
Arad · hrad

(
speedveh, statefan

)
·
(
Tcoolant,in − Tamb

)
ṁcoolant · cp,coolant

(9)

where Tcoolant,in is the coolant temperature at the radiator inlet
and equals the value of coolant temperature at the humidifier
outlet in the previous time instant. ṁcoolant is the coolant mass
flow rate through the coolant pump, while cp,coolant is the
specific heat of the coolant.Arad stands for the radiator frontal
area, while the 0.5 constant in (9) accounts for the numerical
model being initially calibrated for a 0.5 m2 radiator. When
activated, the radiator fan is assumed here constantly consum-
ing a 300 watts electric power (Pradiator−fan).
Coolant is circulated through the fuel cell system thanks

to the coolant pump, which moves energy through the stack,
humidifier, and radiator. The heat exchanged by the humidi-
fier can be determined as follows:

Qcoolant,hum = ṁH2O · cp,H2O

·
(
Tcoolant−hum,in − Tcoolant−hum,out

)
(10)

where Tcoolant−hum,in and Tcoolant−hum,out are the tempera-
tures of coolant into and out the humidifier, respectively.
ṁH2O is the mass flow rate of the coolant water while cp,H2O
is the specific heat for water.

The instantaneous heat removed by the coolant (Qcoolant )
can be calculated using (11):

Qcoolant = ṁcoolant · cp,coolant ·
(
Tstack − Tcoolant,out

)
(11)

From an electrical point of view, the parasitic power con-
sumed by the coolant pump (Pcoolant−pump) can be obtained
by interpolating in a one-dimensional lookup table as a func-
tion of ṁcoolant .

The stack temperature in the next time instant (Tstack,next )
can be determined according to the thermal balance reported
in (12):

Tstack,next = Tstack + (Qstack − Qcoolant − Qambient − Qair

−Qwater−vapor + Qcondenser
)
·

1t
Llumped

with

Qambient = hstack · (Tstack − Tamb)

Qair = ṁair · cp,air ·
(
Tair,in − Tstack

)
Qwater−vapor = ṁwv−in · cp,wv

(
Twv,in

)
− ṁwv−out · cp,wv (Tstack)

Qcondenser = ṁH20,condensed · hfg (12)

where 1t and Llumped are the simulation time step in seconds
and the lumped stack thermal capacitance in joules per kelvin,
respectively. Qambient is the overall heat transferred from the
stack to the ambient by means of natural convection. In this
term, hstack is the overall heat transfer coefficient associated
with natural convection.Qair is the heat contribution removed
by the exhaust air which enters the fuel cell stack at temper-
ature Tair,in. Qwater−vapor accounts for the enthalpy variation
of water vapor between inlet and outlet of the stack. In this
term, ṁwv−in and ṁwv−out are the mass flow rates of water
and vapor entering and exiting the stack, respectively. cp,wv
is the corresponding specific heat for water and vapor which
is evaluated for temperatures Twv,in and Tstack , respectively.
Qcondenser is the heat exchanged between stack and condenser,
which can be evaluated considering the mass flow rate of the
condensed water (ṁH20,condensed ) and the heat of vaporization
of water (hfg).

D. NET SYSTEM POWER
The last step of the implemented fuel cell system modelling
approach involves determining the net electrical power pro-
vided by the system. This is achieved by performing an elec-
trical power balance subtracting the overall auxiliary losses
from the system gross power as reported in (13):

Psystem−net = Pstack−gross − Pcompressor − Pcoolant−pump
− Pradiator−fan − Pcondenser−fan (13)
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where Pcondenser−fan is the power consumption of the con-
denser fan, which is assumed here being 300 watts when the
fuel cell system is in operation.

Finally, the value of Psystem−net is compared with the net
power request evaluated in sub-section II-A. In case of a mis-
match, a solver is implemented to iteratively adjust the value
of stack current density until comparable values are obtained
between the power requested and the power provided. The
interested reader can consult [31] to obtain more information
regarding the implemented approach for modelling the fuel
cell system.

III. OPTIMAL THERMAL MANAGEMENT OF FUEL CELL
SYSTEMS IN ELECTRIFIED VEHICLES
This section describes the methodology for assessing the
potential of optimal control when applied to the thermal
management of fuel cell systems in FCEVs. The high-level
workflow of the proposed methodology is shown in Fig. 3.
The inputs of the analysis are the vehicle speed and the net
fuel cell system power request in the entire driving mission
as it has been described in section II-C. Then, two FCEV
thermal management approaches are implemented in parallel
that take the same inputs. On one hand, DP is considered
as global optimal control reference requiring the a priori
knowledge of the entire driving mission. On the other hand,
a baseline reactive control strategy is implemented. Forward
simulations of the fuel cell systemmodel described in section
II are performed for both the considered control approaches.
Obtained results allow to compare DP and the baseline reac-
tive control approach for different lengths of driving mis-
sion and ambient temperatures. FCEV energy balance and
operational statistics are assessed along with evaluating the
hydrogen saving potential predicted by DP. The rest of this
section is organized as follows: the optimal control problem
formulation for thermal management of automotive fuel cell
systems is illustrated first. Finding the global optimal solution
for the introduced control problem in an off-line approach is
then discussed by implementing dynamic programming (DP).
The final sub-section describes the reactive control approach
which is used as reference for benchmarking the potential of
optimal thermal management for fuel cell systems in terms of
hydrogen saving.

A. OPTIMAL CONTROL PROBLEM
Here, the optimal control problem for thermal management of
fuel cell systems in FCEVs aims at minimizing the hydrogen
consumption while simultaneously complying with operative
and thermal constraints for the fuel cell stack and the compo-
nents of the auxiliary system. The proposed control problem
along with the optimization constraints are described in (14).

argmin
{
J =

∫ tend

t0
ṁH2

[
Pstack−gross (t) , statefan (t) ,

ṁcoolant (t) , t] dt} (14)

Subject to :

Fuel cell stack constraints:

Tstack (t) ≤ Tstack−lim (15)

Psystem−net (t) ≥ Psystem−request (t)

Radiator fan constraint:

statefan [(t, speedveh (t) = 0)] = 0 (16)

Coolant pump constraints:

ṁcoolant [(t, speedveh (t) = 0)] = 0

ṁcoolant−min ≤ ṁcoolant (t) ≤ ṁcoolant−MAX
(17)

The cost function J to be minimized includes the hydrogen
consumption in the overall driving mission from the initial
time instant t0 up to the final time instant tend . Concerning
stack constraints in (15), the value of stack temperature over
time as evaluated using (12) is prevented to exceed the oper-
ational limit Tstack−lim which is assumed being 95 ◦C here.
The net power provided by the fuel cell system as evaluated
using (13) needs to never be lower than the corresponding
power request coming from the FCEV supervisory control
logic. Indeed, a lower value of power provided by the fuel
cell system would lead to deplete the battery state-of-charge,
which would in turn counteract the control decision taken by
the FCEV control logic. As a general reminder, the FCEV
supervisory control logic is responsible for deciding upon the
power split between the fuel cell system and the battery pack
at each time instant, while the control logic considered in this
work is responsible for controlling the fuel cell system and
its auxiliary components in a lower-level approach based on
the input provided by the FCEV supervisory control logic.
In this work, the high-level FCEV supervisory control logic
is a rule-based thermostatic strategy inherited from Advi-
sor™ 2003. The controlled components of the thermal system
of the fuel cell (i.e. radiator fan and coolant pump in this case)
are prevented from being activated if the vehicle is not in
motion in (16) and (17) in order not to potentially undermine
passenger acoustic comfort. Finally, the coolant mass flow
rate value is constrainedwithin the physical operational limits
of the coolant pump in (17). In this framework, subscripts
‘min’ and ‘MAX’ respectively denote lower and upper oper-
ational boundaries.

B. OPTIMAL THERMAL MANAGEMENT OF FUEL CELL
SYSTEMS USING DYNAMIC PROGRAMMING
The core idea of this work relates to assess the global optimal
solution for the introduced thermal control problem of fuel
cell systems. This section describes the methodology imple-
mented for evaluating the global optimal control solution
which relies on dynamic programming (DP). DP is one of
the most common approaches to evaluate the global optimal
solution for a given dynamic control problem [35], [36].
DP requires a priori knowledge of the entire time horizon
of the considered control problem, i.e., the entire driving
mission in terms of vehicle speed and fuel cell system power
request over time in this case. This allows DP to find the
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FIGURE 3. Workflow of the proposed methodology for evaluating the optimal thermal management and assessing
hydrogen saving potential in FCEVs.

global optimal solution for the proposed control problem in
an off-line approach [37], [38]. Discretized arrays for con-
trol variables and state variables need definition in DP [39].
Control variables are directly managed by the control system
under consideration. On their behalf, state variables charac-
terize by their values being tracked and updated throughout
the driving mission under analysis [40], [41]. The full con-
trol variable set U and the state variable set X for the fuel
cell system thermal control problem under investigation are
illustrated in (18):

U =


Pstack−gross
Psystem−request

statefan
ṁcoolant

 ;X =

{
Tstack
Tcoolant

}
(18)

The implemented DP version involves controlling the ratio
between fuel cell system gross power and the corresponding
net power request coming from the FCEV supervisory control
logic, along with the radiator fan state and the coolant mass
flow rate provided by the pump. On the other hand,X includes
the temperature values for both the stack and the coolant.
In this way, stack and coolant temperatures can appropriately
be updated at each time instant throughout the drivingmission
according to (12) and (9), respectively. The open source
‘DynaProg’ DP function implemented in Matlab® is used in
this work for solving the illustrated optimal control problem
for thermal management of fuel cell systems [42].

C. BASELINE REACTIVE CONTROL STRATEGY
After implementing DP and finding the global optimal
solution for the fuel cell system thermal control prob-
lem, the following step involves quantifying the hydrogen
saving capabilities compared with a reference approach.
Here, the reference approach relates to the real-time capable
fuel cell thermal management strategy available in Advi-
sor™ 2003 [31]. Similarly with DP, the baseline reactive
thermal control strategy is required to set at each time instant
the values for the radiator fan state, the coolant mass flow
rate provided by the pump, and the gross power of the fuel
cell stack.

The baseline reactive control strategy activates the radiator
fan as soon as the value of stack inlet temperature exceeds the
operating temperature set point, which corresponds to 80 ◦C.
Then, the radiator fan is kept operating as long as the value
of stack inlet temperature is greater than 80◦.

As far as the thermal pump is concerned, one of its oper-
ating requirements involves limiting the temperature rise
across the fuel cell for practical reasons. The baseline reactive
thermal control strategy assumes that all the internal energy
generated is transferred to the coolant. Then, the coolant
mass flow rate in kilograms per second can be determined
as follows:

ṁcoolant =
Qstack

cp,coolant ·1Tallowed
(19)

where 1Tallowed is the maximum amount of temperature rise
that the fuel cell can tolerate, which is calibrated as 8 ◦C for
the vehicle considered in Advisor™ 2003.
The final control variable is the fuel cell stack gross power,

which is iteratively adjusted in the baseline reactive control
strategy until the net power provided by the fuel cell system
as evaluated in (13) fulfills the corresponding vehicle power
request. Further details were reported in sub-section II-D in
this paper.

IV. RESULTS
In this section, numerical results are presented for a case
study regarding the optimal thermal management of fuel cell
systems in electrified vehicles.

Table 2 shows the applied discretization grids for both
control and state variables, where the number of elements for
each variable has been decided aiming at the right trade-off
between discretization accuracy and overall computational
cost for running DP.

From the thermal management point of view, DP controls
the state of the radiator fan and the coolant mass flow rate.
Several DP simulations are performed here by sweeping two
parameters: 1) the number of steady repetitions of WLTC,
which is set from 1 to 10 to consider up to 234km driven in a
single driving mission; 2) the ambient temperature, which is
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TABLE 2. Discretized control and state variables in DP.

set from−20 ◦C to 40 ◦C considering a 5 ◦C temperature step.
The driving mission is discretized over time with 1 second
steps, while the initial stack temperature is set to be equal to
the ambient temperature. Once the control trajectories over
time are generated by DP for the entire driving mission,
these are fed to a forward model of the fuel cell system to
evaluate the time series of stack and coolant temperatures
along with overall energy consumption values in the driving
mission. This allows evaluating energy and thermal balances
while avoiding the dependence of the DP simulation results
on the discretization of state variables. Table 3 reports the
hydrogen consumption for both the global optimal solution
obtained by DP and for the baseline reactive control strategy
as a function of the ambient temperature and the trip length,
along with the percentage difference between the two values.
Values of ambient temperature equal to −20 ◦C, 10 ◦C and
40 ◦C are considered being respectively representative of cold
weather (‘LoTe’), mild weather (‘MeTe’), and hot weather
(‘HiTe’). On the other hand, short trip (‘ShTr’), medium trip
(‘MeTr’), and long trip (‘LoTr’) relate to 1 WLTC repetition
(i.e. around 23 km), 3 WLTC repetitions (i.e. around 47 km),
and 10 WLTC repetition (i.e. around 233 km), respectively.
Compared with the baseline reactive control strategy, the
optimal off-line benchmark exhibits up to a significant 10.2%
hydrogen saving capability corresponding to a short trip per-
formed in cold ambient temperature. On the other hand, the
hydrogen saving capability compared with the baseline reac-
tive control approach gradually decreases both when the trip
length and the ambient temperature increase, respectively.
Low temperatures are the only exception in this case, since
a medium trip would entail less energy saving capability
compared with a long trip. Fig. 4 shows the full spectrum of
percentage hydrogen saving capability of the global optimal
solution compared with the baseline reactive control strategy
as a function of the ambient temperature and the trip length.
In particular, the number of steady repetitions of WLTC has
been varied from 1 to 10 and the ambient temperature has
been varied from −20 ◦C to 40 ◦C with a 5 ◦C step for
both DP and baseline reactive control logic. Then, Fig. 4 has
been created by interpolating between the discrete simulation
results obtained.

As further evaluationmetrics, Fig. 5 and Fig. 6 illustrate the
percentages of the driving mission time in which the radiator
and the coolant pump are in operation according to bothAdvi-
sor and DP control logics, respectively. Looking at Fig. 5 (a),
DP can reduce the radiator operational time by one order of
magnitude at cold ambient temperature for all the examined
trip lengths, thus drastically reducing the associated parasitic
losses. A similar trend can be observed in Fig. 5 (b) for
10◦C ambient temperature, while the activation time of the
radiator by DP at 40◦C ambient temperature is 27% to 43%
of the value corresponding to the baseline reactive control
strategy, depending on the trip length. As regards Fig. 6, the
baseline reactive control approach implemented in Advisor
sets the coolant pump to be always activated when the vehicle
is moving, thus involving the associated parasitic loss to
be constantly positive. On the other hand, the proposed DP
approach tends to turn off the coolant pump, when possible,
which allows to reduce the parasitic loss associated. Also in
this case, the operational time of the coolant pump set by DP
is around one order of magnitude less than the value corre-
sponding to the baseline reactive control approach for each of
the analyzed trip lengths at−20◦C and 10◦C. The operational
time reduction for the coolant pump achieved by DP gets
reduced for 40◦C ambient temperature and is even higher than
the corresponding value by Advisor for WLTCx10. A more
comprehensive explanation for this behavior will be provided
in Section IV-C.
An in-depth analysis of simulation results for the driving

missions being performed at low ambient temperature, mild
ambient temperature and hot ambient temperature will be
performed in the follow up of this section, respectively.

A. RESULTS ANALYSIS FOR COLD AMBIENT
TEMPERATURE
Fig. 7 illustrates statistics in terms of energy loss and fuel cell
system efficiency for the FCEV simulated at−20 ◦C ambient
temperature being controlled by both DP and the baseline
reactive control strategy inherited from Advisor. Moreover,
simulation time series of vehicle control and state variables
are shown in Fig. 10 to Fig. 12 in Appendix A.1 along with
the entire set of energy statistics for the simulations reported
in Table 4.
Looking at Fig.7 in Appendix A.1, the optimal thermal

control benchmark found by DP involves drastically reducing
the operational time and the auxiliary power consumption of
the coolant pump. For example, around 550kJ can be saved
in the optimal thermal control solution provided by DP in
WLTCx1 as shown in Fig. 7(a).Moreover, a further beneficial
side effect can be achieved in this way at low ambient tem-
peratures. Indeed, reducing the operation of the coolant pump
leads the fuel cell stack temperature to noticeably increase
by around 20◦C on average over time compared with the
baseline reactive control strategy provided byAdvisor. Rising
the average stack operational temperature entails increasing
the efficiency both stack and fuel cell system levels by few
percentage points, as it has been illustrated in Fig. 7(a).
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FIGURE 4. Percentage hydrogen saving for DP compared with the baseline reactive thermal control
strategy as a function of trip length and ambient temperature.

TABLE 3. Hydrogen consumption corresponding to the global optimal solution (‘DP’) and the baseline reactive control strategy (‘Advisor’) as a function of
the ambient temperature and the trip length (considering steady repetitions of WLTC).

FIGURE 5. Operational time of the FCEV radiator for both DP and the baseline reactive thermal control strategy as a function of
trip length and ambient temperature.

FIGURE 6. Operational time of the FCEV coolant pump for both DP and the baseline reactive thermal control strategy as a
function of trip length and ambient temperature.

A further action taken by DP at low ambient temperature is
shown in the optimal control solution in Fig. 10. DP chooses
to operate the coolant pump at around 1.5kg/s coolant rate

in the first 200 seconds of WLTC. This has a minor impact
on the temperature values for the stack and the coolant since
they are both around −20 ◦C at the beginning of the journey.
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FIGURE 7. Statistics in terms of energy loss and fuel cell system efficiency for the FCEV simulated at −20◦ C
ambient temperature being controlled by both DP and the baseline reactive control strategy from Advisor in
WLTCx1, WLTCx3 and WLTCx10 driving missions.

TABLE 4. Energy statistics for the fuel cell system simulated being controlled by DP and by the baseline reactive control strategy from Advisor over
different numbers of WLTC repetitions at −20 ◦C ambient temperature.

However, the auxiliary power consumption of the coolant
pump increases the gross power produced by the fuel cell

system Qstack , which in turn entails an overall higher stack
temperature rise following (9). Consequently, the stack can
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FIGURE 8. Statistics in terms of energy loss and fuel cell system efficiency for the FCEV simulated at
10◦ C ambient temperature being controlled by both DP and the baseline reactive control strategy from
Advisor in WLTCx1, WLTCx3 and WLTCx10 driving missions.

reach efficient operating regions which relate to higher oper-
ating temperatures sooner in the driving mission.

As it can be seen in Fig. 7, the air compressor is the
most energy demanding auxiliary component of the fuel cell
system. Its air mass flow rate is not considered here as a
variable controlled by DP, but rather its value over time is set
according to the baseline reactive control approach. However,
reducing the gross power required by the fuel cell system
is demonstrated to bring significant benefits concerning the
power consumption of the air compressor as it was shown in
(5) and in (6) in Section II-C. Such virtuous loop can be listed
among the key benefits brought by the proposed optimal
thermal control approach in terms of hydrogen saving.

When considering medium distance (e.g. WLTCx3) and
long distance (e.g. WLTCx10) driving missions at low ambi-
ent temperatures, the global optimal thermal control solution
provided by DP is suggested to operate in a similar way com-
pared to a short driving mission (e.g. WLTCx1). Significant
reductions in the use of the coolant pump can be noticed in
Fig. 7(b) and in Fig. 7(c) for DP compared with the baseline
reactive controller from Advisor. Moreover, early activation

of the coolant pump in the driving mission can be seen in
Fig. 11 and in Fig. 12. Nevertheless, higher hydrogen saving
is suggested in Fig. 4 to be achieved by DP compared with
the baseline reactive controller in a long-distance trip than
in a medium-distance trip. A possible explanation can be
provided looking at Fig. 12 in Appendix A.1 and noticing
that the fuel cell stack operates at higher temperatures (e.g.
around 90 ◦C) for a higher time share in the 230km long
driving mission, which improves the overall hydrogen saving
capability for the fuel cell system. Higher travel distances
(e.g. few hundreds kilometers) at low ambient temperatures
are thus suggested to offer enhanced potential for hydrogen
saving in FCEVs compared with medium travel distances
(e.g. lower than 100 kilometers).

B. RESULTS ANALYSIS FOR MILD AMBIENT
TEMPERATURE
Fig. 8 shows statistics in terms of energy loss and fuel cell
system efficiency for the FCEV simulated at 10 ◦C ambient
temperature being controlled by both DP and the baseline
reactive control strategy inherited from Advisor. Moreover,

48090 VOLUME 11, 2023



P. G. Anselma et al.: DP for Thermal Management of Automotive Fuel Cell Systems

FIGURE 9. Statistics in terms of energy loss and fuel cell system efficiency for the FCEV
simulated at 40◦ C ambient temperature being controlled by both DP and the baseline reactive
control strategy from Advisor in WLTCx1, WLTCx3 and WLTCx10 driving missions.

FIGURE 10. Time series of control and state variables for the FCEV simulated at −20 ◦C ambient temperature
being controlled by both DP and the baseline reactive control strategy from Advisor in WLTCx1.

simulation time series of vehicle control and state variables
are illustrated in Fig. 13 to Fig. 15 inAppendixA.2 alongwith
the entire set of energy statistics for the simulations reported
in Table 5.

Overall, simulations performed considering mild ambient
temperatures suggest as well that the highest share of hydro-
gen saving capability for the optimal thermal control bench-
mark of the FCEV relates to the coolant pump. Indeed, the
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FIGURE 11. Time series of control and state variables for the FCEV simulated at −20 ◦C ambient temperature
being controlled by both DP and the baseline reactive control strategy from Advisor in WLTCx3.

FIGURE 12. Time series of control and state variables for the FCEV simulated at −20 ◦C ambient temperature being
controlled by both DP and the baseline reactive control strategy from Advisor in WLTCx10.

auxiliary power consumption of the coolant pump throughout
the driving mission being controlled by DP is one order of
magnitude lower compared with the corresponding metric
for the baseline reactive controller simulation both in short,
medium, and long trips in Fig. 8. The same consideration
holds for the auxiliary energy consumed by the radiator fan
although its overall energy consumption is less impactful
compared with the coolant pump term in Fig. 8.
The DP simulation results for the short trip (i.e. WLTCx1)

at 10◦C ambient temperature shown in Fig. 13 suggest a
similar behavior for the optimal thermal control benchmark
compared with the cold temperature case which was assessed
in the previous paragraph. Indeed, enhancing the overall fuel

cell system efficiency is achieved by reducing the ON time
of both the coolant pump and the radiator fan, along with
reducing the coolant mass flow rate over time in general.
Moreover, higher stack temperatures are attained in Fig. 13
by DP compared with the baseline reactive controller, which
results in higher stack efficiency as illustrated in Fig. 8 (a).

When the length of the trip increases, reduced utilization
of the radiator fan and the coolant pump are predicted as
hydrogen saving enablers by DP in Fig. 14 and in Fig. 15
as well. In particular, the optimal control behavior predicted
by DP is observed remarkably reducing the overall radiator
fan ON time in medium and long trips at mild ambient
temperatures compared with the baseline reactive control
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FIGURE 13. Time series of control and state variables for the FCEV simulated at 10 ◦C ambient temperature being
controlled by both DP and the baseline reactive control strategy from Advisor in WLTCx1.

FIGURE 14. Time series of control and state variables for the FCEV simulated at 10 ◦C ambient temperature being
controlled by both DP and the baseline reactive control strategy from Advisor in WLTCx3.

strategy. Moreover, DP activates the radiator fan in Fig. 14
and in Fig. 15 only at high values of vehicle speed as in
highway driving, which considerably improves the efficiency
of the heat removal process within the radiator. For example,
the overall radiator energy consumption predicted by DP in
WLTCx3 reported in Fig 5(b) is 3.4% only compared with the
corresponding metric related to the baseline reactive control
approach provided by Advisor.

C. RESULTS ANALYSIS FOR HOT AMBIENT TEMPERATURE
Fig. 9 illustrates statistics in terms of energy loss and fuel cell
system efficiency for the FCEV simulated at 40 ◦C ambient
temperature being controlled by both DP and the baseline

reactive control strategy inherited from Advisor. Moreover,
simulation time series of vehicle control and state variables
are illustrated in Fig. 16 to Fig. 18 inAppendixA.3 alongwith
the entire set of energy statistics for the simulations reported
in Table 6. As previously illustrated in Fig. 4, hot ambient
temperatures offer a relatively limited potential for hydrogen
saving via optimal control given the restricted freedom in the
operation of the thermal controller. Indeed, 6.5% hydrogen
consumption reduction has been suggested at maximum com-
pared with the baseline reactive thermal control approach.

Looking at Fig. 16, DP chooses to activate the radiator fan
at high values of vehicle speed as it was performed at mild
ambient temperatures. However, the baseline reactive con-
troller activates the radiator fan during highway driving too as
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FIGURE 15. Time series of control and state variables for the FCEV simulated at 10 ◦C ambient temperature being
controlled by both DP and the baseline reactive control strategy from Advisor in WLTCx10.

TABLE 5. Energy statistics for the fuel cell system simulated being controlled by DP and by the baseline reactive control strategy from Advisor over
different numbers of WLTC repetitions at 10 ◦C ambient temperature.

the stack temperature exceeds 80 ◦C at around 1550 seconds
in WLTCx1. Therefore, limited radiator auxiliary energy
reduction is observed being achievable via optimal control
in Fig. 9(a) compared with the remaining simulation cases.
As regards the coolant pump, limiting its operation is sug-
gested by DP in short trips at high ambient temperatures as
well. Even in this case, DP chooses to activate the coolant
pump in the first phases of WLTCx1 to allow the stack
attaining efficient operation at high temperatures earlier in
Fig. 16.

Medium distance and long-distance trips at 40 ◦C are the
most demanding scenarios for the fuel cell system form a
thermal perspective. In Fig. 17, DP chooses to activate both

the coolant pump and the radiator fan at around 2200 sec-
onds to limit the stack temperature increase. Therefore, the
stack temperature exhibits similar values between DP and
the baseline reactive controller in the second repetition of
WLTC. Here, the third WLTC repetition in Fig. 17 is the only
case in which DP chooses to maintain the stack temperature
lower compared with the baseline reactive controller. This is
achieved by DP through keeping the radiator fan activated for
long and through an intense use of the coolant pump in the
final phases of the driving mission. This motivates the higher
energy losses for the coolant pump and the radiator fan in
Fig. 9 (b) compared with both Fig. 7(b) and Fig. 8(b). Never-
theless, the potential benefit of the optimal thermal control
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FIGURE 16. Time series of control and state variables for the FCEV simulated at 40 ◦C ambient temperature being
controlled by both DP and the baseline reactive control strategy from Advisor in WLTCx1.

FIGURE 17. Time series of control and state variables for the FCEV simulated at 40 ◦C ambient temperature being
controlled by both DP and the baseline reactive control strategy from Advisor in WLTCx3.

benchmark is preserved since DP predicts 4.1% hydrogen
saving.

When it comes to long-distance trips performed at high
ambient temperatures, DP chooses on average to keep the
stack colder comparedwith the baseline reactive control strat-
egy in Fig. 18. This is mostly performed through an intense
use of the coolant pump, whose electric energy consumption
reported in Fig. 9(c) is even higher by around 640kJ (10.5%)
compared with the baseline reactive controller. Indeed, the
largest share of hydrogen saving potential in long trips at high
ambient temperatures is predicted to be achieved by reducing
the overall ON time of the radiator fan, particularly in the
second WLTC repetition in Fig. 18. Thanks to this strategy,
the electric energy consumption of the radiator fan can be

cut down by around 2800kJ in the optimal control solution
compared with the baseline reactive control strategy.

V. CONCLUSION
This paper has discussed the optimal thermal management of
automotive fuel cell system. Particularly, the study focused on
the optimization of the fuel cell system performance at vari-
ous operating conditions for both short- and long-term driving
missions. The electrochemical and thermal models of a fuel
cell system for automotive applications have been considered.
Then, DP has been implemented as global optimal thermal
management approach. The control variables involved the
gross stack power, the radiator fan state, along with the
coolant flow rate circulating in the coolant pump. Numerical
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FIGURE 18. Time series of control and state variables for the FCEV simulated at 40 ◦C ambient temperature being
controlled by both DP and the baseline reactive control strategy from Advisor in WLTCx10.

TABLE 6. Energy statistics for the fuel cell system simulated being controlled by DP and by the baseline reactive control strategy from Advisor over
different numbers of WLTC repetitions at 40 ◦C ambient temperature.

results have been presented for a case study regarding the
optimal thermal management of fuel cell systems in FCEVs.
Several DP simulations have been performed by sweeping
the number of steady repetitions of WLTC and the value of
ambient temperature.

In general, the presented methodology has identified a
global optimal operation that significantly reduces both the
operational times of radiator fan and coolant pump and the
coolant mass flow rate delivered by the pump. When com-
pared with the baseline reactive control technique, the best
off-line benchmark can save up to 10.2% hydrogen in corre-
spondence with a short journey in extreme low temperatures.
When either the length of the trip or the ambient temperature
increase, however, the hydrogen saving capacity compared

with the baseline reactive control strategy steadily declines.
Low temperatures are the lone exception in this scenario
since a medium distance trip is suggested entailing lower
hydrogen saving capability than a long distance trip. As con-
cerns the different test cases, the optimal thermal control
benchmark found by DP involves incrementally reducing
the operational time and the auxiliary power consumption
of the coolant pump. For this reason, the average fuel cell
stack temperature increases and the overall fuel cell sys-
tem efficiency consequently improves by some percentage
points. Moreover, the optimal thermal management predicts
lower uses of the radiator fan and coolant pump as hydrogen
saving enablers especially for long distance trips. Moreover,
significant energy and hydrogen savings are predicted to be
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achieved by activating the radiator fan only at high values of
vehicle speed, as in highway driving.

A. FUTURE WORK
Regarding related future work in this area, the fidelity of
the modelling approach for both fuel cell system and vehi-
cle could be refined and updated to the most recent tech-
nology. Moreover, the limitations of the proposed optimal
control approach could be addressed towards developing on-
board real-time predictive thermal management systems for
FCEVs. Removing the a priori knowledge requirement for
the driving mission and reducing the computational const
are namely the two main restraints for on-board real-time
implementation. Two examples of methods for enabling
real-time predictive thermal management of FCEVs based
on the present study involve heuristic and deep learning
approaches. Concerning heuristic controllers, the presented
results could be used as reference to extract control rules that
real-time regulate the coolant mass flow rate in the pump
and the radiator fan state. As a further option, a physics-
informed deep learning framework could be developed for
thermal management of FCEVs, where the physics-based
domain knowledge provided off-line by DP is fed into the
data-driven model as soft constraints to adjust the data-driven
model [43], [44].

Real-time predictive thermal management could be an
important feature to be integrated in recently developed
energy management approaches towards real-world hydro-
gen saving in FCEVs [45], [46], [47], [48], [49]. Then,
real-time control strategy for thermal management for
FCEVs could be tested performing both Processor-In-the-
Loop (PIL) and, Hardware-In-the-Loop (HIL) tests. The pro-
vided DP off-line approach may be used to generate the
ideal benchmark and off-line optimized training data in this
context.

APPENDIX
A.1 SIMULATION RESULTS FOR COLD TEMPERATURES
See Figures 10–12 and Table 4.

A.2 SIMULATION RESULTS FOR MILD TEMPERATURES
See Figures 13–15 and Table 5.

A.3 SIMULATION RESULTS FOR HOT TEMPERATURES
See Figures 16–18 and Table 6.
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