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ABSTRACT The focus of the interdisciplinary and scientific discipline of robotics is to design, maintain
and use mechanical robotics. There exist many issues faced by the robotic industry but there are some factors
that can cover these complexities effectively. Handling vague and imprecise data is a difficult task nowadays.
So there is a need to define such kind of effective and valuable tool that can handle complex and vague data
more dominantly. The evaluation based on distance from average solution (EDAS) method is a very useful
tool that can handle complex data more effectively. The best alternative can be chosen based on distance
from the average solution. The EDAS method is relatively simple to use and provide a quick evaluation of
alternative based on multiple criteria. Yager t-norm and t-conorm are two fuzzy logic operators proposed by
Yager. So based on the importance of Yager t-norm and t-conorm, initially, in this article, we have proposed
the basic operative laws for intuitionistic fuzzy rough numbers. Based on these developed operational laws,
we have developed some new intuitionistic fuzzy rough aggregation operators called intuitionistic fuzzy
rough Yager average (weighted, ordered weighted, hybrid) aggregation operators and intuitionistic fuzzy
rough Yager geometric (weighted, ordered weighted, hybrid) aggregation operators. Moreover, we have
proposed the EDAS technique based on intuitionistic fuzzy rough Yager aggregation operators and used
these notions for the selection of suitable factors that play a vital role in the robotic industry. Also, to show
the effective use of these introduced notions, we have proposed an algorithm for the EDAS method based
on intuitionistic fuzzy rough Yager aggregation operators along with a descriptive example. To show the
superiority of the introduced work we have developed a comparative analysis.

INDEX TERMS Intuitionistic fuzzy rough Yager aggregation operators, EDASmethod, multi-criteria group
decision making.

I. INTRODUCTION
This Robotics is the synthesis of science, engineering, and
technology that produces robots—machines that imitate or
replace humans in activity. A robot is a programmed machine
that can carry out a task, and robotics is the field of study
devoted to developing robots and automation. The level of
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autonomy varies among different robots. These levels vary
from fully autonomous robots that run on their own to robots
that work under human supervision. The Robotics indus-
try faces different challenges and these challenges include
(1) New material and Fabrication Methods (2) Creating
Bio-inspired robots (3) Better Power Sources (4) Brain-
computer interfaces etc. To cover these complexities, there
are some main factors in this regard that can cope with these
complexities. In the robotics industry, some valuable factors
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play a vital role. Some of the notable factors in this regard are
(1) Control software (2) Navigation (3) Battery technology
(4) Platform dimension (5) Payload etc.

Multi-criteria group decision-making (MCGDM) tech-
nique is an effective method that can be used for grading
the alternatives based on the evaluation of decision analysts
under different criteria. Researchers have been paying close
attention to decision-making based on multiple criteria to
choose the best option from a variety of options. Decision-
making groups have historically handled a variety of practical
issues, which are made up of multiple independent experts
in relevant fields. GDM has been used extensively including
supplier selection [1], medical treatment [2], and supply chain
risk assessment [3]. With the increasing complication of fac-
tual DM issues such as enigmatic data and human thinking
problems, accurate numerical values were no longer able to
take into account the accuracy of alternative information and
decision-makers and potentially leading to decision-making
errors. As a result, many theories have been derived for GDM
problems such as fuzzy set [4], rough set [5], and so on. These
theories can be used to handle imprecise data and extend
the traditional MCGDMmethods into joined models that can
be used for MCGDM problems. The fuzzy set (FS) was an
effective tool that generalize the classical set theory. Based
on FS, many new tools and techniques have been developed.
In 1994, Yager [6] proposed aggregation operators and fuzzy
system modeling. Additionally, Ghorabaee et al. [7] invented
a multi-criteria inventory classification system based on the
EDAS method. As, EDAS method plays a huge part in
dynamic problems, especially when more clashing criteria
exist in MCGDM. This model has been extensively used in
fuzzy set theory to solve MCGDM problems. Stevic et al. [8]
settled the estimation of suppliers under unreliability based
on the fuzzy EDAS technique. Based on FS Yang et al. [9]
initiated the characterization of the minimal solution set to
max-min fuzzy relation inequalities.This approach has been
used by Kutlu et al. [10] in the medical field and they
have applied it to the selection of hospitals. In the basic
definition of fuzzy set, we have noticed that fuzzy set only
uses membership grade (MG) but in many practical prob-
lems, we cannot restrict ourselves to MG. So, there was a
need to develop such an effective approach that can handle
MG and non-membership grade (NMG) in one structure.
Atanassov [11] initiated the idea of an intuitionistic fuzzy
set (IFS) in this regard to cover that issue. IFS is a more
general approach to solving the MCGDM problems. It pro-
vides more space for decision-makers and more complex
data to be handled through this notion. After the invention
of this notion, many aggregation operators and methods have
been developed. Mishra et al. [12] proposed a novel EDAS
process for their evaluation of the healthcare waste disposable
mechanism under the notion of IFS. Kahraman et al. [13] use
EDAS methods for the selection of solid waste disposable
site selection. Schitea et al. [14] introduced the WASPAS,
COPRAS, and EDAS techniques based on IF information

for the selection of hydrogen mobility roll-up site selection.
Moreover, based on IFS some researchers have developed
aggregation operators like IFWA and IFWG aggregation
operators can be seen from [15] and [16]. Moreover, Seikh
andMandal [17] introduced IF Dombi aggregation operators.
Also, Dong et al. [18] proposed the IF VIKOR method and
IF EDAS method. Moreover, some generalized intuitionistic
fuzzy Einstein hybrid aggregation operators are introduced by
Rahman et al. [19]. Moreover, the idea of IF hypergraphs has
been introduced by Akram et al. [20] and they have provided
their applications. Also, IF graphs of the nth type with the
application have been given by Davvas et al. [21]. Moreover,
Jiang et al. [22] proposed entropy measures based on IF soft
set and interval-valued IF soft set.

Based on IF cubic fuzzy operators an MCGDM system
has been initiated for the selection of small hydropower plant
locations given in [23]. Also, a graphical method for ranking
IFS using entropy is given by Ali et al. [24].

A rough set (RS) introduced by Pawlak is a valuable math-
ematical apparatus to handle ambiguity and complicated data.
The idea of RS has been extensively used by the researchers
like Qurashi and Shabir [25] use the idea of RS in quantale
modules. Moreover, Aslam et al. [26] initiated the notion of
rough M-hyper systems and fuzzy M-hyper systems. Also,
Shabir and Irshad [27] used roughness in ordered semigroups.
Many hybrid structures are initiated by combining the RS and
FS structures. The idea of a fuzzy rough set (FRS) [28] is
the combination of FS and RS and the intuitionistic fuzzy
rough set (IFRS) [29] is the hybrid notion for IFS and RS.
Both of these notions have been widely used in different
directions. Mahmood et al. [30] proposed generalized rough-
ness in fuzzy filters and fuzzy ideals. Also, Ali et al. [31]
established generalized roughness in fuzzy filters of semi-
groups. Based on IFRS many new ideas have been developed
like IFRWA and IFRWG aggregation operators established
in [32]. Also, IFR frank aggregation operators have been
introduced in [33]. Many other developments have been
made like Ahmmad et al. [34] proposed the notions of IFR
Aczel-Alsina aggregation operators and used these notions
in medical diagnosis. Moreover, Jia et al. [35] proposed the
MABAC approach based on IFRNs. Also, covering-based
general multi-granulation IFRSs and corresponding appli-
cations to multi-attribute group decision-making are given
by Zhang et al. [36]. Furthermore, Mahmood et al. [37]
established confidence level aggregation operators based on
IFRNs and utilized these notions in the medical field.

As IFRS is a more generalized structure and it can provide
more space to decision-makers in DM situations, we aim
to use these more effective and advanced notions. More-
over, aggregation operators are basic tools for the conversion
of complex data into a single value. So, firstly, we have
developed the basic Yager operational laws for IFRNs, and
then relying on these notions we have developed some new
aggregation operators like intuitionistic fuzzy rough Yager
arithmetic aggregation operators. Also, we have introduced
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IFR Yager geometric aggregation operators. Furthermore, the
EDAS method is an effective technique to handle complex
data and it has been used in MCGDM problems in FST.
So, based on this idea, we created EDAS methods using
IFR Yager arithmetic and geometric aggregation operators.
Also, an illustrative example that can help in the robotic
industry has been introduced to support the proposed work.
Additionally, a comparison of existing and introduced work
demonstrates the superiority of the introduced work.

Here is the remainder of the article: We reviewed the fun-
damental concepts for the FS, IFS, RS, IFRS, Yager norms,
and t-conorm in section II of this article. We have introduced
new Yager operating laws based on IFRNs in section III.
We introduced new aggregation operators, such as IFR Yager
arithmetic aggregation operators, in section IV. IFR Yager
geometric aggregation operators are covered in Section V.
The EDAS approach based on IFR Yager aggregation oper-
ators is covered in Section VI. We offered a comparative
analysis in part 7 and provided final thoughts in section VIII.
Moreover, the graphical abstract of the developed approach

is given in figure 1 to show the organization of the presented
work.

II. PRELIMINARIES
EDAS method is a very effective achievement for MCGDM
problems. In this method, the best alternatives are chosen by
using the distance from the average solution. In daily life
problems, when we are facing more ambiguous and complex
data.We are thinking to develop a method that can handle this
complex situation. So, the EDAS method can handle more
complex data effectively.

Now we will go over some fundamental definitions of FS,
RS, IFRS, Yager t-norms, and t-conorm.
Definition 1 [4]: A fuzzy set is given by

Ḟ =
{(

, g( )
)
| ∈ A

}
,where g( ) ∈ [0, 1]

where g(x) represents membership grade (MG).
Example 1: Let A = { 1, 2, 3} be universal set, then the

fuzzy set is given by membership function g : A → [0 1]
such that

Ḟ = {( 1, 0.5) , ( 2, 0.3) , ( 3, 0.4)} .

Definition 2 [11]: An intuitionistic fuzzy set is given by

Ḟ =
{(

, g( ), ( )
)
| ∈ A

}
where 0 ≤ g( ) + ( ) ≤ 1 and g( ), ( ) are MG and NMG
respectively.
Example 2: Let A = { 1, 2, 3} be universal set then

IFS is given by membership function g : A → [0 1] and
non-membership function : A → [0 1] such that

Ḟ = {( 1, 0.2, 0.3) , ( 2, 0.3, 0.4) , ( 3, 0.4, 0.5)} .

Definition 3 [5]: Let A stand for general set and ′� ⊆

A × A be any crisp relation on A. Let ′�∗ is a set-valued
map (SVMP) ′�∗

: A → P (A) described as ′�∗( ) =

FIGURE 1. Organization of proposed work.{
s ∈ A : ( , s) ∈

′ � and ∈ A
}
, then

(
A,′ �

)
is an approxi-

mation space. Now let G ⊆ A, then the lower approximation
(LRA) and upper approximations (URA) of G w.r.t

(
A,′ �

)
are described by

′� (G) =
{〈(

∈ A :
′�∗( ) ⊆ G

)〉}
′� (G) =

{〈(
∈ A :

′� ∗( ) ⊓ G ̸= ∅
)〉}

The pair
(

′� (G) , ′� (G)
)
is called a rough set (RS), where

′� (G) ̸= ′� (G). Also, ′� (G) , ′� (G) : P (A) → P (A) are
called crisp LR and UR approximation operators according to(
A,′ �

)
.

Example 3: Let A = { 1, 2, 3, 4, 5} be universal set
and

′� =

 ( 1, 2) , ( 1, 3) , ( 2, 2) ,

( 2, 4) , ( 2, 5) , ( 3, 1) ,

( 3, 2) , (4, 2) , ( 4, 3) , ( 5, 3) , ( 5, 5)

 ⊂ A×A
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TABLE 1. IF relation.

is any crisp relation on A. Now
′�∗ ( 1) = { 2, 3} , ′�∗ ( 2) = { 2, 4, 5}
′�∗ ( 3) = { 1, 2} , ′�∗ ( 4) = { 1, 2, 3}
′�∗ ( 5) = { 3, 5} .

Let G = { 1, 2, 3} ⊂ A.

Now ′� (G) = { 1, 3, 4} and ′�((G) = { 1, 2, 3, 4, 5}.
This implies that ′� (G) ̸= ′� (G). Hence the pair(

′� (G) , ′� (G)
)
is called a rough set.

Definition 4 [29]: Assume that A stands for general set
and ′� ∈ IFS (A × A) be intuitionistic fuzzy relation. Then
pair

(
′�, A

)
is called IF approximation space. Now for any

Now for any G ⊆ IFS (A), then the LRA and URA ofG w.r.t(
A, ′�

)
are given by

′� (G) =

{〈(
: g′�G

( ), ′�G
( )
)

| ∈ A
〉}

′� (G) =

{〈(
: g′�G

( ), ′�G
( )
)

| ∈ A
〉}

where g′�G
( ) = ∧c∈A[g′� ( , c) ∧ gG(c)], ′�G

( ) =

∨c∈A[ ′� ( , c) ∨ G(c)] And

g′�G
( ) = ∨c∈A[g′� ( , c) ∨gG(c)], ′�G

( )

= ∧c∈A[ ′� ( , c) ∧ G(c)]

with 0 ≤ g′�G
( )+ ′�G

( ) ≤ 1, 0 ≤ g′�G
( )+ ′�G

( ) ≤ 1.

As ′� (G) and ′� (G) are IFSs, so, ′� (G) , ′� (G) :

IFS (A) → IFS (A) are LR and UR, approximation
operators. Then pair ′� (G) =

(
′� (G) , ′� (G)

)
={

:

(
g′�G

( ), ′�G
( )
)

,
(
g′�G

( ), ′�G
( )
)

| ∈ A
}
is called

IFRS. For simplicity, ′� (G) =

(
′� (G) , ′� (G)

)
={

:

(
g′�G

( ), ′�G
( )
)

,
(
g′�G

( ), ′�G
( )
)

| ∈ A
}
can be

represented as ′� (G) =

{(
g
Ǧ
, Ǧ

)
,
(
gǦ, Ǧ

)}
known as

intuitionistic fuzzy rough numbers (IFRNs).
Example 4: Let A = { 1, 2, 3, 4} be an arbitrary set

and
(
A,′ �

)
be an IF approximation space with ′� ∈

IFS (A × A) be IF relation as given in Table 1.
Now assume that experts present the optimal decision

object G that is an IFS given by

G = {( 1, 0.3, 0.5) , ( 2, 0.4, 0.3) ,

( 3, 0.1, 0.4) , ( 4, 0.2, 0.3)} .

Now to obtain ′� (G) and ′� (G), we get

g′�G
( 1) = (0.3∧0.3) ∧ (0.1∧0.4) ∧ (0.2∧0.1) ∧ (0.1∧0.2)

= 0.1,

g′�G
( 2) = (0.2∧0.3) ∧ (0.2∧0.4) ∧ (0.3∧0.1) ∧ (0.2∧0.2)

= 0.1,

g′�G
( 3) = (0.1∧0.3) ∧ (0.3∧0.4) ∧ (0.5∧0.1) ∧ (0.1∧0.2)

= 0.1,

g′�G
( 4) = (0.2∧0.3) ∧ (0.3∧0.4) ∧ (0.2∧0.1) ∧ (0.2∧0.2)

= 0.1

And

g′�G
( 1) = (0.3∨0.3) ∨ (0.1∨0.4) ∨ (0.2∨0.1) ∨ (0.1∨0.2)

= 0.4,

g′�G
( 2) = (0.2∨0.3)∨ (0.2∨0.4) ∨ (0.3∨0.1) ∨ (0.2∨0.2)

= 0.4

g′�G
( 3) = (0.1∨0.3) ∨ (0.3∨0.4) ∨ (0.5∨0.1) ∨ (0.1∨0.2)

= 0.5

g′�G
( 4) = (0.2∨0.3) ∨ (0.3∨0.4) ∨ (0.2∨0.1) ∨ (0.2∨0.2)

= 0.4

And

′�G
( 1)= (0.4∨0.5)∨(0.4∨0.3)∨(0.5∨0.4)∨(0.6∨0.3)

= 0.6

′�G
( 2)=, (0.3∨0.5)∨(0.4∨0.3)∨(0.5∨0.4)∨(0.3∨0.3)

= 0.5

′�G
( 3) =, (0.2∨0.5)∨(0.4∨0.3)∨(0.4∨0.4)∨(0.7∨0.3)

= 0.7

′�G
( 4)= (0.3∨0.5)∨(0.5∨0.3)∨(0.4∨0.4)∨(0.5∨0.3)

= 0.5.

And

′�G
( 1) = (0.4∧0.5)∧(0.4∧0.3)∧(0.5∧0.4)∧(0.6∧0.3)

= 0.3,

′�G
( 2) = (0.3∧0.5)∧(0.4∧0.3)∧(0.5∧0.4)∧(0.3∧0.3)

= 0.3,

′�G
( 3) = (0.2∧0.5)∧(0.4∧0.3)∧(0.4∧0.4)∧(0.7∧0.3)

= 0.2,

′�G
( 4) = (0.3∧0.5)∧(0.5∧0.3)∧(0.4∧0.4)∧(0.5∧0.3)

= 0.3

Thus upper and lower IF rough approximation operators
are given by

′� (G) = {( 1, 0.4, 0.3) , ( 2, 0.4, 0.3) , ( 3, 0.5, 0.2) ,

( 4, 0.4, 0.3)}
′� (G) = {( 1, 0.1, 0.6) , ( 2, 0.1, 0.5) , ( 3, 0.1, 0.7) ,

( 4, 0.1, 0.5)}

Therefore,

′� (G)
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=

{
′� (G) , ′� (G)

}
=

(
( 1, (0.1, 0.6) , (0.4, 0.3)) , ( 2, (0.1, 0.5) , (0.4, 0.3)),
( 3, (0.1, 0.7) , (0.5, 0.2)) , ( 4, (0.1, 0.5) , (0.4, 0.3))

)
.

Definition 5 [6]: For arbitrary real numbers ð and ∂,

Yager t-norm ‘H’ and t-conorm ‘H⋆ are given as

H (ð, ∂) = 1 − min

(
1,(

(1 − ð) + (1 − ∂)
) 1) (1)

H⋆ (ð, ∂) = min

(
1,(

(ð) + (∂)
) 1) (2)

where ∈ (0, ∞).
Example 5: Let ð = 0.5 and ∂ = 0.3 and let = 2 then

H (0.5, 0.3) = 1 − min

 1,(
(1 − 0.5)2 + (1 − 0.3)2

) 1
2


= 0.0100

And

H⋆ (0.5, 0.3) = min

 1,(
(1 − 0.5)2 + (1 − 0.3)2

) 1
2


= 0.5830.

Definition 6 [32]: Let Ḟ =

{(
g
Ḟ
, Ḟ

)
,
(
gḞ, Ḟ

)}
be an

IFRN then the score and accuracy function are given by

Sc
(
Ḟ
)

=
1
4

(
2 + g

Ḟ
+ gḞ − Ḟ − Ḟ

)
, S

(
Ḟ
)

∈ [0, 1]

Ac
(
Ḟ
)

=
1
4

(
2 + g

Ḟ
+ gḞ + Ḟ + Ḟ

)
, A

(
Ḟ
)

∈ [0, 1] .

Example 6: Let Ḟ = {(0.2, 0.3) , (0.5, 0.4)} be an IFRN
then the score and accuracy function are given by

Sc
(
Ḟ
)

= =
1
4

(2 + 0.2 + 0.5 − 0.3 − 0.4) = 0.5

Ac
(
Ḟ
)

=
1
4

(2 + 0.2 + 0.5 + 0.3 + 0.4) = 0.85.

Definition 7 [32]: For two IFRNs, Ḟ1 =

{(
g
Ḟ1

, Ḟ1

)
,(

gḞ1 , Ḟ1

)}
and Ḟ2 =

{(
g
Ḟ2

, Ḟ2

)
,
(
gḞ2 , Ḟ2

)}
we get

1) If S
(
Ḟ1
)

> S
(
Ḟ2
)
then Ḟ1 > Ḟ2,

2) If S
(
Ḟ1
)

< S
(
Ḟ2
)
then Ḟ1 < Ḟ2,

3) If S
(
Ḟ1
)

= S
(
Ḟ2
)
then

i. If A
(
Ḟ1
)

> A
(
Ḟ2
)
then Ḟ1 > Ḟ2,

ii. If A
(
Ḟ1
)

< A
(
Ḟ2
)
then Ḟ1 < Ḟ2,

iii. If A
(
Ḟ1
)

= A
(
Ḟ2
)
then Ḟ1 = Ḟ2.

III. YAGER OPERATIONAL LAWS FOR INTUITIONISTIC
FUZZY ROUGH NUMBERS
In this section based on Yager t-norm and t-conorm, we have
established the basic Yager operational laws based on IFR
numbers.

Definition 8: For two IFRNs, Ḟ1=
{(

g
Ḟ1

, Ḟ1

)
,
(
gḞ1 , Ḟ1

)}
and Ḟ2 =

{(
g
Ḟ2

, Ḟ2

)
,
(
gḞ2 , Ḟ2

)}
, > 0 and ~f > 0,

then Yager t-norm and t-conorm operations for IFRNs can
be defined as

1. Ḟ1 ⊕ Ḟ2 =


min

(
1,
((

g
Ḟ1

)
+

(
g
Ḟ2

) ) 1)
,

1 − min

(
1,
((

1 − Ḟ1

)
+

(
1 − Ḟ2

) ) 1)
,


min

(
1,
((

gḞ1

)
+

(
gḞ2

) ) 1)
,

1 − min

(
1,
((

1 − Ḟ1

)
+

(
1 − Ḟ2

) ) 1)




,

2. Ḟ1 ⊗ Ḟ2 =

1 − min

(
1,
((

1 − g
Ḟ1

)
+

(
1 − g

Ḟ2

) ) 1)
,(

min

(
1,
((

Ḟ1

)
+

(
Ḟ2

) ) 1))
,

1 − min

(
1,
((

1 − gḞ1

)
+

(
1 − gḞ2

) ) 1)
,(

min

(
1,
((

Ḟ1

)
+

(
Ḟ2

) ) 1))



,

3. ~fḞ1 =


min

(
1,
((

~fg
Ḟ1

) ) 1)
,

1 − min

(
1,
(
~f
(
1 − Ḟ1

) ) 1)
 ,


min

(
1,
((

~fgḞ1

) ) 1)
,

1 − min

(
1,
(
~f
(
1 − Ḟ1

) ) 1)




,

4. Ḟ~f1 = 

1 − min

(
1,
(
~f
(
1 − g

Ḟ1

) ) 1)
,(

min

(
1,
((

~f Ḟ1

) ) 1))
,

1 − min

(
1,
(
~f
(
1 − gḞ1

) ) 1)
,(

min

(
1,
((

~f Ḟ1

) ) 1))



.
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Example 7: Let Ḟ = {(0.3, 0.1) , (0.4, 0.3)} , Ḟ1 =

{(0.6, 0.3) , (0.2, 0.7)} and Ḟ2 = {(0.1, 0.8) , (0.4, 0.4)} be
three IFRSs and = 4 and ~f = 2, then we get
1) Ḟ1 ⊕ Ḟ2 =

 min
(
1,
(
(0.6)3 + (0.1)3

) 1
3

)
,

1 − min
(
1,
(
(1 − 0.2)3 + (1 − 0.8)3

) 1
3

)
 ,

 min
(
1,
(
(0.2)3 + (0.4)3

) 1
3

)
,

1 − min
(
1,
(
(1 − 0.7)3 + (1 − 0.4)3

) 1
3

)



;

= ((0.6001, 0.2988) , (0.4061, 0.3908))

2) Ḟ1 ⊗ Ḟ2 =

1 − min
(
1,
(
(1 − 0.6)3 + (1 − 0.1)3

) 1
3

)
,(

min
(
1,
(
(0.2)3 + (0.8)3

) 1
3

))
,

1 − min
(
1,
(
(1 − 0.2)3 + (1 − 0.4)3

) 1
3

)
,(

min
(
1,
(
(0.7)3 + (0.4)3

) 1
3

))


;

= ((0.0913, 0.8039) , (0.1430, 0.7179))

3)

2Ḟ1 =



 min
(
1,
(
2(0.6)3

) 1
3

)
,

1 − min
(
1,
(
2(1 − 0.2)3

) 1
3

)
 ,

 min
(
1,
(
2(0.2)3

) 1
3

)
,

1 − min
(
1,
(
2(1 − 0.7)3

) 1
3

)



;

= ((0.7135, 0.1675) , (0.2378, 0.6432))

4)

Ḟ21 =



1 − min
(
1,
(
2(1 − 0.6)3

) 1
3

)
,(

min
(
1,
(
2(0.3)3

) 1
3

))
,

1 − min
(
1,
(
2(1 − 0.2)3

) 1
3

)
,(

min
(
1,
(
2(0.7)3

) 1
3

))


= ((0.5243, 0.3567) , (0.04863, 0.8324)) .

Theorem 1: For three IFRNs Ḟ =

{(
g
Ḟ
, Ḟ

)
,
(
gḞ1 , Ḟ1

)}
,

Ḟ1 =

{(
g
Ḟ1

, Ḟ1

)
,
(
gḞ1 , Ḟ1

)}
and Ḟ2 =

{(
g
Ḟ2

, Ḟ2

)
,(

gḞ2 , Ḟ2

)}
, we get

1) Ḟ1 ⊕ Ḟ2 = Ḟ2 ⊕ Ḟ1

2) Ḟ1 ⊗ Ḟ2 = Ḟ2 ⊗ Ḟ1
3) ~f

(
Ḟ1 ⊕ Ḟ2

)
= ~f

(
Ḟ1
)
⊕ ~f

(
Ḟ2
)

4) (~f1 + ~f2) Ḟ = ~f1Ḟ ⊕ ~f2Ḟ
5)
(
Ḟ1 ⊗ Ḟ2

)~f
= Ḟ~f1 ⊗ Ḟ~f2 for ~f > 0

6) Ḟ~f1 ⊗ Ḟ~f2 = Ḟ(~f1+~f2) for ~f1, ~f2 > 0.

Proof: For three IFRNs Ḟ, Ḟ1, Ḟ2 and ~f, ~f1, ~f2 > 0. Then
by using definition (8), we get
1) Ḟ1 ⊕ Ḟ2

=




min

(
1,
((

g
Ḟ1

)
+

(
g
Ḟ2

) ) 1)
,

1 − min

(
1,
((

1 − Ḟ1

)
+

(
1 − Ḟ2

) ) 1)
 ,


min

(
1,
((

gḞ1

)
+

(
gḞ2

) ) 1)
,

1 − min

(
1,
((

1 − Ḟ1

)
+

(
1 − Ḟ2

) ) 1)




=




min

(
1,
((

g
Ḟ2

)
+

(
g
Ḟ1

) ) 1)
,

1 − min

(
1,
((

1 − Ḟ2

)
+

(
1 − Ḟ1

) ) 1)
 ,


min

(
1,
((

gḞ2

)
+

(
gḞ1

) ) 1)
,

1 − min

(
1,
((

1 − Ḟ2

)
+

(
1 − Ḟ1

) ) 1)



= Ḟ2 ⊕ Ḟ1.

2) Ḟ1 ⊗ Ḟ2

=



1 − min

(
1,
((

1 − g
Ḟ1

)
+

(
1 − g

Ḟ2

) ) 1)
,(

min

(
1,
((

Ḟ1

)
+

(
Ḟ2

) ) 1))
,

1 − min

(
1,
((

1 − gḞ1

)
+

(
1 − gḞ2

) ) 1)
,(

min

(
1,
((

Ḟ1

)
+

(
Ḟ2

) ) 1))



=



1 − min

(
1,
((

1 − g
Ḟ2

)
+

(
1 − g

Ḟ1

) ) 1)
,(

min

(
1,
((

Ḟ2

)
+

(
Ḟ1

) ) 1))
,

1 − min

(
1,
((

1 − gḞ2

)
+

(
1 − gḞ1

) ) 1)
,(

min

(
1,
((

Ḟ2

)
+

(
Ḟ1

) ) 1))


= Ḟ2 ⊗ Ḟ1.
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3) ~f(Ḟ1 ⊕ Ḟ2)

= ~f




min

(
1,
((

g
Ḟ1

)
+

(
g
Ḟ2

) ) 1)
,

1 − min

(
1,
((

1 − Ḟ1

)
+

(
1 − Ḟ2

) ) 1)
 ,


min

(
1,
((

gḞ1

)
+

(
gḞ2

) ) 1)
,

1 − min

(
1,
((

1 − Ḟ1

)
+

(
1 − Ḟ2

) ) 1)




=




min

(
1,
(
~f
(
g
Ḟ1

)
+ ~f

(
g
Ḟ2

) ) 1)
,

1 − min

(
1,
(
~f
(
1 − Ḟ1

)
+ ~f

(
1 − Ḟ2

) ) 1)
 ,


min

(
1,
(
~f
(
gḞ1

)
+ ~f

(
gḞ2

) ) 1)
,

1 − min

(
1,
(
~f
(
1 − Ḟ1

)
+ ~f

(
1 − Ḟ2

) ) 1)



~f
(
Ḟ1
)
⊕ ~f

(
Ḟ2
)

=




min

(
1,
((

~fg
Ḟ1

) ) 1)
,

1 − min

(
1,
(
~f
(
1 − Ḟ1

) ) 1)
 ,


min

(
1,
((

~fgḞ1

) ) 1)
,

1 − min

(
1,
(
~f
(
1 − Ḟ1

) ) 1)




⊕




min

(
1,
((

~fg
Ḟ2

) ) 1)
,

1 − min

(
1,
(
~f
(
1 − Ḟ2

) ) 1)
 ,


min

(
1,
((

~fgḞ2

) ) 1)
,

1 − min

(
1,
(
~f
(
1 − Ḟ2

) ) 1)




=




min

(
1,
(
~f
(
g
Ḟ1

)
+ ~f

(
g
Ḟ2

) ) 1)
,

1 − min

(
1,
(
~f
(
1 − Ḟ1

)
+ ~f

(
1 − Ḟ2

) ) 1)
 ,


min

(
1,
(
~f
(
gḞ1

)
+ ~f

(
gḞ2

) ) 1)
,

1 − min

(
1,
(
~f
(
1 − Ḟ1

)
+ ~f

(
1 − Ḟ2

) ) 1)




Hence ~f(Ḟ1 ⊕ Ḟ2) = ~f
(
Ḟ1
)
⊕ ~f

(
Ḟ2
)
.

4) ~f1Ḟ ⊕ ~f2Ḟ

=




min

(
1,
(
~f1
(
g
Ḟ

) ) 1)
,

1 − min
(
1,
(
~f1
(
1 − Ḟ

) ) 1)
 ,


min

(
1,
(
~f1
(
gḞ
) ) 1)

,

1 − min

(
1,
(
~f1
(
1 − Ḟ

) ) 1)




⊕




min

(
1,
(
~f2
(
g
Ḟ

) ) 1)
,

1 − min
(
1,
(
~f2
(
1 − Ḟ

) ) 1)
 ,


min

(
1,
(
~f2
(
gḞ
) ) 1)

,

1 − min

(
1,
(
~f2
(
1 − Ḟ

) ) 1)




=




min

(
1,
(
(~f1 + ~f2)

(
g
Ḟ

) ) 1)
,

1 − min
(
1,
(
(~f1 + ~f2)

(
1 − Ḟ

) ) 1)
 ,


min

(
1,
(
(~f1 + ~f2)

(
gḞ
) ) 1)

,

1 − min

(
1,
(

(~f1 + ~f2)
(
1 − Ḟ

) ) 1)



= (~f1 + ~f2) Ḟ.

Properties 5) and 6) are similar. So, we omit their proofs.

IV. INTUITIONISTIC FUZZY YAGER AGGREGATION
OPERATORS
In this section, we aim to develop some aggregation operators
like IFRYWA, IFRYOWA, and IFRYHA operators.

A. INTUITIONISTIC FUZZY ROUGH YAGER WEIGHTED
ARITHMETIC OPERATOR
As IFRYWA aggregation operators weigh the IFR values so
based on this observation, in this subsection, we aim to dis-
cuss the basic definition of IFRYWA operators and discover
their properties.
Definition 9: For the family of IFRNs Ḟi =

{(
g
Ḟi

, Ḟi

)
,(

gḞi
, Ḟi

)}
(i = 1, 2, . . . ,m) . Then IFR Yager weighted

arithmetic (IFRYWA) operator is defined by a mapping
F :Gm→ G such that

IFRYWAθ

(
Ḟ1, Ḟ2, Ḟ3, . . . , Ḟm

)
= ⊕

m
i=1

(
θiḞi

)
where θ = (θ1, θ2, θ3, . . . , θm)T is the weight vector (WV)
of Ḟi with condition that

∑m
i=1 θi = 1 and θi > 0.
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Theorem 2: Let Ḟi =

{(
g
Ḟi

, Ḟi

)
,
(
gḞi

, Ḟi

)}
(i =

1, 2, . . . ,m) be the family of IFRNs. Then aggregated result
obtained from the IFRYWA operator is again IFRN given by

IFRYWAθ

(
Ḟ1, Ḟ2, Ḟ3, . . . , Ḟm

)
= ⊕

m
i=1

(
θiḞi

)

=




min

(
1,
(∑m

i=1

(
θi

(
g
Ḟi

) )) 1)
,

1 − min

(
1,
(∑m

i=1

(
θi

(
1 − Ḟi

) )) 1)
 ,


min

(
1,
(∑m

i=1

(
θi

(
gḞi

) )) 1)
,

1 − min

(
1,
(∑m

i=1

(
θi

(
1 − Ḟi

) )) 1)



(3)

Proof: We employ the mathematical induction proce-
dure to prove this result

Step 1: When m = 2, As

θ1Ḟ1 =




min

(
1,
(

θ1

(
g
Ḟ1

) ) 1)
,

1 − min

(
1,
(

θ1

(
1 − Ḟ1

) ) 1)
 ,


min

(
1,
(

θ1

(
gḞ1

) ) 1)
,

1 − min

(
1,
(

θ1

(
1 − Ḟ1

) ) 1)



and

θ2Ḟ2 =




min

(
1,
(

θ2

(
g
Ḟ2

) ) 1)
,

1 − min

(
1,
(

θ2

(
1 − Ḟ2

) ) 1)
 ,


min

(
1,
(

θ2

(
gḞ2

) ) 1)
,

1 − min

(
1,
(

θ2

(
1 − Ḟ2

) ) 1)




;

Therefore, we get

θ1Ḟ1 ⊕ θ2Ḟ2

=




min

(
1,
((

θ1gḞ1

) ) 1)
,

1 − min

(
1,
(

θ1

(
1 − Ḟ1

) ) 1)
 ,


min

(
1,
((

θ1gḞ1

) ) 1)
,

1 − min

(
1,
(

θ1

(
1 − Ḟ1

) ) 1)




⊕




min

(
1,
((

θ2gḞ2

) ) 1)
,

1 − min

(
1,
(

θ2

(
1 − Ḟ2

) ) 1)
 ,


min

(
1,
((

θ2gḞ2

) ) 1)
,

1 − min

(
1,
(

θ2

(
1 − Ḟ2

) ) 1)




=




min

(
1,
(
θ1

(
g
Ḟ1

)
+ θ2

(
g
Ḟ2

)) 1)
,

1 − min

(
1,
(
θ1

(
1 − Ḟ1

)
+ θ2

(
1 − Ḟ2

)) 1)
 ,


min

(
1,
(
θ1

(
gḞ1

)
+ θ2

(
gḞ2

)) 1)
,

1 − min

(
1,
(
θ1

(
1 − Ḟ1

)
+ θ 2

(
1 − Ḟ2

)) 1)




=




min

(
1,
(∑2

i=1

(
θi

(
g
Ḟi

) )) 1)
,

1 − min

(
1,
(∑2

i=1

(
θi

(
1 − Ḟi

) )) 1)
 ,


min

(
1,
(∑2

i=1

(
θi

(
gḞi

) )) 1)
,

1 − min

(
1,
(∑2

i=1

(
θi

(
1 − Ḟi

) )) 1)



Step 2: Suppose equation (3) is true for m = k that is

IFRYWAθ

(
Ḟ1, Ḟ2, Ḟ3, . . . , Ḟm

)

=




min

(
1,
(∑k

i=1

(
θi

(
g
Ḟi

) )) 1)
,

1 − min

(
1,
(∑k

i=1

(
θi

(
1 − Ḟi

) )) 1)
 ,


min

(
1,
(∑k

i=1

(
θi

(
gḞi

) )) 1)
,

1 − min

(
1,
(∑k

i=1

(
θi

(
1 − Ḟi

) )) 1)



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Now for m = k + 1, we get

IFRYWAθ

(
Ḟ1, Ḟ2, Ḟ3, . . . , Ḟk , Ḟk+1

)

=




min

(
1,
(∑k

i=1

(
θi

(
g
Ḟi

) )) 1)
,

1 − min

(
1,
(∑k

i=1

(
θi

(
1 − Ḟi

) )) 1)
 ,


min

(
1,
(∑k

i=1

(
θi

(
gḞi

) )) 1)
,

1 − min

(
1,
(∑k

i=1

(
θi

(
1 − Ḟi

) )) 1)




⊕




min

(
1,
(

θk+1

(
g
Ḟk+1

) ) 1)
,

1 − min

(
1,
(

θk+1

(
1 − Ḟk+1

) ) 1)
 ,


min

(
1,
((

θk+1

(
gḞk+1

) )) 1)
,

1 − min

(
1,
((

θk+1

(
1 − Ḟk+1

) )) 1)




=




min

(
1,
(∑k+1

i=1

(
θi

(
g
Ḟi

) )) 1)
,

1 − min

(
1,
(∑k+1

i=1

(
θi

(
1 − Ḟi

) )) 1)
 ,


min

(
1,
(∑k+1

i=1

(
θi

(
gḞi

) )) 1)
,

1 − min

(
1,
(∑k+1

i=1

(
θi

(
1 − Ḟi

) )) 1)



Hence equation (3) is true for m = k + 1. So the result is

valid for all m.

Example 8: Let Ḟ1 = {(0.4, 0.5) , (0.3, 0.4)} , Ḟ2 =

{(0.6, 0.2) , (0.4, 0.2)} , Ḟ3 = {(0.6, 0.3) , (0.5, 0.3)} and
Ḟ4 = {(0.3, 0.5) , (0.2, 0.7)} be four IFRNs and = 4. Also,
θ = (0.31, 0.14, 0.34, 0.21)T. Now we use equation 3 to get
the aggregated result as follows

IFRYWAθ

(
Ḟ1, Ḟ2, Ḟ3, Ḟ4

)

=




min

(
1,
(∑4

i=1

(
θi

(
g
Ḟi

) )) 1)
,

1 − min

(
1,
(∑4

i=1

(
θi

(
1 − Ḟi

) )) 1)
 ,


min

(
1,
(∑4

i=1

(
θi

(
gḞi

) )) 1)
,

1 − min

(
1,
(∑4

i=1

(
θi

(
1 − Ḟi

) )) 1)




=





min

(
1,
((

0.31×(0.4)4 + 0.14×(0.6)4

+0.34×(0.6)4 + 0.21×(0.3)4

))1)
,

1 − min

1,


0.31×(1 − 0.5)4

+0.14×(1 − 0.2)4

+0.34×(1 − 0.3)4

+0.21×(1 − 0.5)4


1
4



,



min

1,




0.31×(0.3)4

+0.14×(0.4)4

+0.34×(0.5)4

+0.21×(0.2)4



1 ,

1 − min

1,


0.31×(1 − 0.4)4

+0.14×(1 − 0.2)4

+0.34×(1 − 0.3)4

+0.21×(1 − 0.7)4


1
4





= ((0.5177, 0.3564) , (0.4078, 0.3478)) .

Theorem 3 (Idempotency): If Ḟi = Ḟ for all i where
(i = 1, 2, 3, . . . ,m) , then

IFRYWA
(
Ḟ1, Ḟ2, Ḟ3, . . . , Ḟi

)
= Ḟ.

Proof: As Ḟi =

{(
g
Ḟi

, Ḟi

)
,
(
gḞi

, Ḟi

)}
= Ḟ ={(

g
Ḟ
, Ḟ

)
,
(
gḞ, Ḟ

)}
for all (i = 1, 2, 3, . . . ,m) . Then by

using equation (3), we get

IFRYWAθ

(
Ḟ1, Ḟ2, Ḟ3, . . . , Ḟm

)

=




min

(
1,
(∑m

i=1

(
θi

(
g
Ḟi

) )) 1)
,

1 − min

(
1,
(∑m

i=1

(
θi

(
1 − Ḟi

) )) 1)
 ,


min

(
1,
(∑m

i=1

(
θi

(
gḞi

) )) 1)
,

1 − min

(
1,
(∑m

i=1

(
θi

(
1 − Ḟi

) )) 1)




=




min

(
1,
((

g
Ḟ

) ) 1)
,

1 − min
(
1,
((
1 − Ḟ

) ) 1)
 ,


min

(
1,
((
gḞ
) ) 1)

,

1 − min

(
1,
((

1 − Ḟ

) ) 1)



=


(
min

(
1,
(
g
Ḟ

))
, 1 − min

(
1,
(
1 − Ḟ

)))
,(

min
(
1,
(
gḞ
))

, 1 − min
(
1,
(
1 − Ḟ

))) 
=

{(
g
Ḟ
, Ḟ

)
,
(
gḞ, Ḟ

)}
= Ḟ

Theorem 4 (Boundedness): Suppose Ḟi =

{(
g
Ḟi

, Ḟi

)
,(

gḞi
, Ḟi

)}
(i = 1, 2, . . . ,m) be the family of IFRNs
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and let Ḟ−
= min

(
Ḟ1, Ḟ2, Ḟ3, . . . , Ḟm

)
and Ḟ+

=

max
(
Ḟ1, Ḟ2, Ḟ3, . . . , Ḟm

)
. Then

Ḟ−
≤ IFRYWAθ

(
Ḟ1, Ḟ2, Ḟ3, . . . , Ḟm

)
≤ Ḟ+.

Proof: As Ḟ−
= min

(
Ḟ1, Ḟ2, Ḟ3, . . . , Ḟm

)
={(

g−

Ḟ
, −

Ḟ

)
,

(
g−

Ḟ,
−
Ḟ

)}
and Ḟ+

= max(Ḟ1, Ḟ2,

Ḟ3, . . . , Ḟm) =

{(
g+

Ḟ
, +

Ḟ

)
,

(
g+

Ḟ,
+
Ḟ

)}
, where

g−

Ḟ
= min

(
g
Ḟi

)
, g−

Ḟ = min
(
gḞi

)
and −

Ḟ =

max
(

Ḟi

)
, −

Ḟ = max
(

Ḟi

)
. Also, g+

Ḟ
= max

(
g
Ḟi

)
,

g+
Ḟ = max

(
gḞi

)
and +

Ḟ = min
(

Ḟi

)
, +

Ḟ =

min
(

Ḟi

)
. So, inequalities for lower values of MG are

min

(
1,
(∑m

i=1

(
θi

(
g−

Ḟ

) )) 1)

≤ min

(
1,
(∑m

i=1

(
θi

(
gḞi

) )) 1)

≤ min

(
1,
(∑m

i=1

(
θi

(
g+

Ḟ

) )) 1)
and

min

(
1,
(∑m

i=1

(
θi

(
g−

Ḟ

) )) 1)

≤ min

(
1,
(∑m

i=1

(
θi

(
gḞi

) )) 1)

≤ min

(
1,
(∑m

i=1

(
θi

(
g+

Ḟ

) )) 1)
Similarly, for lower values of NMG, we get

1 − min
(
1,
(∑m

i=1

(
θi

(
1 −

+

Ḟ

) )) 1)
≤ 1 − min

(
1,
(∑m

i=1

(
θi

(
1 − Ḟi

) )) 1)

≤ 1 − min
(
1,
(∑m

i=1

(
θi

(
1 −

−

Ḟ

) )) 1)
And

1 − min

1,

(∑m

i=1

(
θi

(
1 −

+
Ḟ

) )) 1
≤ 1 − min

(
1,
(∑m

i=1

(
θi

(
1 − Ḟi

) )) 1)

≤ 1 − min

1,

(∑m

i=1

(
θi

(
1 −

−
Ḟ

) )) 1 .

Therefore

Ḟ−
≤ IFRYWA

(
Ḟ1, Ḟ2, Ḟ3, . . . , Ḟm

)
≤ Ḟ+.

Theorem 5 (Monotonicity): Suppose Ḟ∗

i =
{
Ḟ∗

1, Ḟ
∗

2, Ḟ
∗

3, . . . ,

Ḟ∗
m
}
and Ḟi =

{
Ḟ1, Ḟ2, Ḟ3, . . . , Ḟm

}
be the two families

IFRNs. If g∗

Ḟ∗

i

≤ g
Ḟi

, g∗
Ḟ∗

i
≤ g∗

Ḟi
and ∗

Ḟ∗

i
≥ Ḟi

, ∗
Ḟ∗

i
≥

∗
Ḟi
for all i, then

IFRYWA
(
Ḟ∗

1, Ḟ
∗

2, Ḟ
∗

3, . . . , Ḟ
∗
m
)

≤ IFRYWA
(
Ḟ1, Ḟ2, Ḟ3, . . . , Ḟm

)
.

Proof: As g∗

Ḟ∗

i

≤ g
Ḟi
then

(∑m

i=1

(
θi

(
g∗

Ḟ∗

i

) )) 1

≤

(∑m

i=1

(
θi

(
g
Ḟi

) )) 1

min

1,

(∑m

i=1

(
θi

(
g∗

Ḟ∗

i

) )) 1
≤ min

(
1,
(∑m

i=1

(
θi

(
g
Ḟi

) )) 1)
,

Similarly(∑m

i=1

(
θi

(
g∗

Ḟ∗

i

) )) 1

≤

(∑m

i=1

(
θi

(
gḞi

) )) 1

min

(
1,
(∑m

i=1

(
θi

(
g∗

Ḟ∗

i

) )) 1)

≤ min

(
1,
(∑m

i=1

(
θi

(
gḞi

) )) 1)
As

∗

Ḟ∗

i
≥ Ḟi

1 − min

(
1,
(∑m

i=1

(
θi

(
1 −

∗

Ḟ∗

i

) )) 1)

≥ 1 − min

(
1,
(∑m

i=1

(
θi

(
1 − Ḟi

) )) 1)
Similarly

1 − min

(
1,
(∑m

i=1

(
θi

(
1 −

∗
Ḟ∗

i

) )) 1)
≥ 1

− min

(
1,
(∑m

i=1

(
θi

(
1 − Ḟi

) )) 1)
.

From the above inequalities, we can conclude that

IFRYWA
(
Ḟ∗

1, Ḟ
∗

2, Ḟ
∗

3, . . . , Ḟ
∗
m
)

≤ IFRYWA
(
Ḟ1, Ḟ2, Ḟ3, . . . , Ḟm

)
.
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Theorem 6 (Reducibility): For the family of IFRNs Ḟi ={(
g
Ḟi

, Ḟi

)
,
(
gḞi

, Ḟi

)}
(i = 1, 2, . . . ,m) and for θ =

(θ1, θ2, θ3, . . . , θm)T =

(
1
m , 1

m , 1
m , . . . , 1

m

)T
is the WV of Ḟi.

Then

IFRYWAθ

(
Ḟ1, Ḟ2, Ḟ3, . . . , Ḟm

)

=




min

(
1,

1
m

(∑m

i=1

((
g
Ḟi

) )) 1)
,

1 − min

(
1,

1
m

(∑m

i=1

((
1 − Ḟi

) )) 1)
 ,


min

(
1,

1
m

(∑m

i=1

((
gḞi

) )) 1)
,

1 − min

(
1,

1
m

(∑m

i=1

((
1 − Ḟi

) )) 1)




.

Proof: Straightforward
Theorem 7 (Commutativity): Consider the family Ḟi ={(
g
Ḟi

, Ḟi

)
,
(
gḞi

, Ḟi

)}
(i = 1, 2, . . . ,m) of IFRNs. If Ḟ∗

i is

the permutation of Ḟi then

IFRYWAθ

(
Ḟ1, Ḟ2, Ḟ3, . . . , Ḟm

)
= IFRYWAθ

(
Ḟ∗

1, Ḟ
∗

2, Ḟ
∗

3, . . . , Ḟ
∗
m
)
.

Proof: Straightforward

B. INTUITIONISTIC FUZZY ROUGH YAGER ORDERED
WEIGHTED ARITHMETIC OPERATORS
As IFRYWAaggregation operators onlyweigh the IFR values
and it does not weigh the ordered position, so to cover this
issue, here in this subsection, we have to elaborate on the
notion of IFRYOWA operators.
Definition 10: For the family of IFRNs Ḟi =

{(
g
Ḟi

, Ḟi

)
,(

gḞi
, Ḟi

)}
(i = 1, 2, . . . ,m) . Then IFR Yager ordered

weighted arithmetic (IFRYOWA) operator is defined by a
mapping F :Gm→ G such that

IFRYOWAθ

(
Ḟ1, Ḟ2, Ḟ3, . . . , Ḟm

)
= ⊕

m
i=1

(
θiḞ∝(i)

)
where θ = (θ1, θ2, θ3, . . . , θm)T is WV of Ḟi with condition
that

∑m
i=1 θi = 1 and θi > 0 and (∝(1), ∝(2), ∝(3), . . . ,∝(m))

is the permutation of (i = 1, 2, 3, . . . ,m) such that Ḟ∝(i−1) ≥

Ḟ∝(i) for all i = 1, 2, 3, . . . ,m.

Theorem 8: Let Ḟi =

{(
g
Ḟi

, Ḟi

)
,
(
gḞi

, Ḟi

)}
(i =

1, 2, . . . ,m) be the family of IFRNs with θ = (θ1, θ2, θ3, . . . ,
θm)T is WV of Ḟi with condition that

∑m
i=1 θi = 1. Then

aggregated result obtained from the IFRYOWA operator is
again IFRN given by

IFRYOWAθ

(
Ḟ1, Ḟ2, Ḟ3, . . . , Ḟm

)
= ⊕

m
i=1

(
θiḞ∝(i)

)

=




min

(
1,
(∑m

i=1

(
θi

(
g
Ḟ∝(i)

) )) 1)
,

1 − min

(
1,
(∑m

i=1

(
θi

(
1 − Ḟ∝(i)

) )) 1)
 ,


min

(
1,
(∑m

i=1

(
θi

(
gḞ∝(i)

) )) 1)
,

1 − min

(
1,
(∑m

i=1

(
θi

(
1 − Ḟ∝(i)

) )) 1)



(4)

Example 9: Let Ḟ1 = {(0.3, 0.2) , (0.1, 0.8)} , Ḟ2 =

{(0.5, 0.4) , (0.2, 0.6)} , Ḟ3 = {(0.6, 0.2) , (0.7, 0.1)} and
Ḟ4 = {(0.2, 0.4) , (0.3, 0.6)} be four IFRNs and = 4. Also,
θ = (0.20, 0.22, 0.34, 0.24)T.

Note that

S
(
Ḟ1
)

=
1
4

(2 + 0.3 + 0.1 − 0.2 − 0.8) = 0.35

S
(
Ḟ2
)

=
1
4

(2 + 0.5 + 0.2 − 0.4 − 0.6) = 0.425

S
(
Ḟ3
)

=
1
4

(2 + 0.6 + 0.7 − 0.2 − 0.1) = 0.75

S
(
Ḟ4
)

=
1
4

(2 + 0.2 + 0.3 − 0.4 − 0.6) = 0.375

It means that S
(
Ḟ3
)

> S
(
Ḟ2
)

> S
(
Ḟ4
)

> S
(
Ḟ1
)
, therefore

Ḟ∝(1) = Ḟ1 = {(0.6, 0.2) , (0.7, 0.1)} ,

Ḟ∝(2) = Ḟ2 = {(0.5, 0.4) , (0.2, 0.6)} ,

Ḟ∝(3) = Ḟ3 = {(0.2, 0.4) , (0.3, 0.6)} ,

Ḟ∝(4) = Ḟ4 = {(0.3, 0.2) , (0.1, 0.8)}

Nowwe use equation 4 to get the aggregated result as follows

IFRYWAθ

(
Ḟ1, Ḟ2, Ḟ3, Ḟ4

)

=




min

(
1,
(∑4

i=1

(
θi

(
g
Ḟ∝(i)

) )) 1)
,

1 − min

(
1,
(∑4

i=1

(
θi

(
1 − Ḟ∝(i)

) )) 1)
 ,


min

(
1,
(∑4

i=1

(
θi

(
gḞ∝(i)

) )) 1)
,

1 − min

(
1,
(∑4

i=1

(
θi

(
1 − Ḟ∝(i)

) )) 1)



= ((0.4531, 0.2909) , (0.4755, 0.3819)) .

Remark 1: Intuitionistic fuzzy rough Yager-ordered
weighted arithmetic operators satisfy all properties given in
theorems 3, 4, 5, 6, and 7.

C. INTUITIONISTIC FUZZY ROUGH YAGER HYBRID
WEIGHTED ARITHEMATIC OPERATOR
From definitions 9 and 10, it is clear that IFRYWA aggre-
gation operators only weights the IFR values and IFRYOWA
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aggregation operators weigh the ordered position of IFR val-
ues, but to discuss both characteristics in one frame, in this
subsection, we aim is to define the notion for IFRYHWA
operators.
Definition 11: For the family of IFRNs Ḟi =

{(
g
Ḟi

, Ḟi

)
,(

gḞi
, Ḟi

)}
(i = 1, 2, . . . ,m) . Then IFR Yager hybrid

weighted arithmetic (IFRYHWA) operator is defined by a
mapping F : Gm→ G such that

IFRYHWAθ

(
Ḟ1, Ḟ2, Ḟ3, . . . , Ḟm

)
= ⊕

m
i=1

(
θi

ˇ̇F∝(i)

)

=




min

(
1,
(∑m

i=1

(
θi

(
ǧ
Ḟ∝(i)

) )) 1)
,

1 − min

(
1,
(∑m

i=1

(
θi

(
1 − ˇ

Ḟ∝(i)

) )) 1)
 ,


min

(
1,
(∑m

i=1

(
θi

(
ǧḞ∝(i)

) )) 1)
,

1 − min

1,

(∑m

i=1

(
θi

(
1 − ˇ

Ḟ∝(i)

) )) 1




(5)

where θ = (θ1, θ2, θ3, . . . , θm)T is WV of Ḟi with condition
that

∑m
i=1 θi = 1 and θi > 0 and ˇ̇F∝(i) is the ith biggest

weighted IFR values ˇ̇Fi

(
ˇ̇Fi = mθiḞi i = 1, 2, 3, . . . ,m

)
and

m is the balancing coefficient.

Remark 2: For θ =

(
1
m , 1

m , 1
m , . . . , 1

m

)T
, IFRYWA and

IFRYOWA operators are special cases for IFRYHWA opera-
tors. Thus IFRYHWA operator is the more generalized oper-
ator.

V. INTUITIONISTIC FUZZY ROUGH YAGER WEIGHTED
GEOMETRIC AGGREGATION OPERATORS
As IFRYWG aggregation operators weigh the IFR values so
based on this observation, we aim to discuss the basic defini-
tion of IFRYWG operators and discover their properties.
Definition 12: For the family of IFRNs Ḟi =

{(
g
Ḟi

, Ḟi

)
,(

gḞi
, Ḟi

)}
(i = 1, 2, . . . ,m) . Then IFRYWG operators are

defined by a mapping F :Gm→ G such that

IFRYWGθ

(
Ḟ1, Ḟ2, Ḟ3, . . . , Ḟm

)
= ⊗

m
i=1

(
Ḟθi

i

)
where θ = (θ1, θ2, θ3, . . . , θm)T is the WVs of Ḟi with
condition that

∑m
i=1 θi = 1 and θi > 0.

Theorem 9: Let Ḟi =

{(
g
Ḟi

, Ḟi

)
,
(
gḞi

, Ḟi

)}
(i =

1, 2, . . . ,m) be the family of IFRNs. Then the result obtained
from the IFRYWG operator is again IFRN given by

IFRYWGθ

(
Ḟ1, Ḟ2, Ḟ3, . . . , Ḟm

)
= ⊗

m
i=1

(
Ḟθi

i

)

=



1 − min

(
1,
(∑m

i=1

(
θi

(
1 − g

Ḟi

) )) 1)
,(

min

(
1,
(∑m

i=1

(
θi

(
Ḟi

) )) 1))
,

1 − min

(
1,
(∑m

i=1

(
θi

(
1 − gḞi

) )) 1)
,(

min

(
1,
(∑m

i=1

(
θi

(
Ḟi

) )) 1))



(6)

Example 10: Consider the data of example 8 and theorem
9 we get

IFRYWGθ

(
Ḟ1, Ḟ2, Ḟ3, . . . , Ḟm

)

=



1 − min

(
1,
(∑4

i=1

(
θi

(
1 − g

Ḟi

) )) 1)
,(

min

(
1,
(∑4

i=1

(
θi

(
Ḟi

) )) 1))
,

1 − min

(
1,
(∑4

i=1

(
θi

(
1 − gḞi

) )) 1)
,(

min

(
1,
(∑4

i=1

(
θi

(
Ḟi

) )) 1))



=





1 − min

1,


0.31 × (1 − 0.4)4

+0.14 × (1 − 0.6)4

+0.34 × (1 − 0.6)4

+0.21 × (1 − 0.3)4


1
4
 ,

min

1,




0.31 × (0.5)4

+0.14 × (0.2)4

+0.34 × (0.3)4

+0.21 × (0.5)4




1


,



1 − min

1,


0.31 × (1 − 0.3)4

+0.14 × (1 − 0.4)4

+0.34 × (1 − 0.5)4

+0.21 × (1 − 0.2)4


1
4
 ,

min

1,




0.31 × (0.4)4

+0.14 × (0.2)4

+0.34 × (0.3)4

+0.21 × (0.7)4




1




= ((0.4336, 0.4340) , (0.3313, 0.4976)) .

Remark 3: IFRYWG operators satisfy all properties given
in theorem 3, 4, 5, 6, and 7.

Now we propose the basic definition for IFRYOWG oper-
ator.
Definition 13: For the family of IFRNs Ḟi =

{(
g
Ḟi

, Ḟi

)
,(

gḞi
, Ḟi

)}
(i = 1, 2, . . . ,m) . Then IFRYOWG operators

are defined by a mapping F :Gm→ G such that

IFRYOWGθ

(
Ḟ1, Ḟ2, Ḟ3, . . . , Ḟm

)
= ⊗

m
i=1

(
Ḟ∝(i)

)θi
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where θ = (θ1, θ2, θ3, . . . , θm)T is WV of Ḟi with
condition that

∑m
i=1 θi = 1 and θi > 0 and

(∝(1), ∝(2), ∝(3), . . . ,∝(m)) is the permutation of (i =

1, 2, 3, . . . ,m) such that Ḟ∝(i−1) ≥ Ḟ∝(i) for all i =

1, 2, 3, . . . ,m.

As IFRYWG aggregation operators only weigh the IFR
values and it does not weigh the ordered position, to cover
this issue, in the next theorem, we have to elaborate on the
notion of IFRYOWG operators.
Theorem 10: Let Ḟi =

{(
g
Ḟi

, Ḟi

)
,
(
gḞi

, Ḟi

)}
(i =

1, 2, . . . ,m) be the family of IFRNs with θ = (θ1, θ2, θ3, . . . ,
θm)T is WV of Ḟi with condition that

∑m
i=1 θi = 1. Then

aggregated result obtained from the IFRYOWG operator is
again IFRN given by

IFRYOWGθ

(
Ḟ1, Ḟ2, Ḟ3, . . . , Ḟm

)
= ⊗

m
i=1

(
θiḞ∝(i)

)

=




1 − min

(
1,
(∑m

i=1

(
θi

(
1 − Ḟ∝(i)

) )) 1)
,

min

(
1,
(∑m

i=1

(
θi

(
g
Ḟ∝(i)

) )) 1)
 ,


1 − min

(
1,
(∑m

i=1

(
θi

(
1 − Ḟ∝(i)

) )) 1)
,

min

(
1,
(∑m

i=1

(
θi

(
gḞ∝(i)

) )) 1)



(7)

Proof: Similar to Theorem 2.
Example 11: Using the data of example 9 and theorem 10,

we get

IFRYOWGθ

(
Ḟ1, Ḟ2, Ḟ3, . . . , Ḟm

)
= ⊗

m
i=1

(
θiḞ∝(i)

)

=




1 − min

(
1,
(∑4

i=1

(
θi

(
1 − Ḟ∝(i)

) )) 1)
,

min

(
1,
(∑4

i=1

(
θi

(
g
Ḟ∝(i)

) )) 1)
 ,


1 − min

(
1,
(∑4

i=1

(
θi

(
1 − Ḟ∝(i)

) )) 1)
,

min

(
1,
(∑4

i=1

(
θi

(
gḞ∝(i)

) )) 1)



= ((0.3184, 0.3501) , (0.2415, 0.6429)) .

Remark 4: IFRYOWG operators satisfy all properties
given in theorem 3, 4, 5, 6, and 7.

From definitions 12 and 13, it is clear that IFRYWG aggre-
gation operators only weights the IFR values and IFRYOWG
aggregation operators weights the ordered position, but to
discuss both characteristics in one frame, we aim is to define
the notion for IFRYHWG operators.

Definition 14: For the family of IFRNs Ḟi =

{(
g
Ḟi

, Ḟi

)
,(

gḞi
, Ḟi

)}
(i = 1, 2, . . . ,m) . Then IFRYHWG operators

are defined by a mapping F :Gm→ G such that

IFRYHWGθ

(
Ḟ1, Ḟ2, Ḟ3, . . . , Ḟm

)
= ⊗

m
i=1

(
ˇ̇F∝(i)

)θi

=




1 − min

(
1,
(∑m

i=1

(
θi

(
1 − ˇ

Ḟ∝(i)

) )) 1)
,

min

(
1,
(∑m

i=1

(
θi

(
ǧ
Ḟ∝(i)

) )) 1)
 ,


1 − min

1,

(∑m

i=1

(
θi

(
1 − ˇ

Ḟ∝(i)

) )) 1 ,

min

(
1,
(∑m

i=1

(
θi

(
ǧḞ∝(i)

) )) 1)



(8)

where θ = (θ1, θ2, θ3, . . . , θm)T is WV of Ḟi with condition
that

∑m
i=1 θ i = 1 and θ i > 0 and ˇ̇F∝(i) is the ith biggest

weighted IFR values ˇ̇Fi

(
ˇ̇Fi = mθ iḞii = 1, 2, 3, . . . ,m

)
and

m is the balancing coefficient.

VI. EDAS METHOD BASED ON INTUITIONISTIC FUZZY
ROUGH YAGER AGGREGATION OPERATORS
In this section based on the proposed approach, we will dis-
cuss the EDAS method. The EDAS method was established
by Ghorabaeee et al. [7].

Suppose {b1,b2,b3, . . . ,bm} be set of ′m′ alternatives
and {d1,d2,d3, . . . ,dn} denote the set of ′n′ attributes.
Also, suppose

{
ð1, ð2, ð3, . . . , ðh

}
be the set of h experts

for each alternative bi (i = 1, 2, 3, . . . ,m) against attributes
dj (j = 1, 2, 3, . . . , n) . Let θ = (θ1, θ2, θ3, . . . , θn)

T be the
WVs for attributes dj and L =

(
L1, L2, L3, . . . ,Lh

)T be
theWVs for decision-makers ðl (l = 1, 2, 3, . . . , h) such that∑n

j=1 θj = 1 and
∑h

l=1 Lj = 1. Now algorithm for the EDAS
method based on initiated work is given by

Step 1: Collect the assessment values given by experts ðl
for each alternative bi against attributes dj in the form of a
matrix

M = Ḟlij =

[(
g
Ḟij

, Ḟij

)
,
(
gḞij

, Ḟij

)]
m×n

where Ḟlij represent IFRNs for each alternative bi against
attributesdj.

Step 2: Utilize the suggested method to aggregate the
collective decision matrix and obtain the aggregated decision
matrix as

M = Ḟij =

[(
g
Ḟij

, Ḟij

)
,
(
gḞij

, Ḟij

)]
m×n

Step 3: Normalize the aggregated matrix by using the
formula given below
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Normalized the information given in step 1 by using the
formula given below

Mn
= Ḟnij =



Ḟij =

{(
g
Ḟij

, Ḟij

)
,
(
gḞij

, Ḟij

)}
;

For benefit type attributes(
Ḟij
)c

=

{(
Ḟij

, g
Ḟij

)
,
(

Ḟij
, gḞij

)}
;

For cost type attributes

where
(
Ḟij
)c

is the complement of Ḟij =

(
g
Ḟij

, Ḟij

)
,(

gḞij
, Ḟij

)
.

Step 4:Calculate the values of Avs by using the established
approach for all alternatives under each attribute

Avs = [Avs]1×n =

[
1
m

∑m

i=1
Ḟnij

]
1×n

Avs = [Avs]1×n =

[
1
m

∑m

i=1
Ḟnij

]
1×n

=




min

(
1,
(∑m

i=1

(
1
m

(
g
Ḟi

n
) ))1)

,

1 − min

(
1,
(∑m

i=1

(
1
m

(
1 − Ḟi

n
) ))1)

,


min

(
1,
(∑m

i=1

(
1
m

(
g
n
Ḟi

) ))1)
,

1 − min

(
1,
(∑m

i=1

(
1
m

(
1 −

n

Ḟi

) ))1)



Step 5: Based on obtained Avs obtained from step 4,

wewill calculatePDAS andNDAS by using the formula given
below

PDASij =
[
PDASij

]
m×n =

max
(
0, S

(
Ḟnij
)

− S
(
Avsj

))
S
(
Avsj

)
NDASij =

[
NDASij

]
m×n =

max
(
0, S

(
Avsj

)
− S

(
Ḟnij
))

S
(
Avsj

)
Step 6: Calculate the positive weight distance (SPi) and

negative weight distance SNi by

SPi =

∑n

j=1
θjPDASij, SNi =

∑n

j=1
θjNDASij

Step 7: Normalize SPi and SNi by using formula

NSPi =
SPi

maxi (SPi)
, NSNi = 1 −

SNi
maxi (SNi)

Step 8: Based on NSPi and NSNi determine the score
values by utilizing the formula

ASi =
1
2

(NSPi + NSNi)

Step 9: Rank all values based on ASi and choose the best
result.

A. ILLUSTRATIVE EXAMPLE
To guarantee a successful robotics project in the robotic
industry, you need to develop a strong specification, regard-
less of whether you are new to the robotics process or have a
team of professionals on staff. You and your robotics designer
will be better able to select the appropriate platform and
technological update if you consider the fundamental robot
requirements and capabilities. There are many challenges
to decide the best factor in robotics projects. The robotics
industry faces many issues. These challenges include (1)
better power sources (2) Navigation unmapped environment
(3) Brain-computer interfaces (4) Social robots for long-term
engagement (5) Ethics etc.

Here we have four main factors that play a vital role in any
robot industry and try to cope with all the challenges faced by
any robot project.

1) PLATFORM DIMENSION
Your robot must have a small enough footprint to fit in the
area where you plan to utilize it. The size and weight of all
the hardware mounted on your robot are determined by the
platform’s dimensions and construction.

2) PAYLOAD
Your robotics project’s payload is an important component.
Other elements are impacted by the amount of weight that
your platform must support. Speed, size, and platform weight
are all strongly connected to the payload as well. Make sure
your robotics integrator is aware of your speed and payload
needs.

3) BATTERY TECHNOLOGY
The majority of robotics solutions provide lead-acid or
lithium-ion batteries. Based on aspects including safety,
environmental impact, capacity, charge time, efficiency,
size/weight, and longer life cycle, lithium-ion is regarded as
the most cutting-edge technology for transportation systems.
Advanced sensors and lithium-ion batteries enable even more
efficient energy use and longer battery life.

4) CONTROL SOFTWARE
You could require access to the primary software of your
robotics platform depending on the application of your
project and the level of customization you intend to perform.
The software may be open source or proprietary, depending
on the platform.Make sure to choose an open-source solution
or an integrator with a robotics expert who has access to the
proprietary software if you need access to the program.
Example 12: Assume that we have four main factors for

any robot project and we are going to select the best factor
that plays the main role in any robotic project. Let these four
factors be given by

b1 = Platform dimension
b2 = Payload
b3 = Battery Technology
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TABLE 2. IFR data given by ð1.

TABLE 3. IFR data given by ð2.

b4 = Control Software
To assess these factors there are three experts {ð1, ð2,

ð3}(ði = 1, 2, 3) under WVs L = {0.38, 0.28, 0.34}T.
Suppose the experts assess these four factors that play their
role in any robotic projects under the five attributes as {d1 =

Intelligence d2 = Sence perception,d3 = Power, d4 =

Independence, d5 = Functionality}. Suppose the WVs for
attributes are θ = {0.20, 0.18, 0.24, 0.22, 0.16}T. Now we
use the stepwise algorithm for EDAS techniques as given
below

Step 1: Collect the information proposed by each expert in
the form IFRNs given in Tables 2-4.
Step 2: A collective decision matrix given by experts

against their WVs is aggregated by the proposed IFRYWA
operator to get the aggregated decisions matrix as given in
Table 5.
Step 3: As all criteria are of benefit type so no need to

normalize this matrix.
Step 4:Calculate the values of Avs by using the established

approach for all alternatives under each attribute and the
results are given in Table 6.

Step 5:Based on obtainedAvs obtained from step 4, we can
find the score value for each Avsi (i = 1, 2, . . . , 5) and then
calculate PDAS and NDAS given in Table 7-8.

S (Avs1) = 0.5230, S (Avs2) = 0.5426,

TABLE 4. IFR data given by ð3.

TABLE 5. Collective aggregated decision matrix by using IFRYWA
operator.

TABLE 6. The value of the average solution Avs.

TABLE 7. The evaluation of PDASij .

S (Avs3) = 0.5087, S (Avs4) = 0.4984,

S (Avs5) = 0.4999

Step 6: Calculate the positive weight distance (SPi) and
negative weight distance SNi by

SPi =

∑n

j=1
θjPDASij, SNi =

∑n

j=1
θjNDASij

as given in Table 9.
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TABLE 8. The evaluation of NDASij .

TABLE 9. Values of SPi and SNi .

TABLE 10. Values of NSPi and N SNi .

TABLE 11. Ranking order for proposed approaches.

Step 7: Normalize SPi and SNi by using formula

NSPi =
SPi

maxi (SPi)
, NSNi = 1 −

SNi
maxi (SNi)

as given in Table 10.
Step 8:Based onNSPi and NSNi calculate the score values

by using the formula

ASi =
1
2

(NSPi + NSNi)

AS1 = 0.2731,AS2 = 0.3366,

TABLE 12. Comparative study.

AS3 = 0.7150,AS4 = 0.7895.

Step 9: As AS4 > AS3 > AS2 > AS1. So, the experts
should select b4 as the best factor that is valuable in any
robotics project.

Now in Table 11, we present the ranking orders of other
proposed aggregation operators like IFRYOWA operators,
IFRYWG operators, and IFRYOWG operators.

VII. COMPARATIVE ANALYSIS
In this part, we will discuss the comparative assessment of the
introduced work. For this, we will take the data from Table 6
andWVs θ = {0.20, 0.18, 0.24, 0.22, 0.16}T. The results are
listed in Table 12. From the analysis of Table 12, we can say
the IF VIKOR method [18] method, IF EDAS method [32],
and some aggregation operators based on IF data selected
from [15], [16], and [17] are inaccessible to cover the data
given in Table 12. Because all these theories are based on
IFNs while the initiated approach is based on intuitionistic
fuzzy rough numbers. It means that all existing theories fail
due to a lack of rough information. Themain reason is that the
developed theory is based on intuitionistic fuzzy rough num-
bers that consist of upper and lower approximation operators,
while the existing theories cannot discuss the information that
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consists of upper and lower approximation operators. That’s
why all the prevailing theories cannot handle the data given
in Table 12. On the other hand, all proposed work can handle
the rough data. We can observe that established work can
provide more space for decision-makers and it can cover the
deficiency of rough information.

VIII. CONCLUSION
These days we have to deal with ambiguous and complex
data. In MCGDM, we can process the multiple criteria in
all areas of DM for valuable results. In fuzzy set theory,
IFS and RS are effective tools to handle complex data.
EDAS method is one of the efficient and fruitful meth-
ods to handle DM problems that depend upon PDAS and
NDAS from Avs. The superior value of PDAS and inferior of
NDAS is considered the optimal choice. We have started with
IFR operative laws based on Yager t-norms and t-conorm.
To use these operational laws we have introduced intuitionis-
tic fuzzy rough Yager weighted athematic aggregation oper-
ators like IFRYWA and IFRYOWA aggregation operators.
Also, we have established IFRYWG and IFRYOWG opera-
tors. Moreover, the properties of these operatives have been
elaborated on in detail. To study the combined structure
of the EDAS method with IFR Yager aggregation opera-
tors, in the application section, we have developed EDAS
methods based on IFRY aggregation operators. An illus-
trative example shows the effective use of these notions
in MCGDM problems. Also, a comparative analysis of the
introduction work shows the effectiveness of established
notions.

These notions are also limited because if someone
comes up with Pythagorean fuzzy rough information like
{(0.5, 0.6) , (0.4, 0.7)} , then the developed notion cannot
handle this data because the necessary condition for the intu-
itionistic fuzzy rough set is violated which is 0.5 + 0.6 /∈

[0, 1] and 0.4 + 0.7 /∈ [0, 1] . So the basic condition is
violated and IFRS failed to cover that data. So proposed
notions are also limited.

Some new theories can be examined like similarities mea-
sures based on these notions as given in [38]. Additionally,
as stated in [39], this technique can be exactly generalized to
a stronger structure. The given approach can be extended to
m-polar fuzzy soft rough set [40], IF N-soft rough set [41],
and some new decision-making algorithms can be developed
as given in [42]. Moreover, we can define some new aggrega-
tion operators like interactive Hamacher power aggregation
operators as given in [43]. We can also define the TOP-
SIS method and COPRAS method based on the developed
approach as given in [44] and [45].
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