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ABSTRACT The Internet of Things (IoT) has enabled real-time monitoring of energy consumption in smart
homes through sensors embedded in the surrounding environment. In the post-pandemic world, domestic
energy management has gained importance due to increased work-from-home consumption, making data
collection in a smart home a relevant IoT application with many potential energy savings. However, this
information is difficult for most users to understand, and existing monitoring systems’ savings results
degrade over time. To address these challenges, this study presents a novel approach for domestic energy
consumption, production, and comfort perception using color-based dashboards enhanced for user feedback
interaction. The approach includes the management of in-home appliances and comfort levels according to
user preferences to attain long-term energy savings. The approach includesmultiple appealing strategies such
as 3D representation, mobile connectivity, utility integration, and dynamic information, to increase long-term
engagement and provides quantitative data on energy savings achieved for one year, where the average energy
consumption was reduced by 19%. It was found that the approach sustained user engagement over time,
with users actively participating in energy conservation efforts. A community survey with 208 participants
was also developed and studied where 69% of the enquired considered our approach more attractive than
existing market solutions, and 79% considered it more useful than existing solutions. Regarding the real-time
information presented on our approach, 81% of the participants strongly or totally agree that it can change
users’ behaviors.

INDEX TERMS IoT, home energy consumption, long-term engagement, user behavior, sustainability.

I. INTRODUCTION
According to recent evidence [1], [2], [3], [4], [5], human
energy consumption plays a significant role in building
energy consumption. Experimental research [6], [7], [8] has
also shown that human comfort preferences, satisfaction, and
perceptions of the interior environment differ due to phys-
iological (i.e., gender and age), psychological, and cultural
aspects [9], [10], [11], [12]. Understanding the diversity of
human energy use has piqued interest in the residential sec-
tor [13], [14], [15], with different patterns of behavior among
regions. Europe [16], [17], the United States [18], [19],
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Asia [20], and Australia [21] have shown that human vari-
ables account for 3–10% of the variance in home energy
use. Extensive analyses of independent studies from around
the world have been conducted in an attempt to harmonize
these findings and illustrate ongoing research needs on this
phenomenon [22].

Because energy grids are undergoing a transformation pro-
cess for providers and consumers with new and different
demands from emerging technologies such as electric cars or
energy storage systems such as power walls, it is necessary
to set up systems for control, monitoring, and consumption
reduction in residential and non-residential buildings as well
as to control energy production to maximize environmental,
economic, and usability advantages. These systems can also
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provide the ground base for grid equilibrium management
because renewable energy production depends on many vari-
ables, particularly the weather [23], [24].

Our previous work resulted in a building and energy man-
agement system capable of displaying real-time data obtained
using building information model (BIM) technology and IoT
sensors, that is, a LoBEMS system [25]. Its 3D visualization
platform is designed for large buildings, such as university
campuses, where individuals can interact with the building’s
3D model and infer visual data based on sensor measure-
ments. This study confirms our behavior-changing strategy
in a shared environment.

In the current study, we show that a similar system with
real-time energy information in 3D visualization combined
with user interaction influences users to actively participate
in the energy and thermal management of their homes, and
consequently, change their behavior.

II. PAPER DESCRIPTION
The remainder of this paper is organized as follows.
Chapter III analyses the technological and methodological
gaps between domestic energy systems and users. It is essen-
tial to understand possible ways to maximize energy savings
by interacting directly with the user and triggering behavioral
changes. Despite being essential for domestic systems, 3D
visualization as a key factor for user engagement [26] still
has unexplored potential that we intend to study and imple-
ment. A new involvement approach can also be explored,
where users interact with the system using interactive dash-
boards strategically placed around the house as well as
through smartphones. Because domestic microgeneration is
an increasing reality [27], it can also incentivize users to save
energy and take full advantage of their photovoltaic systems
without energy exportation.

In Chapter IV, our approach and methodology are pre-
sented, followed by a definition of the multilayered archi-
tecture of the system in Chapter V, where we identify the
hardware properties and selection, followed by the network
and application layers. The last layer contains all applications
that handle data for storage or for presentation to users in
many forms, such as dashboards, or interactive 3D apps.

Chapter IV describes our application case in a Portuguese
family household with four adults, how data was collected,
and a discussion of the system’s results, effectiveness, and
ability to retain user interest over time.

To finalize, we present relevant research implications,
our work conclusions, and future research directions in
chapters VII to IX.

III. STATE OF THE ART
Domestic energy-consumption systems are already being
offered as commercial solutions for development and proto-
typing. However, user interactions with these systems have
become ineffective over time [28]. S. S. Van Dam et al.
explore in ‘‘Home energy monitors: impact over the medium-
term’’ [28] the effectiveness of home energy monitors in

promoting energy savings in households. The authors identi-
fied that feedback on energy consumption can lead to signif-
icant energy savings, but the effectiveness of such feedback
over the long term is less clear. To study energy-saving sys-
tems over the medium term, it is presented a case study of a
group of households that were provided with an energy mon-
itor and followed for four months. The results show that the
households were able to achieve significant energy savings
during the initial trial period, but that these savings declined
over time. S. S. Van Dam et al. concluded that medium-term
results are only possible with systems tailored to individual
households, as well as the use of persuasive technology and
attention to user habits or attitudes. Energy management
systems need to, not only monitor but also manage energy
consumption.

To understand the possible flaws in the existing studies,
we analyzed multiple strategies to develop our hypothesis
and approach, with user interaction for long-term behavior
modulation as the main focus.

The study conducted by O’Brien and Gunay in [5] aimed to
modify two behaviors - thermostat use and diffuser covering
- to save energy. The researchers used a combination of pam-
phlets, posters, and personal letters to encourage participants
to change their behavior. The study was conducted for one
year. The combined tactics yielded 6% savings in energy use.
While this may seem like a small number, it is important to
note that even small behavior modifications can have a sig-
nificant impact over time. Additionally, some of the behavior
modifications lasted over a year after the study, indicating
that the interventions were effective in changing participants’
habits. However, the study relied on self-reported data, which
may not always be accurate. Finally, it is unclear whether the
behavior modifications would continue beyond the one-year
mark, which could impact the long-term effectiveness of the
interventions.

Mcllvennie et al.’s systematic review [29] concluded that
user-centric approaches should be developed to accomplish
an optimal solution together with autonomous systems,
allowing users to be part of the process and, consequently,
change their behavior.

In [30] the authors developed a building model based on
the first principles of thermal dynamics and heat transfer.
A nonlinear model predictive control (NMPC) was designed
and implemented in the Solar Decathlon House test-bed in
real time. The NMPC integrated weather forecasting models
and occupant behavior pattern models. During the heating
season, the NMPC saved 30.1% of energy compared to the
scheduled set point. The NMPC reduced the time not met
comfort from 4.8% to 1.2%. During the cooling season, the
NMPC saved 17.8% of energy compared to the scheduled
set point. The energy savings mainly came from the dynamic
occupancy scheduling, while the scheduled control set-point
method tried to maintain the set-point regardless of whether
there was any occupant in the space. They also found that
when there were lots of occupancy activities, the temperature
of the space changed quickly, and the energy saving was only
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realized over a short duration of about an hour. On other days
when there were few occupancy activities, energy savings
were achieved for a long period. Similar systems that use
heating or cooling system temperature setpoints to achieve
savings have also been tested in [21], [31], and [32].

According to a 2007 survey in the UK [33] with 400 par-
ticipants and 90 in-depth telephone interviews, the household
transition to low- and zero-carbon technologies has been rela-
tively slow owing to misinformation, functionality problems,
ergonomics, and connectivity to other systems as well as
cost and payback time. This study emphasizes the importance
user feedback must-have in the development of new systems
designed to save energy and reduce carbon emissions because
if the system cannot engage users, its effectiveness will be
extremely reduced.

A study developed by Wemyss et al. [34] utilized a gam-
ified app called Social Power, which aimed to encourage
participants to save electricity by engaging in competitive
and collaborative activities with other participants. The app
tracked electricity usage through smart meters and provided
real-time feedback on consumption levels. Participants were
assigned to either a competitive or collaborative group and
earned points for achieving electricity savings goals. The
study collected data through surveys, interviews, and smart
meter readings. The application had a positive impact on
electricity savings in the short term. However, there was
no significant difference in savings between the competitive
and collaborative groups. The study found that participants
saved an average of 7.8% on their electricity usage during
the intervention period. The savings were primarily achieved
through behavioral changes such as turning off lights when
leaving a room, unplugging electronics when not in use, and
adjusting heating and cooling settings.

Systems developed to reduce energy or resource con-
sumption rely on predefined rules to control appliances or
human interactions to access and intervene. The problemwith
this approach, as proven in [35] is that human interaction
decreases over time as user interest wanes as the system loses
its novelty and is blended into the daily routine.

Hardware and software are the two key aspects of all the
approaches. In a project reported in [36], the authors investi-
gated whymost energymonitoring systems lose effectiveness
over time, even when savings can reach 13%. To understand
this, the authors propose a flexible and simple system to
supply information to users without losing efficiency. The
first study concluded that users want to access their sys-
tems across multiple platforms both at home and remotely.
The second study concluded that users also prefer easy-to-
understand content, unlike charts or text, which require time
and effort for interpretation. Economic reasons also explain
why many users are unwilling to use the monitoring systems.
The third study determined multimedia feedback as the easi-
est andmost pleasingway to display information on an energy
monitoring system dashboard as well as proactive alerts.

D’Oca et al. in [37] developed a study conducted in two
phases, the first phase involved the installation of energy
monitors in 60 households, which were categorized into three
groups based on the number of occupants and their lifestyles.
The second phase involved providing feedback to the partic-
ipants through a user-friendly interface that provided infor-
mation, prompts, and tailored newsletters via email. The data
collected from the first phase was used to compare the mon-
itored energy loads to benchmark values and to determine
the energy-saving potential of the households. The system
was proven to be an effective tool in reducing energy con-
sumption by an average of 18%. The study demonstrated
that the system was a cost-effective tool to enhance the
energy-saving potential in residential buildings. Simple and
low-cost solutions that can be provided to many people may
offer a higher aggregated result than higher-cost solutions
provided to only a few, such as renovation packages in energy
building retrofits. One issue that the study did not address
was the persistence of this kind of persuasive communication
on energy saving. The study did not evaluate how long the
energy savings would last after the feedback was provided to
the participants. Finally, the system requires the installation
of energy monitors, which may not be feasible for some
households due to cost or technical issues.

In [38] researchers studied ways to improve user inter-
faces for people with less computer literacy, elders, children,
and other compromising factors, such as memorizing diffi-
culties. Using graphical objects, such as avatars, proved to
be extremely attractive, especially for children, and gener-
ally appealing for regular users. Other conclusions relied on
reducing user interface (UI) cluttering and removing unneces-
sary features and buttons that could cause stress, uncertainty,
and frustration.

To model user behavior, in [39], Qi Liu created a simple
approach that uses a Bluetooth picture frame to present per-
suasive pictures according to the household energy consump-
tion; for instance, a shining flower when consumption is low
(good) and a wilted flower when consumption is high (bad).
This approach was tested in ten houses for four weeks after a
two-week baseline definition period. The results showed that
energy savings had an increasing tendency of up to 13% over
four weeks. This study demonstrates how visual feedback can
influence users and establishes the principles of our approach.

Dashboard visual feedback is one of the best ways to help
people interact with systems that generate large amounts of
data, which would be difficult to comprehend without it [40].
An interactive dashboard can filter, summarize, and present
information relevant to users by using simple widgets and
charts. Furthermore, in [41], researchers studied how colors
on dashboards containing charts and indicators affect users’
decision-making (in this case, from a business perspective).
The results showed that color usage attracts viewers’ attention
and can have a negative impact if the purpose is not to
empathize with the information. By contrast, when correctly
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applied, colored dashboards can supply extra meaning to
certain data and draw the user’s attention.

Visconti et al. [42] proposed an energy-monitoring system
using sensors, actuators, and a mobile application, where
the user can activate wireless plugs and determine energy
consumption in real-time. Sensors have also been employed
to detect motion and apply rules to turn off actuators based
on human presence.

Mobile applications can be used for almost any purpose.
User engagement with mobile apps is an emerging trend as
smartphones have become personal objects that are always
within reach. Mobile applications have been proven to have
functional, social, and emotional influences on users using
gamification techniques [43], notifications, and reports.

Swiss researchers used an app-based energy-saving system
to interact with users for three months, which successfully
resulted in energy savings, behavioral changes, and personal
awareness among users [34]. However, after one year, despite
thinking that their behavior had changed owing to system
usage, the energy savings rolled back to values before the
intervention.

To engage with users, our approach introduces a simple but
appealing interface that does not require any specific ability
to understand or use. To achieve energy savings, our work
intends not to support current user habits but to change their
behavior and improve energy efficiency.

To counteract the loss of interest/effectiveness of the sys-
tem, we must find ways to prevent users from disregard-
ing the system information after longer periods. Using our
user-behavior modeling approach, we intend to study human
interactionswith semi-autonomous systems for energy saving
and building management by combining 3D models, dash-
boards, sensor data, and a warning system based on a mobile
application.

IV. MATERIAL AND METHODOLOGY
In this work, we analyze state-of-the-art domestic interactive
systems and their contribution to user behavior modeling to
better understand the existing problemwith long-term results,
as most works state a loss of interest and savings reduction
after one or two months.

Misinformation, functionality problems, ergonomics, con-
nectivity to other systems, cost, and payback time are the
primary reasons why the transition to low- and zero-carbon
technologies has been slow. Therefore, it is essential to con-
sider user feedback when developing new systems designed
to save energy and reduce carbon emissions.

Predefined rules to control appliances or human interac-
tions are not effective in reducing energy consumption in
the long run. The use of visual feedback, such as graphical
objects, multimedia feedback, and interactive dashboards, has
been proven effective in engaging users and improving energy
efficiency.

Gamification techniques, notifications, and reports can be
used in mobile applications to engage users and produce

behavioral changes. However, energy savings may not be
sustainable in the long term, as evidenced by the study in [34].

To achieve energy savings, the user-behavior modeling
approach intends to change users’ behavior and improve
energy efficiency by combining 3D models, dashboards, sen-
sor data, and a warning system based on a mobile application.
The goal is to prevent users from disregarding the system
information after longer periods and engage them in the
long-term behavior modulation process.

After analyzing the previous successful approaches for
energy saving and user interaction, we propose and evaluate a
smart home systemmodel that integrates energy consumption
and production monitoring in a residential environment with
multiple user-centric approaches to enhance interactions and
preserve focus and engagement over time.

The system uses low-power LoRa sensor clusters with tem-
perature, humidity, light, and motion sensors, together with
active user interaction, to increase homeowners’ environmen-
tal perceptions and promote energy savings by modeling user
behavior.

To evaluate user behavior modeling, a series of interaction
techniques were implemented in an iterative methodology
to collect individual metrics regarding their impact on com-
fort, energy consumption, and interaction with the system.
We believe that the active role of the users in the system
can have a significant and long-lasting effect on the energy-
saving process.

The long-term aspect of this work, compared with existing
studies, where there is a significant decline in savings after
one or two months, resides in the experiment’s total time
of one year, which began in May 2021 and concluded in
May 2022 which the iterative development of the system
resulted in consecutive increases of user-interactions even at
the end of the experiment.

The data used in this studywas collected from the deployed
sensors and stored in a database for processing. Tempera-
ture, humidity, light, and motion data were collected from
room-sensing devices, whereas energy consumption and pro-
duction data were collected from energy-metering sensors
using amperometric clamps at the main circuit breakers.
Interactions with the system were collected from a cen-
tral tablet using visual and haptic feedback as measurement
units.

Furthermore, we have developed a survey about the impact
of existing energy monitoring systems, and or proposed sys-
tems, comparing attractiveness and utility. The survey also
aims to determine people’s willingness to use the proposed
system and to identify reasons that may prevent them from
engaging in more sustainable saving behaviors.

The survey was distributed as a Google form via social
media, such as the university investigation center’s social net-
works, Facebook groups, or personal social media accounts,
where random participants responded voluntarily to the
enquired questions. A total of 215 responses were received
and 208 were included in the analysis performed in
‘‘Section VI - Results and Discussion’’.
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V. SYSTEM ARCHITECTURE
The proposed smart-home IoT system follows a 3-layer archi-
tecture commonly used for energy and management systems,
as in our previous work in public spaces [26] and [44].

Physical layer: This layer includes sensor devices respon-
sible for gathering information from the environment, such
as energy consumption, temperature, motion, and humidity.
In this study, we used the developed LoRa and Zigbee sensor
devices to collect temperature, humidity, light, and motion
data (Figure 1 (a) and (b)). Low-cost WiFi smart plugs
(Figure 1 (c)) and relays (Figure 1 (d)) with energy-monitoring
capabilities were used as system actuators and amperometric
clamps (Figure 1 (e)) were used to collect the total amount of
energy consumed and produced.

FIGURE 1. Used hardware (a) - Developed sensor board with
temperature, humidity, and light sensor, (b) – Zigbee motion sensor,
(c) – WiFi smart plug with energy monitoring, (d) – WiFi Relay for
shutters, (e) – Amperometric clamp for energy consumption monitoring,
(f) – Raspberry Pi Model 3 B+.

The Raspberry Pi (Figure 1 (f)) is the most important
hardware in the system because it stores all logic, coding for
the dashboards, and database information. The data are then
passed to the network layer of the IoT architecture, which
transmits information between the different entities of the
IoT system.

Network layer: In this layer, the data collected from
the sensors are securely sent to the destination. LoRa is a
low-power and low-cost technology designed for low data
rates and a long transmission range and is a single gateway
capable of communicating with hundreds of sensors placed
in nearby houses [45]. Zigbee technology is also becoming a
part of domotic ecosystems; however, it requires a gateway
to pass data between sensors and the internet [46]. Both these
technologies are low-power, provide good coverage, and are
ideal for sensor applications where battery-powered devices
are easier to install. Given that Wi-Fi technology is now
commonly used in residential buildings, sensor devices that
do not require portability must collect frequent measurements
(preventing entry into sleep mode to save energy) or have
easy access to the main power source (such as devices for
measuring power consumption) may use this technology to
communicate with applications and web services.

Application layer: The application layer offers different
types of assistance according to user interests and collects

data to deliver valuable services to users [47]. In our study,
the application layer was supported by an open-source home
automation software called HomeAssistant, in which devices
can be integrated and presented to the user on a dashboard.

A schematic of the proposed system is shown in Figure 2.
LoRa, Zigbee, and Wi-Fi sensor devices, together with data
services, collect and provide data to the system, which is
processed and presented on home assistant dashboards. User
interaction can change system efficiency because savings
are tailored precisely for each household member, making it
possible to manage energy and comfort from the dashboard
in the most efficient way.

FIGURE 2. Schematic of system interaction schematic between each key
component.

To test our hypothesis that we can increase user interaction
to reduce energy consumption and increase environmental
perception in homes, multiple approaches were implemented
and assessed iteratively to test the user responses.

The first iteration consisted of a simple dashboard with
daily information, energy consumption and production, room
temperature data, and a feedback button for users to click
when viewing the dashboard.

The second iteration changes the feedback mechanics to an
autonomous detection system by eliminating the need to click
on a button.

The third iteration changed the interaction strategy to an
informative plus-utility solution, in which users were given
the possibility of remotely controlling shutters and other
electric devices from the dashboard.

Home Assistant Software provides multiple tools to
develop simple and appealing dashboards. Some elements
consist of indicators, buttons, numeric inputs, charts, and
customized content, such as a three-dimensional (3D) view of
the house. This 3D viewwas developed using Unity program-
ming software [48] and Revit Building Information Model
(BIM) [49] to design the 3D model.

VI. RESULTS AND DISCUSSION
The system was deployed in a Portuguese house with four
adult inhabitants, aged between 23 and 50 years, with average
technological knowledge to perform simple tasks related to
the system, such as interacting with a general dashboard.
Savings were always part of the household lifestyle, therefore
we designed a solution that could minimize energy consump-
tion by changing user behaviors rather than just introducing
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devices and configuration changes to existing systems, such
as heating, cooling, or lighting.

The house, located in Lisbon, Portugal, was built in 2001,
and all the windowed facades were oriented north and south.
Before system deployment, the owners already had a photo-
voltaic microgeneration system installed with 2 × 330 Watt
solar panels, providing an approximate total power of
660 watts power. The house also had an energy metering
system with historical data, which was complemented by
our sensors for production/consumption monitoring, Internet
connectivity, and interaction with our solution.

Each room was equipped with a temperature and humidity
sensor, a light sensor, and a motion sensor, together with
Wi-Fi plugs to control the heaters because of the lack of
wireless embedded interfaces for automation. Sensors were
placed 1.5 meters from the ground to reflect the real comfort
temperature felt by the users and not the temperature closer
to the ceiling measured by air conditioning units, which is
higher because heat increases by convection.

Home Assistant is a free, open-source software that allows
the integration of multiple proprietary domotic devices, such
as smart bulbs,Wi-Fi plugs, and LoRa sensors, through appli-
cation programming interfaces (APIs). The software itself is
a multi-platform that allows users to access the dashboard on
a smartphone, tablet, or computer.

A. FIRST ITERATION
The first iteration consists of a tablet display placed at a
strategic location that people can easily see, such as a corridor
or an entrance. The tablet presents a simple dashboard that
includes energy consumption, production, and exportation,
each with a color code for high/normal/low values (Figure 3).
General information such as date, time, and local weather

also gives the user an extra purpose for looking at the screen,
and users are asked to touch the ‘‘Click me’’ button when
viewing the dashboard.

FIGURE 3. Main dashboard with general information and
consumption/production/exportation indicators.

An overview of the house is presented as a 2D blueprint
showing the temperature and humidity values (Figur. 4).

FIGURE 4. Main dashboard with house floorplan overview, consumption/
production chart, and temperature gradients in each room.

Users can interact with their own smart devices by touching
virtual buttons on the blueprint.

Customized dashboards in which a 3D view of the house
is presented with a color overlay are also available. Each
household member could access the 3D dashboard through
a mobile application (Figure 5) and select rooms that they
wanted to be notified of in the case of an event, such as lights
turned on without motion for a certain amount of time. User-
related devices are also displayed, such as room tempera-
ture/humidity, smart plugs, or heater settings, allowing smart
remote control of the room’s environment.

FIGURE 5. Unity simulation for android application.

B. SECOND ITERATION
The first feedback mechanism using the ‘‘Click me’’ button
proved ineffective after less than a month because there was
no motivation or apparent motive for users to do it.

An alternative mechanism was implemented in which the
tablet camera was used to detect a human face facing the
dashboard; in this way, interactions were detected without
user intervention.
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C. THIRD ITERATION
After the second iteration proved more effective than the
first, interactions started to decline again in the following
month but then stabilized at a. The third iteration introduces
major changes to the dashboards, with the informative +

utility solution being the most relevant. As an informative
panel, novelty is a major factor that declines over time.
To counteract this problem, we introduced a utility dashboard
(Figure 6), where users can remotely control devices (also
controlled by the system) such as electric shutters, elec-
tric heaters, or lights connected with smart plugs or relays
(Figure 1 (c and d)).

FIGURE 6. Interactive dashboard view for remote shutters control.

The tablet running an Android system was set up using the
home assistant android application to present the dashboards,
and a display application provided an MQTT connection to
send and receive information from the tablet to the system’s
core, the Raspberry Pi. Using the display application with
MQTT, we were able to control the screen on time, cam-
era detection events, and other parameters from the system
backend.

Each sensor was added to the system and the dashboard
views were developed using vertical and horizontal grids to
create an appealing user interface. Some of the used interac-
tive icons such as shutter buttons were created from external
integrations added to the system from the home assistant
integration repository.

Because the amount of information in the same view
can compromise attractiveness owing to excessive com-
plexity, we added additional views or tabs to the dash-
board that roll periodically during the day. By using this
rolling mechanism, in addition to displaying more infor-
mation without overloading a single view, we can present
specific views that are more relevant during specific periods
of the day. For instance, during lunchtime, users have a
routine to lower the shutters. Consequently, we can automat-
ically show this view at lunchtime, more often than at other
times.

The other views were also reshaped to include more rele-
vant information, such as the information view with statistics
of energy production and consumption comparing either the
current day to the day before or the current month relative to
the previous year’s average (Figure 7).

FIGURE 7. Dashboard view with general information, energy statistics
and temperature chart.

1) COMFORT MANAGEMENT
Home assistance allows the implementation of automation
that uses integrated sensors and actuators as parameters.
Because heating and cooling appliances represent a major
part of the energy bill [50], a predefined temperature-control
system was developed.

Domestic low-cost electric heaters do not have a reliable
way to control the room temperature because most of them
use a timer-based function to regulate this variable, simply
turning the heater on and off for a predetermined amount of
time.

Air-conditioning units can better manage room tempera-
ture; however, their sensors can be unreliable and tend to
degrade over time [25].

A tailored and controlled room environment can increase
comfort and reduce energy usage. In the next paragraph,
an experiment using data collected from two rooms is pre-
sented to better understand energy-saving potential.

Figure 8 presents temperature data from two rooms found
on opposite sides of the house, Bedroom 3 facing northeast
and the living room facing southwest. During winter, Bed-
room 3 is not exposed to solar radiation. In contrast, the living
room was exposed to solar radiation from sunrise until the
beginning of the afternoon.

FIGURE 8. Temperature readings from bedroom 3 and the living room, for
a 48h period.

When the sun rose, the temperature in both rooms increases
till 15h00 (moments 1 and 4 in Figur. 8). While the
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solar-exposed living room temperature increased by 2◦C, the
temperature of Bedroom 3 increased by 0.8◦C.
Overnight, the temperature decreased almost as much as it

increased during the day in both rooms (moments 3 and 6),
which indicated a constant thermal loss throughout the house,
possibly owing to poor thermal insulation.

At moments 2 and 5, a central air conditioning unit started
to heat the house effectively up to 19◦C; however, soon the
temperature limit was overcome, reaching temperatures that
the users did not feel comfortable with, and wasted energy
in overheating instead of just maintaining a comfortable tem-
perature.

This problem has also been previously identified in indi-
vidual air-conditioning units at other locations [25].

The predefined temperature control system uses deployed
sensors and smart plugs to manage room temperature with
accuracy and precision. Initially, the system defined the max-
imum and minimum temperatures of each room according to
the existing standards [51]. Each user can then change these
values using a home dashboard or smartphone application
according to their preferences (Figure 9).

FIGURE 9. Room temperature control interface.

Because the system has access to electric shutters, when
the outdoor temperature is above a predefined high threshold
if there is no one at the house, the system closes the shutters
from rooms facing the sun to reduce overheating on the side
of the house and to avoid unnecessary energy usage with
cooling.

The practical energy implications of using the contained
temperature range for room heating are shown in Figur. 10.
At moments 1 and 3, the electric heater worked without
any intervention or auxiliary system, resulting in a constant
continuous energy consumption of 1500 watts-h. When the

FIGURE 10. Difference between an uncontrolled regular heating device
and the same device with a smart control system.

heater was controlled by the proposed temperature control
system (moments 2 and 4), while maintaining the room tem-
perature inside the predefined interval, the energy consump-
tion changed to a saw-like pattern, reducing to an average
of 440 Wh, representing 70% energy saving.

While energy presents a saw pattern, the temperature
remains constant with minor fluctuations of less than 0.5◦C
(Figure 11), preventing the room from overheating, and the
user to feel a comfort level customized to his needs.

FIGURE 11. Room temperature changes during experiment.

Artificial lighting is another simple automated method that
can save a substantial amount of energy. By using each room’s
motion sensor, it is possible to determine whether energy is
wasted in an empty room and issue a warning to the user’s
mobile application.

2) INTERACTION METRICS
Because one of our main goals was to develop an interactive
solution capable of preventing users’ loss of interest over
time, interactions with the central dashboard had to be mea-
surable and quantifiable.

During the first iteration, the motion sensors detect move-
ments and send data to a database to determinewhen someone
passes through the dashboard. User interaction can be deter-
mined by pressing a button every time someone stops reading
information; however, this proved to be a tedious task that
users ignored after a few days unless they were reminded.

To determine when a user interacts with a dashboard,
we created a simple model to identify the amount of time
a user spends looking at the dashboard, which differs from
simply passing by.

The second iteration was marked by autonomous inter-
action detection, which was calibrated by comparing
face-detection events with real clicks for a month. Subse-
quently, we stopped asking users to press the button.

The third iteration changes the interaction strategy to an
informative + utility solution. This new strategy compels
users to interact with the dashboard by necessity instead of
just curiosity, which dramatically increases their interactions
with preexisting views.

The following chart (Figure 12) presents user interactions
over the experiment duration.
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FIGURE 12. User’s dashboard Interactions per month.

The results show that in the first two months (May and
June) when users had to click the button on the dashboard,
there was an average of 0.86 interactions per day, followed
by a major setback of 0.16 interactions per day during July.
In August, with the second iteration, we implemented the
interaction detection model, and during September and Octo-
ber, interactions were constant with 0.55 interactions per day
but still low compared to our goals. Finally, at the beginning
of November, with three iterations, we changed the interac-
tion strategy to the informative + utility solution, and the
interactions spiked to 1.86 per day on average, representing
an increase of 339%.

Because interactions are daily averages, and the results
consider the ratio between motion detections and real inter-
actions, we removed the risk of bad data interpretation due to
holidays or days when there was no one at the house.

Considering the view roll feature, each view had a constant
display time, which forced it to rotate throughout the day.
Users can manually change the view being displayed, and it
is possible to determine the time at which each view is on the
screen and every time a specific view is selected.

The pie chart (Figure 13) shows the display time for each
view. Both energy production/consumption and thermal com-
fort have the largest display times, owing to their informative
value and importance.

FIGURE 13. Dashboard views’ displaying time predominance.

Owing to its utility function, the remote shutter view is
the most clicked, serving the purpose of attracting users and
increasing interactions for practical reasons. Because views

change periodically, users do not need to click on informative
views as much as they do on utility views (see Figure 14).

FIGURE 14. Dashboard views’ clicks.

3) POWER MANAGEMENT
Having a photovoltaic system for domestic usage can have
great benefits and reduce the energy bill; however, oversizing
can increase the return on investment (ROI) period because
energy storage is still an expensive solution, and in Portugal,
exported energy is offered to the energy company.

Even well-sized photovoltaic systems can produce more
energy than the total household consumption. Two solu-
tions were created to reduce the excess energy: a user-based
response and an autonomous response.

A user-based response to balance excess energy consists of
a warning system that gathers data from a public solar predic-
tion application programming interface (API) and communi-
cates with home appliances that can absorb excess energy.

Figure 15 Figure 15 - Solar production prevision API result
presents the API response data for the house PV system and
the geographic location where it was possible to identify the
predicted solar production the following week.

FIGURE 15. Solar production prevision API result.

The system compares the prediction results with those
of appliances that can be used during peak hours, such as
dishwashers, and sends notifications to users. On certain
days, a dishwasher could be used after lunch to avoid export-
ing energy. This method can avoid situations, as shown in
Figure 16 when, during peak hours (between 12h00 and
15h00), 45% of the generated solar power is injected into the
grid.

The autonomous response is based on a list of battery-
powered devices or other utilities with low and stable energy
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FIGURE 16. Produced solar energy, compared to exported solar energy.

consumption that can be used only when solar power is
exported. Examples include dehumidifiers, air filters, robot
vacuum chargers and electric scooter chargers. These devices
are listed in the system during setup, and the system chooses
the device that consumes the most similar amount of energy
compared to the amount exported.

Because the house had an energy monitoring system, his-
torical data from five years before this test case was crucial
for evaluating energy savings.

Figure 17 shows a significant decrease in energy consump-
tion from June 2021 toMay 2022, reaching savings of> 50%
in December and January.

FIGURE 17. Energy consumption per month since January 2017 till
May 2022.

This immense difference can be explained by the main
energy consumer in the house, which was the central AC unit,
being replaced with individual electric heaters controlled by
the system using defined temperatures and motion awareness
to turn it off when no motion was detected. In contrast,
February, March, and April 2022 returned to the average
energy consumption, because the users were only used to
turning on the central AC in extreme situations, comfort
was not a priority and because users were aware that the
current heating system was much more efficient; during

these months, heating was regularly used to maintain a good
thermal comfort level. The total energy savings between
May 2021 and May 2022 represent 19.18% of the average
for the last five years before the test case.

4) SURVEY RESULTS AND ANALYSIS
With a total of 215 responses, seven were removed for not
being completed, therefore 208 responses were selected for
the survey analysis. The survey respondents are primarily
males (76.4%), and participants’ ages vary between 18 and
65+ according to the following distribution (Figure 18).

FIGURE 18. Survey - participants age distribution.

The collected data indicates that 14% of the respondents
were technology experts, the majority had moderate (35%)
to advanced technological knowledge (38%), and 13% had
basic knowledge. In terms of energy-saving habits, 45% of
the respondents reported frequent to very frequent energy-
saving habits, and 39% of respondents reported moderate
habits. Only 16% claimed minimum to no saving habits at
all.

Participants were given three energy management systems
pictures to evaluate in terms of attractiveness and utility.

The first system presents an existing energy monitor-
ing solution available in the market (‘‘Engage Efergy’’,
Figur. 19), with a real-time energy gauge meter, together with
an estimated energy cost for the current month, and a daily
chart of energy consumption.

The second system was the initial stage of our approach
(Figure 3), with only real-time energy consumption and pro-
duction, and simple information such as date, time, and local
weather.

The third system was the latest version of our proposed
approach with Figure 6 and Figure 7 presenting the main
dashboard with energy production/consumption, monthly
energy costs statistics, temperature/humidity indicators for
each room, and the utility view with the electric shutters and
smart plugs controls.

On a scale from 1 to 10, each participant rated the three
systems regarding attractiveness and usefulness.
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FIGURE 19. Existing commercial solution for energy management.

In Figure 20 it is possible to compare the attractiveness
level between the three systems.

FIGURE 20. Attractiveness comparison between the three systems.

The market solution example had the widest range of
responses, with 54% of the participants classifying it between
6 and 8. The second system was perceived as slightly less
attractive than the third system, with 54% classifications
between 8 and 10, and the third system with 69% classifi-
cations between 8 and 10.

Regarding the usefulness of each system, in Figure 21 it is
possible to clearly identify that most participants consider the
third system as the most useful, with 78% of responses clas-
sifying it between 8 and 10, most likely due to the utility view
approach. The commercial market solution was, on average,
considered equally useful as the initial system approach.
Considering the simplicity of the initial system (Figur. 3),
it would be expected that the extra information provided by
the commercial solution would have proven disadvantageous
for our initial solution, although, utility results show that even
with less information, our simple approach was considered
equally useful. This can be explained by the design appeal
of each solution or the use of simpler indicators to present
information to the user.

FIGURE 21. Usefulness comparison between the three systems.

Using the same scale, being 1 totally disagree, and
10 totally agree participants were asked about the data rel-
evance in energy management systems, the effect of the
utility approach regarding loss of interest over time, and the
perceived effect on sustainable behaviors.

Regarding the relevance of data visualization, 80% of the
participants strongly or totally agree (between 8 and 10), and
when asked if real-time data visualization such as energy,
temperatures, and other statistics presented on the third sys-
tem could lead to behavior changes, the majority strongly
agrees or agrees (81%).

Participants generally agree (51%) that the ability to
remotely control appliances through the energy-saving sys-
tem could prevent a loss of interest over time, although,
opinions vary in this matter since 21% strongly disagree or
slightly disagree, if it would prevent loss of interest.

To understand the reasons that prevent the adoption of
sustainable behaviors we asked participants to choose from
a predefined list of options or add another one. Results are
presented in Figur. 22.

FIGURE 22. Reasons that prevent the adoption of sustainable behaviors.

From the collected results we can determine that the most
relevant reasons that prevent people from adopting sustain-
able behaviors such as energy management systems are the
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implementation costs of such solutions, followed by installa-
tion complexity and lack of time.

This data proves the importance of providing people with
the right information about existing solutions, that can be
affordable and effective at the same time. Our approach
proves that it is possible to save energy without disregarding
comfort, without large investments, or complicated setups.

Finally, when asked if participants would be interested
in testing our approach, 79% answered ‘‘yes’’, while 17%
answered ‘‘maybe’’, and only 4% answered ‘‘no’’.

Overall, the survey data suggests that there is a positive
perception of energy-saving systems and a willingness to
use them. However, there are still some participants who are
unsure about the long-term interaction extended by the util-
ity views. Therefore, it may be beneficial for energy-saving
system designers to address these concerns and improve the
systems’ user experience to encourage adoption and sustained
usage.

To summarize the saving advantages of our system com-
pared with existing solutions, Table 1 presents the most
detailed and best-saving solutions and the estimated quanti-
tative saving.

Many studies focused on energy savings and promote
changes in high energy demand systems such as heating or
cooling units to reduce the energy bill. In these technical
setup approaches, by reducing or increasing the temperature
setpoint, according to the situation, it is possible to reduce
energy consumption between 8% and 31%. Higher values
were determined in households where heating and cooling
were left turned on for long periods (over a day) without any
individual at the house.

Studies that have user interaction into account, focus
energy savings on behavior modeling. This approach does
not require physical changes to devices since the users them-
selves are responsible for changes. In this situation, educating
the users and trying to change their behavior has a saving
outcome in the long run.

The studies that proved to be more beneficial for users
and potential outcomes were the ones with interactive dash-
board solutions, gamification techniques such as competition
or collaboration between users, and colorful and persuasive
graphics.

Our solution tested multiple of the best strategies found
on the state of the art together with an actuation system that
gives a utility purpose to the system. In our test case, where
savings were always part of the household lifestyle, it was
possible to minimize energy consumption by 19.18%, but the
most relevant part is the behavior changes that were noticed
among the users, which lead them to sustain savings over a
longer period of 11 months.

VII. LIMITATIONS AND FUTURE SCOPE
We believe that our proposal’s main weaknesses are related
to social acceptance because there are people who might
not be willing to have technological devices integrated into
their homes because of security concerns, privacy concerns

TABLE 1. Studied approaches comparison.

between users, or simply technological knowledge. These
issues can be addressed using a simple and clear lecturing
process before implementation. Nevertheless, our approach
was designed to be accessible to users of all ages and edu-
cation levels, based on its simplicity and visual-centered
information. The autonomous response solution only works
with battery-powered devices or utilities with low and stable
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energy consumption, limiting its effectiveness in reducing
excess energy production.

Because the system was designed for domestic usage only,
it may be harder to adapt to other types of buildings such as
large-scale offices or commerce.

Our test case was implemented during the Covid-19 pan-
demic, and logistically, we could only test it in one household,
limiting the results to the user’s age range of 23–50 years;
however, it is important to state that other than data collection
and the dashboard for visualization, all users were not aware
of the behavior analysis experiment until the writing of this
paper.

The results showed a major change in energy consumption
that was not influenced by relevant external factors because
all major electrical appliances were the same, and holidays
were equivalent to previous years.

The energy management system has several areas for
future development and improvement. Firstly, integration
with smart home systems and devices could allow for more
automated control of energy consumption. Secondly, the
development of a more accurate solar production prediction
system, potentially usingmachine learning algorithms, would
improve the system’s ability to anticipate and respond to
changes in solar energy production. Thirdly, the expansion
of the autonomous response solution to include larger appli-
ances or electric vehicles would allow for greater flexibility in
managing energy usage. Additionally, exploring the potential
for peer-to-peer energy trading within communities would
enable households to sell their excess energy to their neigh-
bors. Finally, the implementation of blockchain technology
could provide a secure and transparent energy trading plat-
form. These developments would contribute to the system’s
ability to promote energy efficiency, reduce energy costs, and
create more sustainable energy communities.

VIII. CONCLUSION
In this study, we explored the existing savings potential of
habitational buildings in which commercial energy monitor-
ing systems have attempted to succeed using data collection
and simple dashboards. As previouslymentioned, researchers
have proven that existing monitoring systems for energy sav-
ings have a clear positive impact on household energy usage;
however, after some time, people tend to lose interest, and
behavioral changes are only temporary. Using several strate-
gies to maintain user interest, we extended and increased
(doubled) the interactions with the system. 3D dashboards
have a colorful and attractive impact on users of all ages
and technological knowledge. A mobile application allows
users to stay connected to the system even when it is not
at home and receives relevant notifications defined by the
user, providing a sense of control. Utility views and buttons
provide extra attractiveness never used in another system,
which proved highly effective in leading the user to interact
on a daily basis without compromising other views with the
rolling tab feature.

Our study focused on long-term energy consumption,
energy production, and household thermal comfort. When
users gain awareness of how much energy a certain piece
of equipment is used, they begin to question its use and
efficiency.We developed an approach that combinedmultiple
user interaction techniques to increase awareness, and inter-
action within UI systems, and enhance long-term engage-
ment. A colored indicator dashboard with which users can
interact helps to prevent loss of interest over time, whereas
a mobile application with colored avatars and customized
notifications keeps the user aware when not at home or in
direct contact with the system. As a result, the average energy
consumption was reduced by 19% in our test household.
The approach demonstrated its ability to sustain user engage-
ment over time, with users actively participating in energy
conservation efforts. Additionally, a community survey with
208 participants revealed that 69% of respondents considered
our approach to be more appealing than existing market solu-
tions, while 78% considered it to be more useful. Regarding
the real-time information provided by our approach, 81%
of participants strongly or completely agreed that it has the
potential to influence users’ behavior. After having the means
to spend fewer resources, we believe that it is essential to
provide tools such as our system for people to perceive data,
understand how to use it and develop sustainable behaviors
that can proliferate throughout the community.
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