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ABSTRACT This paper deals with the supervisory control problem of discrete event systems modeled with
labeled Petri nets. A transition priority matrix is proposed to control the firing of controllable transitions
to prevent the system from entering illegal states. First, given a labeled Petri net system, an integer linear
programming problem based on the pre-defined generalized mutual exclusion constraints and deadlocks is
built to find out weakly illegal markings in its basis reachability graph. This approach is efficient since the
exhaustive enumeration of the reachability space can be avoided. Second, since the firing of an uncontrollable
transition sequence at a weakly illegal marking leading to an illegal state is inevitable, our goal is to prevent
the system from entering weakly illegal states. A control algorithm is proposed to find a feasible transition
priority matrix to avoid weakly illegal markings by controlling the firings of observable transitions. The
dynamic transition priority matrix changes according to the current state of the system. Finally, two cases
are studied to verify the control strategy. This control strategy does not complicate the structure of a system
and can effectively avoid state-space explosion.

INDEX TERMS Control strategy, integer linear programming, labeled Petri net, transition priority matrix.

I. INTRODUCTION
Nowadays, manufacturing industry is in an environment
where new technologies, materials, and products are con-
stantly emerging. Market competition is becoming increas-
ingly fierce. These factors lead to a dynamic market demand
and a complex manufacturing process. To meet the require-
ments of multi-variety and small-batch production, flexible
manufacturing systems (FMSs) are more and more widely
used in manufacturing industry due to their efficiency and
flexibility. To complete a production task, it is essential to
guarantee the normal operation of the system. When the
system fails (such as shut-down and buffer overflow), serious
safety accidents and economic losses may occur. Therefore,
regulating the system to ensure normal operation is an impor-
tant prerequisite for production tasks. An FMS is a typical
discrete event system (DES) characterized by a discrete state
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space and event-driven transition mechanism. In plain words,
a DES is a dynamic system driven by a series of events, and
the transformation of states is related to the occurrence of
events [1]. Research frameworks for DESs mainly include
automata and Petri nets. The latter has not only a rigorous
mathematical theory basis but also a visual graphical rep-
resentation. Various problems of DESs are analyzed with
Petri nets, such as deadlock prevention, supervisor synthesis,
opacity verification and enforcement, and fault detection.
In this paper, we model DESs based on Petri nets, and focus
on the theory of supervisory control problem of DESs.

The supervisory control theory of DESs originated from
the pioneering works of Ramadge and Wonham in the
1980’s [2], [3], [4]. In real-time systems, the supervisory
control theory of DESs has been used for dynamic scheduling
to deal with periodic and probabilistic tasks [5] and periodic
tasks with multiple-periods [6]. The theory has also been used
for reconfigurable coordination of DESs [7]. Deadlock con-
trol [8] is a typical supervisory control problem in resource
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allocation systems, which has attracted much attention over
the past decade [9], [10], where Petri nets are an effective
tool [11]. A controlled Petri net model was first used to
study the input-output behavior of DESs in [12]. The firing of
transitions which is controlled by external conditions affects
the evolution of the system. These executable control strate-
gies must guarantee the system’s deadlock-free operation.
In particular, a number of deadlock avoidance and preven-
tion strategies are proposed and reported by using invariant
analysis [13], [14], [15], [16], [17], [18], structural analy-
sis [19], [20], [21], [22], [23], [24], [25], and reachability
analysis techniques [26], [27], [28].

For Petri nets where all transitions are controllable,
Giua et al. [13] and Yamalidou et al. [14] proposed a super-
visor synthesis method based on control places using place
invariants. Similarly, given a Petri net prone to deadlock,
Uzam and Zhou [15], [16] prevented the bad marking from
reaching via a place invariant. Moody and John [17] extended
the place invariant-based method to the forbidden state prob-
lem in Petri nets with uncontrollable transitions. Basile
et al. [18] improved the method by introducing two param-
eters into the uncontrollable incidence matrix. Although the
controller designed by this method has a higher behavior
permissibility, it still cannot optimize all Petri nets.

A siphon is widely used for structural analysis in Petri
nets [29]. The concepts of elementary siphons and inde-
pendent siphons are first proposed by Li and Zhou in [19].
A mixed integer programming is used for siphon detection
and complete siphon enumeration can be avoided. Monitors
are only added for siphons that need to be controlled [20]. It is
proven that the application of siphon-based deadlock control
methods to FMS is possible. In their subsequent study [21],
a monitor-based deadlock prevention policy which adds mon-
itors for elementary siphons to a specific plant model called
G-system has been shown, and initial tokens enforcing live-
ness to the system have been calculated by linear programing.
Since finding an optimal supervisor is NP-hard, Li et al. [22]
proposed a two-stage deadlock prevention method which
can lower the computational cost significantly. Furthermore,
for better balance between optimality and computational
tractability, a near-optimal supervisor was introduced in [23]
using the theory of regions and structural analysis.

A widely used method of designing a monitor is to add
control places to the plant net. Feng et al. [24] have shown
that a deadlock can be characterized by the saturation of a
structural object in the systems of simple sequential processes
with multiple resources (S3PMR), called perfect resource
transition-circuit (PRT-circuit). Each PRT-circuit is provided
a control place with suitable control variables. Chen et al.
dealt with the with the enforcement of nonlinear constraints
on Petri nets [30], and proposed an optimal supervisor with
data inhibitor arcs and only one control place [25]. Different
from adding control places, Huang et al. [26] developed a
new control policy by additional immediate transitions for a
subclass of generalized stochastic Petri nets (GSPNs) using

reachability analysis. Transition-based controllers for dead-
lock problems are also introduced in [31], [32], and [33].

A forbidden state problem is to design a supervisor for a
Petri net to prohibit the firing of transitions to prevent the
system from reaching illegal markings including deadlocks.
When uncontrollable transitions exist in a Petri net system,
the forbidden state problem becomes complicated since some
legal markings of the system may reach illegal markings
through an uncontrollable transition sequence. Based on the
theory of regions, Ghaffari et al. [34] designed a maximally
permissive controller for Petri nets with uncontrollable transi-
tions. In addition, a necessary and sufficient conditions for the
existence of control places realizing themaximum permissive
control are given. Chen [35] proposed the definition of an
uncontrollable influence subnet based on an uncontrollable
path, and proved that the supervisor synthesis problem of
the Petri net is only related to the uncontrollable influence
subnet. To reduce the complexity of supervisor synthesis,
Luo et al. [36] introduced a series of supervisor synthesis
algorithms for several types of Petri nets by combining con-
straint transformations and Petri net simplifications. Since a
control strategy based on the theory of regions usually needs
to enumerate all the reachable states in the Petri net system,
it will inevitably encounter the problem of state explosion.
To overcome this limitation, [27] and [28] reported a strat-
egy to build a basis reachability graph (BRG) to improve
the related computational efficiency. This strategy represents
the reachable markings of a Petri net with a set of states,
called basis markings. In this paper, we investigate the super-
visory control policy based on basis markings for labeled
Petri nets.

Generally, existing supervisory control strategies result in
a more structurally complex net supervisor than the plant
net model, especially when the plant net is large in size.
Supervisory control policies based on logic maintain the plant
net structure and are convenient for online control. In real-
world systems, the concept of priority is typically related to
the arrangement of task processes. In the study of Petri nets,
priority was first mentioned in Hack’s study [37]. Investigat-
ing the semantics of priority Petri nets has been a research
topic. By utilizing ordinary Petri nets, Best and Koutny [38]
aimed to provide formal semantics to bounded priority Petri
nets so that the constructed Petri net can retain as much of
the concurrence semantics as possible without violating the
priority constraints. The work in [39] showed that the relation
of priority is dynamic and it is influenced by the current mark-
ing of the Petri net. A study on the boundedness, reachability,
and existence of home states for priority conflict-free Petri
nets was conducted in [40]. Priority can control the firing
of transitions that affects the state of a net without adding
additional control places. Therefore, the proposed control
strategy is based on transition priority.

In this paper, we study the supervisory control problem
based on transition priority in labeled Petri nets. This work
has the following main contributions:
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• We present an approach for identifying weakly ille-
gal markings in a labeled Petri net system under the
possibility that deadlocks and token-overflow markings
may appear in the reachability graph (RG). We address
the problem by using integer linear programming
(ILP) based on generalized mutual exclusion constraints
(GMECs) and deadlocks.

• A control algorithm is proposed to prevent the system
from entering illegal states. A transition priority matrix
is constructed to control the firings of transitions to
prevent the system from reaching weakly illegal states.
We assume that all observable transitions are control-
lable.

The remainder of this paper is organized as follows. Sec-
tion II provides a brief introduction to Petri nets and some
preliminaries. In Section III, we give the formalization of the
problem considered in this paper. Section IV introduces the
notion of the basis reachability graph. Section V proposes
an integer linear programming method for weakly illegal
markings. A control algorithm based on transition priority
is presented in Section VI. Then two cases are presented in
Section VII. Finally, we conclude the study in Section VIII.

II. PRELIMINARIES
The formalism and preliminary results of this study are
recalled in this section. To learn more about Petri nets,
we refer the reader to [11] and [41].

A. BASICS OF PETRI NETS
A Petri net is a four-tuple N = (P, T , Pre, Post), where P is
a set of m places, represented graphically by circles, T is a
set of n transitions, represented graphically by bars. Pre: P×

T → N and Post: P× T → N are the pre-incidence and post-
incidence matrices that specify the arcs directed from places
to transitions, and vice versa. The incidence matrix of a Petri
net is denoted by C = Post- Pre. In this work, we denote the
set of non-negative integers, integers, and real numbers as N,
Z and R, respectively.

A marking of a Petri net is a vector M: P → N that
assigns a non-negative integer number of tokens to each
place, pictorially represented by black dots. M (p) indicates
the number of tokens in place p at a marking M . A marking
M is also denoted asM= 6p∈PM (p) · p. The Petri net system
⟨N ,M0⟩ is a Petri net N with an initial markingM0.
The input and output sets of a node x ∈ P ∪ T are denoted

by ·x and x·, respectively. A string x1. . .xr is called a path of
net N if xi ∈ xi−1·, xi ∈ P ∪ T holds for i = 1, . . . , r , r ∈ N .
A circuit is a path where x1 = xr and the other nodes are all
different. A Petri net is said to be acyclic if it has no circuit.

A transition t is enabled at marking M if for all p ∈ ·ti,
M (p) ≥Pre(p, ti), which is denoted by M [ti⟩. A marking M′

yields when an enabled transition ti fires at M such that M′

= M + C(·, ti). Given a transition sequence σ ∈ T ∗ and a
marking M , M [σ ⟩ M′ denotes that σ is enabled at marking
M and a marking M′ is reachable from M after firing σ . All

markings reachable from the initial marking M0 comprise
the reachability set of a Petri net, denoted by R(N, M0). The
reachability graph is constructed by R(N, M0) with related
arcs. It fully exploits the properties of the flow relation of the
net. A Petri net is bounded if there is a non-negative integer
k ∈ N such that for all p ∈ P, for all M ∈ R(N, M0), it holds
M (p) ≤ k .
An n-dimensional column vector y: T → N is defined as a

firing vector. For a transition sequence σ , y(t) = k indicates
that transition t fires k times in σ . ForM0[σ ⟩M , we haveM=

M0+C ·y. It shows that ifM is reachable fromM0, there exists
a non-negative integer vector y satisfying the above equation.
It is a necessary but insufficient condition. It is necessary and
sufficient for acyclic nets.

Given a Petri net system ⟨N ,M0⟩, a transition t ∈ T is live
at the initial markingM0 when

∀M ∈ R(N ,M0), ∃M ′
∈ R(N ,M ),M ′[t⟩

A Petri net system ⟨N ,M0⟩ is said to be live if for all t ∈ T ,
t is live at the initial marking M0. The system is defined as
dead if there does not exist t ∈ T such that M0[t⟩. If for all
M ∈ R(N, M0), there exists t ∈ T such that M[t⟩, the net
system ⟨N , M0⟩ is deadlock-free.

B. LABELED PETRI NET
A labeled Petri net (LPN) is a four-tuple G = (N ,M0,E, ℓ)
where ⟨N ,M0⟩ is a Petri net system, E is the set of labels, and
ℓ: T→ E∪{ε} is the labeling function that assigns to each
transition t ∈ T either a symbol from E or the empty word
ε. Therefore, the set of transitions can be divided into two
disjoint sets T = To ∪ Tu, where To ={t ∈T| ℓ(t) ∈ E} is the
set of observable transitions and Tu = {t ∈T| ℓ(t) ∈ ε} is the
set of unobservable transitions. No information is generated
after the transitions in Tu fire. Here we define nu = |Tu| as the
cardinality of Tu and no = |To| as the cardinality of To.
Given a sequence σu ∈ T ∗

u , we define an nu-dimensional
vector yu: Tu → N as the unobservable firing vector and
yu(t) = k if t ∈ Tu is contained k times in yu. Analogously,
for a sequence σo ∈ T ∗

o , an observable firing vector is defined
as yo: To → N.

The labeling function can be extended to a firing sequence
σ ∈ T ∗ and it is denoted by ℓ(σ ). Given an LPN G = (N ,
M0, E , ℓ) and a marking M ∈ R(N, M0), the set of observed
words generated fromM is defined as

L(N ,M ) = {w ∈ E∗
|∃σ ∈ T ∗

: M [σ ⟩, ℓ(σ ) = w}

A string belonging toL(N ,M0) is known as an observation.
Let w be an observation of an LPN G, we define

C(w) = {M ∈ Nm
|∃σ ∈ T ∗

: M0 [σ ⟩M , ℓ(σ ) = w}

as the set of markings consistent with w.
An evolution of G from M is defined as a transition-

marking sequence

s(M ) = Mtα1M1tα2M2 · · · tαLML
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satisfying

M [tα1⟩M1[tα2⟩M2 · · · [tαL⟩ML

where αi ∈{1,2,. . . ,n}, tαi ∈ T , Mi ∈ R(N ,M0), i = 1,. . . ,L,
L ∈{1,2,. . . }. Let σ [s(M )] denote the transition sequence
tα1 tα2. . . tαL in s(M ). The set of possible evolutions from M
is defined as

S(N ,M ) = {s(M )|σ [s(M )] ∈ L(N ,M )}

Given an LPN G = (N , M0, E , ℓ) and the set of unob-
servable transitions Tu, the unobservable subnet Nu = (P,
Tu, Preu, Postu) of G is the net resulting by removing all
observable transitions from N , where Pre′ and Post′ are the
restrictions of Pre and Post to Tu, respectively. The incidence
matrix of the unobservable subnet is denoted by Cu = Postu-
Preu.

C. GENERALIZED MUTUAL EXCLUSION CONSTRAINT
Mutual exclusion constraints are used to express and analyze
the concurrent use of finite resources among multiple pro-
cesses. In the perspective of Petri nets, a generalized mutual
exclusion constraint is a condition that limits the weighted
sum of tokens in a subset of places, and it divides the set of
system states into two disjoint sets: a legal marking set and a
forbidden marking set [13].

A mutual exclusion constraint is a two-tuple (w⃗, k) that
defines a set of legal markings

M (w⃗, k) = {M ∈ Nm
|w⃗T

·M ≤ k}

where w⃗ is a non-negative integer weight vector, and k is a
positive integer [42]. Markings violate the mutual exclusion
constraint are defined as forbidden markings, i.e., illegal
markings.

A generalized mutual exclusion constraint is denoted by a
two-tuple (W , k⃗). Based on the GMEC (W , k⃗), a set of legal
markings is defined as

M (W , k⃗) = {M ∈ Nm
|WT

·M ≤ k⃗}

whereW= [w⃗1,. . . , w⃗m] and k⃗ = [k1,. . . , km]T.
Uncontrollable transitions may be observed, but they can-

not be prevented from firing by external control conditions.
Since the firings of unobservable transitions is undetectable,
unobservable transitions are uncontrollable. Observable tran-
sitions can be controllable or uncontrollable [17]. Therefore,
the set of transitions of an LPN G can also be divided into
three disjoint sets T = Tco ∪ Tuo ∪ Tuu, where Tco is the
set of controllable and observable transitions, Tuo is that of
uncontrollable and observable transitions, and Tuu is that of
uncontrollable and unobservable transitions. We assume that
all observable transitions are controllable, i.e., Tco = To,
Tuo = ∅, Tuu = Tu, leading to T = Tco ∪ Tuu. The pres-
ence of uncontrollable transitions enhances the complexity of
supervisory control problem. In this study, the GMEC helps
us to distinguish illegal markings, and pave the way for the
following sections.

D. TRANSITION PRIORITY
For Petri nets, a conventional method for defining priority
relation is to impose it on a set of transitions. Since priority
is a type of external conditions that can affect the evolution
process, we only apply priority to controllable transitions.
We denote ρ(t) as the priority level for transition t . A gen-
eralized matrix of relation P = [rij]n×n to present the priority
relation for transitions is proposed, named as transition prior-
ity matrix. Given a Petri net N with priority, the component
of a transition priority matrix of N is given by (1):

P(i, j) =


1, ρ (ti) > ρ

(
tj
)

−1, ρ (ti) < ρ
(
tj
)

0, ρ (ti) = ρ
(
tj
)

ϕ, otherwise

(1)

where element 1 for rij denotes that transition ti has priority
over transition tj. When the priority of ti is lower than tj,
rij equals −1. If two transitions share the same priority, the
element is defined as 0. For two transitions without strict
priority constraints, rij is marked as ϕ.
Here we summarize some properties of the transition pri-

ority. Obviously, the priority relation is transitive, i.e., for
rij = 1, rjk = 1, i, j, k ∈{1,. . . ,n}, i ̸= j, j ̸= k , i ̸= k ,
we can infer that rik = 1. This inference can be extended to
the situation where rij = –1, rjk = –1, or rij = 0, rjk = 0.
For transition within different priority levels, there is rij =-
rji ∈{−1,1}, i, j ∈{1,. . . ,n}, i ̸= j. The diagonal elements of
the transition priority matrix are always equal to zero, i.e., rii
= 0, i ∈{1,. . . ,n}.
Petri nets with priority have the following firing rules.

Transitions in higher priority levels are always preferred to
fire over transitions with lower priorities. A transition ti ∈ T
is ρ-enabled at a markingM , denoted byM [ti⟩ρ , if transition
ti is enabled at marking M and no transition with higher
priority than ti is enabled at M , i.e., M [ti⟩, ∀tj ∈ T , M [tj⟩,
rji ̸=1.
If enabled transitions are at the same priority level or with

no constraints, the probability U(ti, M ) of the firing of the
transition ti satisfies the uniform distribution given by (2):

U (ti,M) =

 0, ti /∈Te
1

|Te|
, ti∈Te,

Te = {t|M [t⟩} (2)

where U(ti,M ) is the probability of firing ti at markingM . Te
is the set that contains all enabled transitions at marking M .
|Te| denotes the cardinality of Te.
The priority relation affects the firing order of transitions.

Therefore, priorities are only given to controllable transitions.
Once an uncontrollable transition is enabled, it is fired imme-
diately without any restriction.

A priority Petri net (PPN) is a three-tuple R = (N ,M0, P),
where ⟨N , M0⟩ is a Petri net system, and P is the transition
priority matrix.
Example 1: Consider the PPN in Fig. 1, whereM0 = p1+

p4. Transition t2 has the lowest priority. Transitions t1, t3, and
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FIGURE 1. A Petri net with priority.

FIGURE 2. The reachability graph of the PPN in Fig. 1.

t4 share the same priority level which is higher than ρ(t2). The
corresponding priority matrix P is expressed as follows:

P =


0 1 0 0

−1 0 −1 −1
0 1 0 0
0 1 0 0


The reachability graph of the PPN in Fig. 1 is shown in

Fig. 2. The transition sequence σ = t2t1t3t4 is feasible at the
initial marking M0 and leads to itself. Since ρ(t2) < ρ(t3),
i.e., r23 = −1, transition t2 cannot be fired at marking M3 =

p1 + p3 + p4, and the transition sequence σ ′
= t2t1t2 is not

available fromM0.
The number of reachable markings of a PPN is less than or

equal to that of the corresponding Petri net without priority.
The firing sequences of a PPN are restricted by the ρ-enabling
rules. If all transitions in a Petri net system have the same
priority, the net system satisfies the maximally permissive
behavior. If transitions are of different priorities, some mark-
ings in R(N, M0) may be forbidden. Consequently, the size of
the reachability graph of a PPN is reduced compared to that
of the Petri net without priority.

III. PROBLEM STATEMENT
This paper addresses the control strategy design problem
based on transition priority in a labeled Petri net system that
can be used to model DESs. Let us consider an LPN system
G = (N , M0, E , ℓ) where the set of transitions T is divided
into two disjoint subnets, To and Tu. The system states evolve
according to the firings of transitions. Unexpected illegal
states, including deadlocks and token-overflow markings,
may appear in R(N, M0). Thus, transition priority is needed to

prevent the system from reaching the illegal states as a logical
control method.

As known, the firing of unobservable transitions is unable
to detect or control. Observable transitions can be either
controllable or uncontrollable due to our setting. In this paper,
we assume that all observable transitions are controllable.
In addition, the following assumptions are made:

1) The labeled Petri net G is bounded.
2) The Tu-induced subnet is acyclic.
3) All observable transitions are controllable and all unob-

servable transitions are uncontrollable.

Assumption 1 ensures that the nodes in the basis reacha-
bility graph of an LPN are finite. Assumption 2 avoids the
situation in which the system evolves in a circuit that only
unobservable transitions are contained, such that no available
output will be observed at all times. Assumption 3 simplifies
the situation. We formalize the control strategy problem as
follows:
Problem: Given a labeled Petri net system G= (N , M0,

E , ℓ) with N = (P, T , Pre, Post) and T = To ∪ Tu under
assumptions 1 to 3, the problem consists in calculating a
transition priority matrix P such that it controls the firing of
controllable transitions to avoid pre-defined illegal states.

IV. BASIS REACHABILITY GRAPH
Based on the assumption that the considered net system is
bounded, the basis reachability graph is defined using the
notion of basis markings. It is a deterministic graph and the
number of nodes in the BRG equals the number of possible
basis markings [27]. Before providing the BRG construction
algorithm, we recall the following related definitions.
Definition 1: Given a marking M and an observable tran-

sition t ∈ To, we define

6(M , t) = {σ ∈ T ∗
u |M [σ ⟩M ′,M ′

≥ Pre(·, t)}

as a set of explanations of t at M and let the corresponding
set of firing vectors called e-vectors be Y (M , t) = π (6(M ,
t)). The set 6(M , t) contains unobservable sequences whose
firing at M enables t . Here we only focus on the minimal
explanations, i.e., their firing vector is minimal.
Definition 2: Given a marking M and a transition t ∈ To,

we define

6min(M , t) = {σ ∈ 6(M , t)|∄σ ′
∈ 6(M , t) : π (σ ′) < π(σ )}

as the set of minimal explanations of t at M and define

Ymin(M , t) = π (6min(M , t))

as the corresponding set of minimal e-vectors.
We adopt the approach proposed by Cabasino et al. [43]

to compute Ymin(M , t) based on the assumption that the
unobservable subnet is acyclic.
The definition of the set of basis markings is constructed

from the notion of explanations. A basis marking is reachable
from the initial state M0 by firing an observation w together

45446 VOLUME 11, 2023



Y. Liu et al.: Control Strategy of Discrete Event Systems Modeled by Labeled Petri Nets Based on Transition Priority

with a sequence of unobservable transitions whose firing is
strictly necessary to enable w.
Definition 3: Given an LPN G= (N ,M0, E , ℓ), we define

MB as the set of basis markings of G such that:
1) M0 ∈ MB.
2) ∀M ∈ MB, ∀t ∈ To, ∀yu ∈ Ymin(M , t), it holds M′

∈

MB, whereM′
= M + C(·,t) + Cu · yu.

According to the definition, the initial marking M0 is one
of the basis markings. If a marking can be reached from
M0 by firing observable transitions and their corresponding
minimal explanations, the marking is added to the set of basis
markings. Markings that are reachable by firing unobservable
transitions only are ignored. Therefore, MB is a subset of
R(N, M0), whose size is generally much smaller than the
original state space in practice.

Algorithm 1 shows themain steps of the BRG construction.
The algorithm iteratively updates the set of basis markings
and constructs the BRG based on the definition of basis
markings. We denote the BRG as B = (MB, E , 1, M0),
whereMB is the set of basis markings of the LPN, E is the
alphabet of events, 1 ⊆MB×E×MB is the corresponding
transition relation for basis markings, and M0 denotes the
initial marking.

Algorithm 1 Construction of the BRG [27]
Input: A bounded labeled Petri net G = (N , M0, E , ℓ).
Output: A BRG B = (MB, E , 1, M0)
1: LetMB = {M0}, 1 = {}. Assign no tag toM0.
2: while markings with no tag exist
3: select a markingM ∈ MB with no tag;
4: for all t ∈ To and Ymin(M , t) ̸= ∅

5: for all yu ∈ Ymin(M , t)
6: M′

= M0 + Cu · yu + C(·, t);
7: ifM′ /∈ MB
8: MB = MB∪M′ ;
9: Assign no tag toM′ ;
10: end if
11: 1 = 1∪{(Mℓ(t), M′ )};
12: end for
13: tag nodeM ‘‘old’’
14: end for
15: end while
16: Remove all tags.

We concisely give an explanation for Algorithm 1. First,
the algorithm computes basis markings from the initial mark-
ing M0. The set of basis markings asMB ={M0} is initial-
ized. For every observable transition t , we check if its cor-
responding set of minimal e-vectors Ymin(M , t) is an empty
set. If not, a new basis marking is computed by the equation
in Step 6. A marking in MB without the ‘‘old’’ tag has not
yet been studied. The process is iterative until all markings
in MB are marked ‘‘old’’. Since the LPN is bounded, the
computation of the BRG is finite. The point of the algorithm
is to explore the firing vectors of observable transitions and

FIGURE 3. A bounded LPN with acyclic unobservable subnet.

FIGURE 4. The reachability graph of the LPN in Fig. 3.

their minimal explanations rather than to calculate every
new marking by firing a transition. Therefore, the approach
brings advantages from the perspective of the computational
effort. Note that when the set of unobservable transitions is
empty, the size of the BRG is equivalent to its corresponding
reachability graph.
Example 2: Here we consider the LPN in Fig. 3, where

M0 = p1 + p3. The system capacity is 2. It has two observ-
able transitions To ={t1, t2} with ℓ(t1) = a, ℓ(t2) = b,
and four unobservable transitions Tu ={t3, t4, t5, t6}. The
reachability graph of the LPN in Fig. 3 contains 15 reachable
markings, as illustrated in Fig. 4. Nodes with dotted lines are
not included in the BRG of the given LPN in Fig. 3. The BRG
is displayed in Fig. 5, which has only six basis markings.
The complexity of the BRG construction algorithm is

lower than that of constructing the reachability graph. At the
very worst, i.e., To = T , Tu = ∅, the BRG has the same
size (complexity) as the reachability graph. The study in [44]
shows that in parallel acyclic workflow cases, the cardinality
of the reachability set grows exponentially with workflows
and polynomially with system capacity and places. The size
of the BRG can be an order of magnitude smaller than that
of the reachability graph. Therefore, the construction of the
BRG can effectively avoid the explosion in the state space.
Table 1 presents that the state space of the RG enlarges
significantly with respect to the system capacity, whereas the
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FIGURE 5. The BRG of the LPN in Fig. 3.

TABLE 1. Size of the RG and The BRG of Fig. 3 with different system
capacities.

number of basic markings grows slowly. The BRG computa-
tion is based on an Intel(R) Xeon(R) CPU E5-2650 v2 with a
basic frequency of 2.60 GHz and internal storage of 128 GB.
The operating system is Windows Server 2008 R2 Enterprise
with 64 bit. For the reachability graph with a calculation time
of more than 8 hours, we mark its size |RG| as ‘‘overtime’’.
Definition 4: Given an LPN G that contains both control-

lable and uncontrollable transitions, i.e., T = Tco ∪ Tuu,
we define

Ru(M ) = {M ′
|M [t1t2 . . . ts⟩M ′, t1, t2, . . . , ts ∈ Tuu}

as the set of markings reachable from uncontrollable transi-
tions.
Proposition 5: Let B be the BRG of LPN G. If a pathM0–

(y1, t1) – M1– (y2, t2) – . . . – (ys, ts) – Ms exists in B, there is
M ∈ R(N , M0) for allM ∈ Ru(Ms).
Proof:According to the construction process of the BRG,

y1 is the minimal e-vector from M0 to M1. Since the uncon-
trollable subnet is acyclic, if there exists y ∈ Ymin(M , t), y ≥0,
satisfying the state equationM+ C · y ≥0, the corresponding
firing sequence σ is enabled atM . There exists corresponding
firing sequence σ1 satisfying M0[σ1⟩M′

0[t1⟩M1. Similarly,
a conclusion is carried out that for anyMi, there exists a cor-
responding firing sequence σi satisfying Mi[σi+1⟩M′

i [ti+1⟩

Mi+1. Therefore,Ms and all markings inRu(Ms) are reachable
from M0.
Proposition 6: Let B be the BRG of the LPN G. If there

exists a sequence σ and a markingM such thatM0[σ ⟩M and
σTco = t1t2. . . ts, there exists a path M0– (y1, t1) – M1– (y2,
t2) – . . . – (ys, ts) – Ms in B such thatM ∈ Ru(Ms).

Proof:Let σ = σ1t1σ2t2. . .σstsσs+1, where σ1. . .σk+1 ∈

T ∗
uu. The firing process fromM0 to M is shown as follows:

M0[σ1t1⟩M1[σ2t2⟩M2. . .M s−1[σsts⟩Ms[σs+1⟩M

If the firing vector y1 of σ1 is the minimal e-vector at M0,
M1 is a basis marking. If y1 is not the minimal one, there
necessarily exists a firing vector y′1 which is smaller than
y1, and y′1 is the minimal e-vector, i.e., M0[σ ′

1t1⟩M′
0. Let y′

′
1 = y1- y′1. We can prove that there exists the corresponding
firing sequence σ ′ ′

1 of y′ ′
1 satisfying M′

0[σ ′ ′
1⟩M1. Since

M′
0+ C· y′ ′

= M1 ≥ 0, and the uncontrollable subnets in
LPN are acyclic, σ ′ ′

1 necessarily exists. The former formula
can be rewritten as

M0[σ ′
1t1⟩M ′

1[σ ′′
1σ2t2⟩M2. . .M s−1[σsts⟩Ms[σs+1⟩M

where M ′

1 denotes a basis marking. The above logic can be
applied toM2,. . . ,Ms recursively. Finally, we realign the firing
order of transitions and obtain

M0[σ ′
1t1⟩M ′

1[σ ′
2t2⟩M ′

2. . .M ′
s−1[σ ′

sts⟩M ′
s[σ ′

s+1⟩M

where M0, M′
1, . . . , M′

s are basis markings. Consequently,
there exists M0– (y1, t1) – M1– (y2, t2) – . . . – (ys, ts) – Ms in
B and M ∈ Ru(Ms), which completes the proof.

V. INTEGER LINEAR PROGRAMMING BASED ON GMEC
AND DEADLOCKS
In real-world systems, some states are undesirable, such as
buffer overflow and device shut-down. These states are rep-
resented by deadlock and token-overflowmarkings in the cor-
responding Petri net system. These markings that the system
avoids reaching are defined as illegal markings. In this paper,
we define weakly illegal markings, which are also a class
of illegal markings. In the research of control strategy based
on the BRG, weakly illegal markings are closely related to
deadlock and token-overflow markings. Therefore, finding
the weakly illegal markings is the key to subsequent research.
In this section, we put forward an approach to find weakly

illegalmarkings by integer linear programming. First, we pro-
pose an ILP method based on a generalized mutual exclusion
constraint to identify weakly illegal markings associated with
the token-overflow states. Then, the ILP method for finding
weakly illegal markings that may reach a deadlock state
through an uncontrollable transition sequence is explained in
the following subsection.

A. WEAKLY ILLEGAL MARKINGS
Definition 7: Let F be the set of illegal markings. If M ∈ F
and Ru(M ) ∩ F ̸= ∅, markingM is a weakly illegal marking.
We denoteMw as the set of weakly illegal markings.
According to the above definition, weakly illegal markings

are included in the set of illegal markings. If the firing of an
uncontrollable transition sequence makes the system evolve
from M to an illegal marking, marking M is a weakly illegal
marking. Since the assumption that observable transitions are
all controllable is given, in the subsequent study, we develop
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control methods based on priority for observable transitions
to avert the system from getting into illegal states.
Proposition 8:LetB be the BRGof the LPNG. IfM0[σ ⟩M ,

σTco = t1t2. . . ts, and M is an illegal marking, there exists a
path M0– (y1, t1) – M1– (y2, t2) – . . . – (ys, ts) – Ms, M ∈

Ru(Ms), and Ms is a weakly illegal marking.
Proof:If M is an illegal marking, based on Proposition 6,

there exists a path M0– (y1, t1) – M1– (y2, t2) – . . . – (ys, ts)
– Ms in the BRG and M ∈ Ru(Ms). In addition, according to
Definition 7,Ms is a weakly illegal marking.
Proposition 9:Let B be the BRG of LPN G. For any firing

sequence σ that satisfies σTc = t1t2. . . ts, all markings satis-
fying M0[σ ⟩M are legal markings. For all paths M0– (·, t1) –
M1– (·, t2) – . . . – (·, ts) – Ms in B, Ms is not a weakly illegal
marking.
Proof: By contradiction, suppose that there is a path M0–

(y1, t1) –M1– (y2, t2) – . . . – (ys, ts) –Ms in the BRG, andMs is
an illegal marking. As claimed by Proposition 5, there exists
a firing sequence σ satisfying M0[σ ⟩Ms and σTc = t1t2. . . ts.
SinceMs is also a weakly illegal marking, the illegal marking
M ∈ Ru(Ms) exists. Therefore, Ms[σ ′

⟩M , σσ ′ is a firing
sequence satisfyingM0[σσ ′

⟩M and σσ ′
Tc = t1t2. . . ts, which

contradicts with the assumption. We conclude thatMs cannot
be an illegal marking.

Note that based on Definition 7, the set of weakly illegal
markings MB is not included in the set of basis markings
MB. Under the assumption that Tu = Tuu, To = Tco, given
an LPN G, for any illegal marking Mf ∈ F, a basis marking
Mb ∈ MB exists. An unobservable sequence fires at Mb
and reaches Mf such that Mb is a weakly illegal marking.
Therefore, as long as the system is prevented from reaching
the weakly illegal markings inMB, it can avoid entering the
corresponding illegal state.

B. THE GMEC-ILP METHOD
Generally, to find out the deadlocks and token-overflow
markings, we need to filter them out from the reachability
graph according to their characteristics. It is time-consuming
to explore a path that a weakly illegal marking is reached from
M0 according to the reachability graph. In this subsection,
we propose a GMEC-based ILP method that can quickly find
weakly illegal markings that may reach the token-overflow
markings, which is more efficient than the ergodic way.

For token-overflow related weakly illegal markings, feasi-
ble solutions to the ILP problem given by (3) exist when M
is a weakly illegal marking:

M + Cu·yu≥ 0
W T (M + Cu · yu) > k
yu≥ 0, yu ∈ N

(3)

where M defines a basis marking, Cu is the unobservable
incidencematrix, and yu defines the unobservable transitions’
firing vector. If M belongs to the set of weakly illegal mark-
ings, M has its subsequent node such that the first inequality
has feasible solutions.M′

=M+ Cu· yu is an illegal marking

TABLE 2. Weakly illegal marking and corresponding token-overflow
marking.

that violates the GMEC. If the firing sequence yu exists,
elements in y must be natural numbers.
Example 3: As the same as the previous example, we con-

sider the LPN in Fig. 3. Let M0 = 2p1+2p3 and Pf = {p1}.
For place p1, the GMEC is W T

· M (p1) ≤2. The set of
basis markings MB contains 15 nodes. To ascertain the set
of weaky illegal markingsMw, for eachM ∈ MB, we have

M + Cu · yu≥0
W T (M + Cu · yu)> 2
yu≥0, yu ∈ N

By solving the above ILP inequalities, three basis markings
are identified as weakly illegal markings. Table 2 lists the
weakly illegal markings and the corresponding illegal states
by firing yu.

C. THE DEADLOCK-ILP METHOD
A deadlock proposed in [8] is a situation in which one or
more processes are blocked in the system due to requirements
which are not able to be satisfied. In a Petri net system,
no transition fires at a deadlock marking. Based on the fact
that a deadlock marking has no subsequent nodes, an ILP
method shown in (4) is proposed to find out weakly illegal
markings leading to deadlocks.

{
M + Cu·yu≥0
yu1≥0, yu1 ∈ N

(a){
(M + Cu · yu1) + Cu · yu2≥0
yu2≥0, yu2 ∈ N

(b)

(4)

For each basis marking M, if inequality group (a) has a
feasible solution, then this basis marking M has subsequent
nodes. Therefore, it is not a deadlock marking. A new mark-
ing M′

= M + Cu · yu1 is obtained. When inequality group
(b) has no feasible solutions, M′ is proven to be a deadlock
marking reached from the weakly illegal markingM .
Example 4: Let us consider again the LPN G in Fig. 3,

where M0 = p1 + p3. By solving the above ILP, deadlock
markingM= 2p5 is reachable from the basis markingM = 2
p4 by yu1 = [0,0,0,2]T, i.e., t6 fires twice.
The set of weakly illegal markings is a union of the sets

obtained by solving the above two groups of ILPs. The
subsequent control strategy makes sense only when the set
of weakly illegal markings is not empty. In the following
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sections, the definitions and algorithms described above are
used to design a controller.

VI. CONTROL STRATEGY
It can be seen from the above analysis that in order to ensure
system liveness, it is essential to find weakly illegal markings
of the system and prevent the system from entering illegal
states. The following algorithms control the system by setting
the transition priority matrix and reasonably arranging the
firing of transitions.

A. STATIC CONTROL STRATEGY BASED ON THE
TRANSITION PRIORITY MATRIX
Algorithm 2 shows how to find an appropriate transition
priority matrix to control the system behavior. It iteratively
computes transition priority relations until all weakly illegal
markings are forbidden.

We now explicate how Algorithm 2 works in brief. When
Algorithm 2 starts to run, it first ensures that the initial
marking is not a deadlock. Next, the set of basis markings
MB is obtained based on the BRG construction algorithm.
We use the ILP-based methods mentioned in Section V to
determine the set of weakly illegal markings Mw. If it is not
empty, i.e., the ILP-based methods have feasible solutions,
the system has at least one illegal status. The next steps are
crucial to the control strategy. For a weakly illegal marking
M , it is vital to find the basis marking M′ that reaches M
and the corresponding observable transition ti. At the same
time, other basis markings and paths that can be reached
fromM′ need to be recorded. If other paths exist, the priority
of ti is set lower than the observable transitions on other
paths. It should be noted that all the priority relations must be
verified. If there is no conflict, the transition priority matrix P
is obtained. Otherwise, there is no feasible transition priority
matrix, which means that there is no appropriate priority for
avoiding all illegal states.

An optimal controller is an agent that guarantees the reach-
ability of all legal markings and meanwhile prohibits all
transitions that may lead to an illegal marking. In the BRG of
an LPN with static priority constraints, some legal markings
cannot be reached due to the low-priority transitions that can-
not be fired. In this case, the maximally permissive behavior
cannot be satisfied. To this end, we propose a dynamic control
method to address the problem.

B. DYNAMIC TRANSITION PRIORITY CONTROL STRATEGY
Due to the increase in transition priority constraints, some
legal states may be prohibited and a system cannot achieve
maximally permissive behavior. Therefore, we propose a
dynamic transition priority matrix construction method to
control a system. The transition priority matrix is recalculated
when the firing of a transition is observed. This ensures that
the system could meets the maximally permissive behavior
without entering illegal states. The following pseudocode
shows how an on-line control policy on the basis of the
transition priority matrix works.

Algorithm 2 Static control strategy based on the transition
priority matrix
Input: A bounded LPN G = (N , M0, E , ℓ), k
Output: Transition priority matrix P = [rij]no×no
Part 1: Initialization.
LetMw = {}.
if ∀p ∈ ·ti, ti ∈ T , i = 1,. . . ,n
M0(p) ≥ Pre(·, ti);
continue;

else
break;

end if
Part 2: Computation of the set of weakly illegal markings.
Compute BRG B and the set of basis markings MB in
accordance with Algorithm 1;
for eachM ∈ MB
Solve the ILP (3) and (4);
if a new weakly illegal marking exists
Mw = Mw ∪M ;

end if
end for
Part 3: Transition priority matrix construction.
Initialize the transition priority matrix:

P0 =


0 ϕ · · · ϕ

ϕ 0 · · · ϕ
... · · ·

. . . ϕ

ϕ · · · ϕ 0


no×no

ifMw = ∅

let P = P0;
break;

end if
for allM ∈ Mw
find the set of basis markings:M = {M′

|M′
∈ MB M′

[σu1ti⟩M};
find the set of transitions: T = {tj|tj ∈ To, M′ [σu2tj⟩,

j ̸= i};
if T ̸= ∅

for all tj
r′ ji =1;
if (rji = φ) ∪ (rji =r′ ji)
setrji = 1, rij = –1;

else
Conflict exists, break;

end if
end for

end if
end for

The dynamic algorithm is more flexible than the static
control strategy. When a transition firing is observed, the
transition priority matrix changes accordingly. Basically, the
dynamic control strategy is the same as the static control
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Algorithm 3 On-line control strategy based on the transition
priority matrix
Input: A bounded LPN G = (N , M0, E , ℓ), k .
Output: Dynamic transition priority matrix P = [rij]no×no
Part 1: Initialization.
LetMw = {};
if ∀p ∈ ·ti, ti ∈ Ti =1,. . . ,n
M0(p) ≥ Pre(·, ti);
continue;

else
break;

end if
Part 2: Computation of the set of weakly illegal markings.
Compute the BRG B and the set of basis markings MB
according to Algorithm 1;
for eachM ∈ MB

Solve the ILP (3) and (4);
if a new weakly illegal marking exists
Mw = Mw ∪M ;

end if
end for
Part 3: Dynamic transition priority matrix construction.
while a new word is observed

Update current markingMc = Mc + Cu · yu + C(·, t);
Initialize the transition priority matrix:

P0 =


0 ϕ · · · ϕ

ϕ 0 · · · ϕ
... · · ·

. . . ϕ

ϕ · · · ϕ 0


no×no

ifMw = ∅

let P = P0;
break;

end if
let the current transition priority matrix be Pc = P0;
for all ti ∈ To

if Mc[σu1ti⟩M′ , M′
∈ Mw

find the set of transitions: T = {tj|tj ∈ To,
Mc[σu2tj⟩M′ , j ̸= i}

if T ̸= ∅

set rji = 1, rij = –1;
end if

end if
end for

end while

strategy. The BRG needs to be built, and the set of weakly
illegal markings needs to be found with the help of the
ILP. In the initial state, there are no priority constraints
between transitions. Whenever the firing of an observation
w is observed, the path to the weakly illegal marking needs
to be found under the current basis marking Mc. If it exists,
the priority of the controllable transition ti at Mc leading to

FIGURE 6. Plant.

a weakly illegal marking is set to be the lowest among the
simultaneously enabled transitions. Since the current transi-
tion priority matrix changes dynamically with the firing of an
observable transition, the priority settings do not conflict, and
maximally permissive behavior is able to be satisfied.

The main computational overhead of the control algorithm
includes the BRG construction mentioned in Algorithm 1
and the ILP shown in (3) and (4). The BRG construction
algorithm takes exponential complexity in theory. In prac-
tice, the size of the BRG is significantly smaller than that
of the reachability graph, since unobservable transitions are
implicit, and the firings of which are omitted. The complexity
of an ILP problem is NP-hard, and the number of constraints
and variables influences the computational cost significantly.
The ILP problem includes m integer variables for Min MB
and 7m constraints. In the control strategy, we check the legal-
ity of each basis marking in the BRG using (3) and (4). The
cardinality of the BRG is denoted by k . As a result, we have
totally 7mk constraints to solve. Note that the algorithm will
not stop unless no observation is observed. Consequently,
the complexity of the algorithm is related to the length of
observation. Note that the BRG construction and the solution
to the ILP can be done off-line.

VII. NUMERICAL EXAMPLE
Two cases are presented in this section to clarify how the
transition priority matrix is constructed and how the control
strategy works to prevent the system from entering illegal
states. The reader can learn more details for manufacturing
system modeling using Petri nets in [21].

A. CASE 1
Consider the net with 12 places and 12 transitions in Fig. 6
which models a producing plant. First, the plant system loads
raw materials to the input (modeled by p1). Then, each raw
material is partitioned (transition t1) into two pieces, which
are put into buffers A and B (modeled by p2 and p5), respec-
tively. The material in buffer A is delivered (transition t6) to a
processing machine (modeled by p3) and then it is delivered
(transition t7) to another buffer C (modeled by p4). There are
two processing methods for materials in buffer B. Material
in buffer B is delivered to processing machines (modeled
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FIGURE 7. Part of the BRG of the LPN in Fig. 6.

TABLE 3. Meanings for places and transitions in Fig.6.

by p6 and p7) and then delivered to buffer D (modeled by
p8). Similarly, the material in buffer B can also be processed
and sent to buffer E (modeled by p11). Finally, the products
are packaged and delivered (transitions t4 and t5) to the
warehouse (modeled by p12). After warehousing, relevant
information will be transmitted (transition t12) to the input
to start a new round of production. The specific meaning of
each node is shown in Table 3. In Fig. 6, the set of observable
transitions is To = {t1, t2, t3, t4, t5} with label ℓ = {a, b, c,
d , e} and the set of unobservable transitions represented by
white hollow bars is Tu = {t6, t7, t8, t9, t10, t11, t12}. The
capacity of p8 is defined as 2, i.e.,W T

·M (p8) ≤ 2. Since the
initial marking is M0 = [4,0,0,0,0,0,0,0,0,0,0,0]T, the size of
reachable markings is 5423. Part of the BRG of the plant net
is illustrated in Fig. 7. It contains 70 basis markings.
For latent token-overflow markings and deadlocks, ILP

problems are proposed to figure out the set of weakly illegal
markingsMw.


M + Cu · yu1 ≥ 0
W T (M + Cu · yu1) > 2
yu1≥ 0{
M + Cu · yu2≥ 0
yu2≥ 0{
(M + Cu · yu2) + Cu · yu3 ≥ 0
yu3 ≥ 0

Feasible solutions are found to identify weakly illegal
markings which are shown in Table 4. There are only five

TABLE 4. Weakly illegal markings and illegal markings.

weakly illegal markings in Mw leading to token-overflow
markings.

Given an observation, the current marking of the plant
can be calculated. As stated by the dynamic control strategy,
we can reasonably arrange the firing order of transitions.
Given an observation w = ababa, we can infer that the sys-
tem may reach the basis marking [1,3,0,0,1,2,0,0,0,0,0,0]T.
Transitions t1, t2, t3, and t4 are enabled at this state where
the firing of t2 will make the system reach a weakly illegal
marking [1,3,0,0,0,3,0,0,0,0,0,0]T. Therefore, it is necessary
to set the priority of transition t2 to be lower than t1, t3, and
t4. The transition priority matrix is updated from Po to Pc1 as
follows.

Pc1 =


0 1 ϕ ϕ ϕ

−1 0 −1 −1 ϕ

ϕ 1 0 ϕ ϕ

ϕ 1 ϕ 0 ϕ

ϕ ϕ ϕ ϕ 0


Given an observation w = acababa, basis marking M =

[0,4, 0,0,1,2,0,0,1,0,0,0]T may be reached. Since t2, t3, t4 are
enabled simultaneously at M and the firing of t2 leads the
system to a weakly illegal marking [0,4,0,0,0,3,0,0,1,0,0,0]T,
we have r32 = 1, r42 = 1, r52 = 1. The current transition
priority matrix Pc2 is as follows.

Pc2 =


0 ϕ ϕ ϕ ϕ

ϕ 0 −1 −1 −1
ϕ 1 0 ϕ ϕ

ϕ 1 ϕ 0 ϕ

ϕ 1 ϕ ϕ 0


According to the observation, the transition priority can

be flexibly changed to avoid illegal states. If we control the
system by control places, one control place with two initial
tokens is added. The control place is calculated to be the input
place of t2 and also the output place of t4. The priority-based
method does not require to add additional control places,
which does not complicate the net structure. For different con-
trol requirements, it is easier to adjust the transition priority
matrix than to reset the control places.

B. CASE 2
In this case, a manufacturing system is considered whose
layout is illustrated in Fig. 8. The system contains two inputs,
three exits, four machines, one buffer, four robots and two
automated guided vehicles (AGVs). These three production
lines yield distinct types of products.
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FIGURE 8. Layout of a manufacturing system with three production lines.

FIGURE 9. The LPN of Fig. 8.

Line 1: First, robot R1 brings raw materials from entry E1.
Then, the materials are loaded into machine M1. The raw
pieces are processed by M1 and are sent to machine M3 by
robot R2. After processing by M3, robot R2 takes them to
buffer B. Finally, robot R3 takes the products and loads the
AGV1. It sends the end product to the output O1 and new
production begins at E1.
Line 2: Robot R1 takes raw stuff from E1 and machine M2

is loaded. Intermediate products are generated by machine

M2. Robot R4 carries them to machine M4. The final prod-
ucts are made by machine M4. Finally, AGV2 is loaded by
robot R3 from M4. The products are sent to O2 and new raw
materials are sent to E1.
Line 3: Machine M4 processes raw materials from entry

E2. Robot R4 transfers intermediate parts from M4 to
machine M2. Products are sent to exit O3 directly and new
raw materials are sent to E2.

It is noteworthy that two production lines share robots
R1 and R3. Robot R1 is shared by machines M1 and M2.
Robot R3 is used by both machine M4 and buffer B. Part
of production line 2 is the reverse of the processing steps of
production line 3, and this structure may cause deadlocks.

The labeled Petri net model of Fig. 8 is shown in Fig. 9
with 28 places and 19 transitions. The set of unobserv-
able transitions is Tu = {t13, t14, t15, t16, t17, t18, t19}. The
label set and its mapping are E ={‘a′;′b′;′c′;′d ′;′e′} and
ℓ ={[t1];[t2, t4, t8]; [t3, t5, t6, t10];[t7, t9, t11];[t12]}, respec-
tively. The capacity of place p8 is 1, i.e.,W T

·M (p8) ≤1. The
initial marking M0 = 2p1 + p2 + p11 + p12 + p13 + p14 +

p15 + p16 + p22 + p26 + p27 + p28. There are 286 nodes in
the reachability graph and the size of the BRG is 121. Part of
the evolutions in the BRG of Fig. 9 is shown in Table 5. The
ILP is established to compute weakly illegal markings.




M + Cu · yu1 ≥ 0
W T (M + Cu · yu1) > 1
yu1≥ 0{
M + Cu · yu2≥ 0
yu2≥ 0{
(M + Cu · yu2) + Cu · yu3 ≥ 0
yu3 ≥ 0

Three weakly illegal markings reach five illegal markings,
as detailed in Table 6. One deadlock and four token-overflow
markings exist in R(N , M0). For different weakly illegal
markings, the settings of transition priority are different.
Given an observation w = adcdadc, the basis marking
M = [0,1,0,0,0,0,1,1,0,0,1,1,0,1,1,1,0,0,0,0,0,1,0,0,0,1,1,1]T

can be reached. Since t11, t3, and t12 are enabled simultane-
ously atM , and the firing of t11 leads the system to a weakly
illegal marking, r3,11 = 1, r12,11 = 1. The current transition
priority matrix Pc is expressed as:

Pc =



0 ϕ ϕ · · · ϕ ϕ

ϕ 0 ϕ · · · ϕ ϕ

ϕ ϕ 0 · · · 1 ϕ
...

. . .
...

ϕ ϕ −1 · · · ϕ −1
ϕ ϕ ϕ · · · 1 0


12×12

If additional control places are imposed to the plant net
system, two control places and nine corresponding arcs are
needed. In complex systems, a priority-based monitor has
obvious advantages. It can be adjusted flexibly and does not
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TABLE 5. Part of the evolutions in the BRG oF Fig. 9.

TABLE 6. Weakly illegal markings and corresponding illegal markings.

complicate the net structure. It can ensure the maximally
permissive behavior of the system, and it is easy to implement
online control.

VIII. CONCLUSION AND FUTURE WORK
This paper addresses a control strategy based on transition
priority in labeled Petri nets. First, we show that the notions
of the BRG, deadlocks and GMECs can be used to identify
weakly illegal markings with the help of ILP. In perspec-
tive of computational and space complexity, the proposed
approach has great advantages. When token-overflow mark-
ings or deadlocks exist in an LPN, the corresponding ILP is
proposed to identify weakly illegal markings. Second, under
certain assumptions, we show that static and dynamic control
algorithms based on the transition priority matrix can be used
to prevent the system from entering illegal states. As the
proposed method does not increase control places, it does not
complicate the system structure. Our future research along
this line will focus on dispatch in an FMS and fault detection
for an LPN based on priority.
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