
Received 19 February 2023, accepted 16 April 2023, date of publication 2 May 2023, date of current version 16 May 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3272503

Ask Your Data—Supporting Data Science
Processes by Combining AutoML and
Conversational Interfaces
SARA PIDÓ 1, PIETRO PINOLI 1, PIETRO CROVARI1, FRANCESCA IEVA2,3,
FRANCA GARZOTTO 1, AND STEFANO CERI 1, (Member, IEEE)
1Department of Electronics, Information and Bioengineering, Politecnico di Milano, 20133 Milan, Italy
2Department of Mathematics, Politecnico di Milano, 20133 Milan, Italy
3Center for Health Data Science, Human Technopole, 20157 Milan, Italy

Corresponding author: Pietro Pinoli (Pietro.Pinoli@polimi.it)

ABSTRACT Data Science is increasingly applied for solving real-life problems, in industry and in academic
research, but mastering Data Science requires an interdisciplinary education that is still scarce on the market.
Thus, there is a growing need for user-friendly tools that allow domain experts to directly apply data analysis
methods to their datasets, without involving a Data Science expert. In this scenario, we present DSBot,
an assistant that can analyze the user data and produce answers bymastering several Data Science techniques.
DSBot understands the research question with the help of conversation interaction, produces a data science
pipeline and automatically executes the pipeline in order to generate analysis. The strength of DSBot lies
in the design of a rich domain specific language for modeling data analysis pipelines, the use of a suitable
neural network for machine translation of research questions, the availability of a vast dictionary of pipelines
for matching the translation output, and the use of natural language technology provided by a conversational
agent. We empirically evaluated the translation capabilities and the autoML performances of the system. In
the translation task, it obtains a BLEU score of 0.8. In prediction tasks, DSBot outperforms TPOT, an autoML
tool, in 19 datasets out of 30.

INDEX TERMS Automated machine learning, data science, human–computer interaction, intelligent
systems, natural language understanding, pipeline optimization, python.

I. INTRODUCTION
Data Science, situated at the intersection between computer
science and statistics, has recently emerged as a new disci-
pline, providing methods that are suitable to explore research
questions for arbitrary application domains. In the indus-
trial setting, companies exploit data to optimize processes,
predict revenues, and prevent failures by planning predic-
tive maintenance interventions [1]. In research, scientists use
data to validate or formulate novel hypotheses and support
decision-making [2]. The process of data democratization
amplifies these advantages: more and more data repositories

The associate editor coordinating the review of this manuscript and

approving it for publication was Michele Magno .

are published online to be freely used by researchers all over
the world [3].

Still, leveraging the increasing availability of data requires
advanced capability in data management and modeling,
statistics, machine learning, and programming. As a result,
Data Science so far is not fully accessible for domain experts,
whomay lack strong technical skills and computational back-
ground. Data Science tasks are often challenging also for both
novice and experienced data scientists. Every dataset is dif-
ferent and requires a tailored sequence of operations to extract
useful knowledge [4]. Researchers may adopt a non-optimal
analysis pipeline or struggle with unappropriated tools or
methods, often obtaining inaccurate if not erroneous results.
They may spend a lot of time in implementing preliminary
data analysis pipelines for the sole objective of exploring the

45972
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 11, 2023

https://orcid.org/0000-0003-1425-1719
https://orcid.org/0000-0001-9786-2851
https://orcid.org/0000-0003-4905-7166
https://orcid.org/0000-0003-0671-2415
https://orcid.org/0000-0003-0368-8923

S. Pidó et al.: Ask Your Data—Supporting Data Science Processes by Combining AutoML and Conversational Interfaces

characteristics of datasets, before delving into more sophisti-
cated analyses.

To mitigate these difficulties, in our previous work -
focused on computational genomics - we designed and imple-
mented GeCoAgent [5], a conversational agent to empower
biologists with limited computational skills. GeCoAgent is a
web application that comes with a large integrated warehouse
of more than 200,000 genomic experiments. The user can
interact with a conversational agent to explore these informa-
tion and to progressively request the data she is interested to.
A user study, involving Ph.D. candidates in biology, biochem-
istry, and computational biology, showed that even users with
limited computational background can succeed in performing
data science tasks using GecoAgent, far beyond what they
could have achieved by using Python or R. Capitalizing on the
experience of this past research, we have developed DSBot,
an interactive machine learning tool that combines Natu-
ral Language Processing, conversational technologies, and
AutoML techniques. The objective of DSBot is to translate
a research question, expressed in natural language, into an
executable data science pipeline on any dataset. Our system
is based on four design principles that extend and improve
GeCoAgent in several directions:

• DSBot is domain-independent: it is decoupled from any
data repository and operates on any tabular dataset,
enabling the user to upload their own data. As such,
DSBot can be exploited for any arbitrary Data Sci-
ence application. In contrast, GeCoAgent is domain-
dependent: it operates on its own genomic data ware-
house only, and its analysis capability is specialized for
this specific content;

• DSBot requires even lower knowledge on data science
methods than GeCoAgent, and enables any domain
experts to perform complex data analysis tasks on their
own data.

• GeCoAgent requires the user to provide a procedural
specification of the data analysis pipeline, i.e. the user
must progressively specify the operational steps needed
to perform the desired analysis. In DSBot, the user
expresses their research question in a declarative way,
i.e., describing the analysis goals and not the operations
or algorithms needed to build the desired results. For
example the user can ask ‘‘What factors influence most
the price of a house?’’ rather than specify how to obtain
the results, e.g., ‘‘Encode categorical variables, apply
a scaler, train a linear regression model and return the
features with the highest absolute value of the associated
coefficient’’. DSBot automatically translates a user’s
declarative requirements into an operational pipeline,
choosing the best algorithms and parameters to optimize
the results.

• From a conversational design perspective, in GeCoA-
gent the conversation is driven only by the user’s choices
selected among a set of pre-defined options provided
at each step by the conversational agent. In DSBot, the
conversation is generated by taking into account both

the user’s explicit choices and the dataset properties.
The conversational agent interacts with the researcher
proactively and in a participatory way, both during the
elicitation of data analysis requirements and during the
progression of the pipeline execution. For example,
some portions of the dialogue are devoted to check with
the user if the agent has understood the user’s inten-
tions correctly. In addition, DSBot involves the user in
the salient decision points where knowledge about the
semantics of the uploaded data and human’s explicit
choices are needed. For example it askswhich features to
select (‘‘Please list the features you want to consider’’)
or how to deal with missing or noisy data (‘‘Should
out-of-range values be removed because most likely a
measurement error, or should they be considered as
acceptable?’’).

DSBot is an end-to-end system, able to assist the user in the
whole data analysis process from beginning (research ques-
tion declaration) to end (analysis results reporting). Once
users have uploaded their dataset and expressed their data
analysis need (‘‘research question’’), the system analyzes the
data and takes care of pre-processing operations, for example,
by transforming categorical variable with one-hot-encoding
representation for clustering analysis, or normalizing quanti-
tative variables, or addressing missing value issues. Once all
the necessary information has been collected from the user
and from the data, DSBot exploits a custom-made Automatic
Machine Learning (AutoML) algorithm to select the best
algorithm and tune its (hyper)parameters. In the end, DSBot
returns graphs and tables that summarize the analysis results
and are integrated with comments in natural language.

We tested DSBot on 100 ‘‘research questions’’ to assess its
capability to translate user’s information needs into correct
operational pipelines. We also evaluated the execution time
and outcomes of the analyses performed by DSBot over
30 datasets of different nature, and compared them with
the ones obtained using TPOT, a well-established AutoML
tool [6]. Our results show that our system achieves compara-
ble performances (in terms of accuracy and root mean square
error) with a significantly shorter execution time.

The innovation presented in this article is concerned with
not only the delivery of a new domain independent tool to
assist inexperienced users in performing data science analy-
ses, but also a novel approach that combines Large Language
Models, Conversational Technology, andAutoML techniques
in a sophisticated unique way. Large Language Model tech-
niques are used to translate the user’s research questions,
expressed in a declarative way, into operational specifica-
tions, i.e., the operations and algorithms that compose the
data analysis pipeline. Conversation Technology is exploited
to engage users into a dialogue devoted to validate with
them the correctness of the operational pipeline w.r.t. their
needs, using concepts and terminology that can be understood
by people with low data science knowledge. Conversational
Technology is also exploited during the execution of the

VOLUME 11, 2023 45973

S. Pidó et al.: Ask Your Data—Supporting Data Science Processes by Combining AutoML and Conversational Interfaces

pipeline when it is necessary to collect further information
from the user. AutoML techniques are used to select the
‘optimal’ ML algorithm by: i) executing multiple ML algo-
rithms on subsets of the dataset uploaded by the user; ii)
automatically selecting the best one along with the values of
its (hyper)parameters; iii) running the selected algorithm on
the full dataset.

II. STATE OF THE ART
A. AUTOMATIC CODE GENERATION
Coding is a cognitively expensive task [7] in which program-
mers must first learn the programming language and then
translate their ideas in the language learnt [8], [9]. A vast
amount of research has tried to develop interfaces that trans-
late natural language directly into executable code.

Today, Automatic Code Generation tools vary a lot in
their functioning, accepted input, and programming language
produced. Authors in [10] propose a taxonomy for classifying
these applications, according to the input type – a high-level
description of the task to be executed or a detailed description
of all the commands to be programmed – and output to be
produced – whether executable code, code snippets, or a
representation in an intermediate language.

From the technological perspective, we can cluster Auto-
matic Code Generation tools into three main groups. The
first one includes simple instruments driven by grammars,
matching natural language patterns and translating them into
executable code [11]. The second one includes more complex
systems, using probabilistic or combinatorial grammars to
enrich the set of user sentences accepted [12], [13], or exploit-
ing natural language processing techniques to understand
users’ requests and extract useful information for the genera-
tion of the code [14], [15]. A third most recent group exploits
machine learning techniques to automatically generate exe-
cutable programs. In particular, Neural Networks are widely
used for this purpose, together with large corpus of training
data [16], [17], [18].

B. AutoML
AutomatedMachine Learning (AutoML) is a branch of artifi-
cial intelligence that aims at automatizing the entire machine
learning process [19]. Two categories of users benefit from
AutoML: data scientists, who can concentrate their focus
in models optimization and interpretation, and non-machine
learning experts, who have an easier access to machine learn-
ing methods [19]. Three widely used AutoML systems are
Auto-WEKA, Auto-Sklearn, and TPOT.

Auto-WEKA [20] automatically selects the best algorithm
and configuration between the ones offered by Weka plat-
form. The choice is done by transforming the problem of
choosing algorithm and parameters into a bayesian optimiza-
tion problem. Auto-WEKA is agnostic from the optimization
technique: it can operate either by choosing the algorithm and
its hyperparameters consequentially, or simultaneously.

Auto-Sklearn [21] is an AutoML library that operates on
scikit-learn. It improves its performances thanks to additional
steps in the optimization pipeline, a meta-learning phase at
the beginning of the process to warm-start the bayesian opti-
mizer, and an ensemble construction mechanism that com-
bines models evaluated during the optimization.

TPOT [6], exploits genetic programming as optimization
engine. Machine Learning pipelines are represented as tree
structures on which the genetic algorithm is executes. Every
pipeline is evaluated, and the top performing ones are used to
create the next generation of pipelines.

While automation and efficiency are among AutoML’s
primary features, the process still needs human intervention at
a number of critical phases, such as identifying the relevant
features of domain-specific data or picking the appropriate
machine learning problem [22].

C. INTERACTIVE MACHINE LEARNING
With the advances in ML and Data Science, we have wit-
nessed an increasing interest in improving Data Science tools
in order to reduce the effort of expert data scientists and
to facilitate advanced data analysis for non-experts, promot-
ing accessibility to and adoption of Data Science solutions.
In [23] and [24], the authors highlight the need for ML
methods and tools that are more interactive and better inte-
grated with the human expertise and needs, complement-
ing and enhancing the work of domain experts, particularly
in situations where providing fully automated functionality
is computationally very demanding. In the current state of
the art, a number of interactive ML platforms exists that we
can categorize according to the degree of freedom they leave
to users.

The simplest platforms support the execution of a single
machine learning task, typically classification. Users must
only upload data with some additional information (such as
the label variable, in the case of supervised learning) and the
software automatically performs the analysis and builds the
model. In [25], the author proposes a web interface to create
a multi-label image classifier built on TensorFlowJS [26].
Uploading the image files in different folders for every label,
the system produces a Convolutional Neural Network and
produces two files, one containing the architecture of the
network, the other its weights. Teachable Machine is a plat-
form provided by Google to create images and audio clas-
sifiers [27]. Users upload samples and through the click of a
single button and the platform trains a classification algorithm
to solve the given problem. Then, users can export the model
as a snippet of JavaScript code to be employed in any project.
Iyer et al. propose Trinity, a web interface to analyze spa-
tial data [4], automatically creating binary and multi-classes
classificators. Data are pre-processed and prepared for CNN-
based learning, and visualizations are returned to users. If the
output of model is satisfactory, Trinity offers a workflow to
put it into production.

45974 VOLUME 11, 2023

S. Pidó et al.: Ask Your Data—Supporting Data Science Processes by Combining AutoML and Conversational Interfaces

Other tools sacrifice the complete automation of the pro-
cess and let users choose the best performing algorithm
by confronting the solutions proposed by the platform. For
example, Model LineUpper combines visualizations and
Explainable AI techniques to interactively compare AutoML
solutions [28]. Distilling the results of an empirical evaluation
of the system, the authors elicit a set of guidelines useful for
the design of platform for comparing Data Science models.
All the guidelines focus on the importance of the freedom
offered to the user in adjusting models and the transparency
of the operations, such that users can understand precisely
what the system did automatically.

Other systems help users to identify the appropriate oper-
ations for the analysis they want to perform. For example,
Snowcat [29] automatically proposes a set of research prob-
lems to answer through the data to be analyzed. Based on the
user’s problem choice, it trains a set of models and provides
an interactive dashboard to explore them. Users also have the
possibility of downloading the generated models for further
analysis.

In AutoDS [30], once data workers have uploaded their
dataset, the system automatically suggests ML config-
urations, preprocesses data, selects algorithms, performs
model training, and then presents the resulting pipeline on
web-based graphical user interface and a notebook-based
Python programming interface. The paper reports an empiri-
cal controlled study which explored AutoDS with 30 profes-
sional data scientists; one group used AutoDS, and the other
did not, to complete an assigned data science project. The
results showed that AutoDS improved productivity, and the
models produced by the AutoDS group had higher quality
and less errors. Still, the human confidence on the final model
was lower in the AutoDS group. Lack of total control on
the system is considered to be the predominant cause of this
skepticism. In addition, 43% of participants declared that they
trusted AutoDS (i.e., they were confident in the system and
considered it reliable (13% did not, and 43% were neutral).
Lastly, 50%of participants did not believe that AutoDSwould
replace human data scientists (only 10% had this belief, with
the rest remaining neutral.)

In [31], the authors developed a visual method to compare
multiple classifiers considering model performance, feature
space, and model explanation. ModelWise adapts visualiza-
tions with rich interactions to support multiple workflows to
achieve a model diagnosis, improvement, and selection.

Many tools concentrate on offering users a set of instru-
ments they can use for their analysis, at the cost of requiring
users to have a good understanding about the methodologies
they want to use. For example, TwoRavens is an interface
to operate on data publicly available on Dataverse reposito-
ries [3], [32]. Through a graph-basedUI, users can explore the
data they selected and choose the statistical method to analyze
them.

Pyrus, is an online modelling environment developed for
authoring data science pipelines through a graphical inter-
face [33]. It is designed around the principle of separation of

concerns: data scientists can implement block units that per-
form data science operations in a dedicated interface, while
domain experts can use a block interface to create pipelines
with the units implemented in the system. Still, to use this
platform users must having a basic understanding of data
science to better compose their pipelines.

Some studies explore the use of conversational tech-
nologies during the data science process. Ava [34] works
on a structured process: the conversation predicates on a
pre-defined process in which the conversation asks users the
desired operations and parameters. Yet effective, this choice
constraint users to use only the modules that fit in the process
model. Iris [35], instead, acts as a conversational wrapper
for data science operators that allow users to compose their
pipelines in freedom. Yet, users must know the modules and
their functionalities; the conversational layer does not offer
support in composing the operations.

In summary, interactive machine learning is an emerging
and prolific field of research. At the same time, our literature
review shows that users must have good expertise in order
to fully trust the results produced by these platforms [30],
[36]. With our work, we aim at filling this gap, providing a
tool that does not require advanced Data Science knowledge,
leaves users freedom to perform analysis driven by research
questions, and provides enough information and explanation
for enhancing the user’s trust in the results.

III. METHODS
Data Science is an extremely broad topic, encompassing a
wide set of research questions and possible analyses, some of
which requires ad-hoc solutions; DSBot operates on a well
defined subset of tasks (and therefore analyses) and under
a number of constraints. The input to DSBot is limited to a
single table, where each sample, i.e., row of the table, is a
tuple of features, each one independent from the others. Any
spreadsheet or result of DBMS query can be used. Sorting and
relationships between rows of the dataset (such as time series)
are not represented, and therefore the methods that exploit
these properties cannot be applied. The dataset can have any
number of features, but at most one target. Moreover, the type
of data of both feature and target columns are limited to real
numbers and categories, thus excluding multidimensional or
complex information such as images, audio tracks or text;
such complex data require domain specific pre-processing
and feature engineering, that are beyond the scope of DSBot.

A. OVERVIEW OF THE SYSTEM
We present an overview of the DSBot mechanism used to
build and execute data analysis pipelines. In order to complete
an analysis task, DSBot goes through several stages; some of
them require interactions with the user, while other phases are
fully automatized. The whole process is illustrated in Figure 1
and comprises the following eight main steps:

1) The user uploads the dataset and specifies the target
column;

VOLUME 11, 2023 45975

S. Pidó et al.: Ask Your Data—Supporting Data Science Processes by Combining AutoML and Conversational Interfaces

FIGURE 1. Conceptual architecture of the system.

2) The system runs a set of standard analyses on the
dataset to infer descriptive characteristics, such as data
types or the presence of missing values;

3) The user formulates a research question as a natural
language sentence;

4) The system applies a machine translator to translate the
natural language question in a Data Analysis Workflow
(DAW) pipeline;

5) A conversational agent engages the user in a dialogue
to ensure that the produced DAW sentence corresponds
to the user expectations; in this step, DSBot may also
use the dialogue to elicit other requirements from the
user, in order to correct or refine the DAW pipeline;

6) The confirmed DAW pipeline is compared with a
pipeline dictionary, from which the best matching
pipeline is selected; the pipeline produced in this way
can be augmented with additional operations, to cope
with the dataset characteristics (e.g., handling of miss-
ing data and/or outliers);

7) The pipeline is executed; during execution, the system
may interact with the user to drive the execution flow,
for example asking for a specific subset of the features
upon which the analysis should be performed;

8) The results of the analysis are visualized.

To recap, starting from a declarative specification of the
analysis by the user, which means a high-level description of
the desired output that abstracts from any operational details,
DSBot analyzes the input dataset to produce and execute an
appropriate pipeline that matches the user goals.

B. COMPONENTS
Hereafter, we present and discuss the details of the various
components of DSBot and show how they interact.

TABLE 1. High level and low level symbols included in DAW domain
specific language.

1) DATA ANALYSIS WORKFLOW DOMAIN-SPECIFIC
LANGUAGE
The Data Analysis Workflow (DAW) is a Domain Spe-
cific Language (DSL) that encodes the pipelines for Data
Analysis. It is a formal language that aims at represent-
ing the sequence of data manipulation and analysis opera-
tions for (a) being interpreted and executed and (b) being
stored and searched in the knowledge base. A DAW sen-
tence is composed of two parts: the dataset descriptions and
the list of operations. The first is a set of terms describ-
ing the main dataset features, such as missingValues,
outliers, zeroVarianceFeatures, the second one
denotes a sequence of operations to be performed on the
dataset to accomplish a specific objective. DAW language is
extensible; new terms can be added to both datasets descrip-
tion and workflow operations as new features are added to
the system. A workflow description in DAW is a sequence
of symbols that represent the linear flow of operations to be

45976 VOLUME 11, 2023

S. Pidó et al.: Ask Your Data—Supporting Data Science Processes by Combining AutoML and Conversational Interfaces

TABLE 2. Dataset Characteristics inferred by DSBot.

executed. There are two classes of symbols, namely high-
level and low-level, which are organized in a hierarchy in
which each low-level symbol is a specialization of a high-
level one. Low-level symbols have a one-to-one correspon-
dence with a operation that can be directly executed, while
high-level symbols needs to be first specialized in a low-level
symbol, either by automatic mechanisms (described later in
this Section) or by interacting with the user. A comprehensive
list of the symbols of DAW is reported in Table 1; a brief
description of operations associated with low-level symbols
is in the Supplemental Material. As an example, consider the
following DAW sentence:

userFeatureSelection oneHotEncode classification roc

This sentence describes a data analysis workflow applica-
ble to a dataset. The four operations are executed sequen-
tially; userFeatureSelection is a low-level operator
that can be executed and it may require to interact with
the user to ask for further information. On the contrary,
classification is high level and, before being executed,
it must be specialized to a low-level operator, by means of
a mechanism described later. The remaining operations are
low-level and do not require user interaction, thus they can
be executed automatically.

DAW has two main uses: describing the analysis to be
performed and storing manually curated models of analyses
in the pipeline dictionary. Note that the symbols of DAW
correspond to a specific algorithm and abstract from its
parameters; such parameters are automatically tuned by the
pipeline executor. Finally, it is worth mentioning that the
language is extensible; new symbols can be added to DAW
as new features are added to the system.

The DAW also provides a further benefit: it conceptually
and logically separates between the production of the anal-
ysis and its execution. As a consequence, if better tools are
available to perform Data Science operations, it would be
sufficient to substitute the execution engine, without affecting
the translation machinery. For example, one could provide a
big-data version of DSBot simply replacing the current exe-
cution engine with one based on the ML libraries of Apache
Spark.

2) PRELIMINARY DATASET ANALYSIS
Once the user has uploaded the data and has speci-
fied the label, DSBot proceeds automatically to infer the

characteristics of the current dataset to drive the selection of
possible analyses and the choice of a good pipeline. The list
of characteristics is reported in Table 2. While many of them
are self-explanatory other require further description:

• outliers: indicates that the dataset contains items
whose values significally differ from the others. For-
mally, the input dataset D ∈ n × p contains at least
one row di, i = 1, . . . , n with more than the 90% of the
numerical attributes of di such that:

|di,j − µj| > 3 × σj

where di,j is the element of the dataset at the i-th row and
j-th column, µj and σj are respectively the mean and the
standard deviation of the j-th column;

• strongCorrFeatures: indicates the presence of
pairs of numerical columns (di, dj), i ̸= j with a Pearson
correlation coefficient greater than 0.9;

• uninformativeFeatures: indicates that the
dataset contains at least one categorical column such that
the number of its distinct elements is larger than half of
the number of rows of the dataset. In other words, each
value, on average, is associated to less than two samples
and thus it is likely to be an identifier of the samples
(e.g., patient id).

The above mentioned characteristics allow the system to
select different pipelines that are most appropriate for the
uploaded dataset. Indeed, each characteristic is handled by
different operations included in the available pipelines within
the dictionary, explained in Section III-B5.

3) QUESTION TRANSLATION
In order to translate from English to DSL (domain spe-
cific language), we needed a model that could perform well
even with a low resource language. After evaluating various
options, we decided to use GPT-2 (Generative Pre-trained
Transformer 2) as our machine translation model. GPT-2 is
a pre-trained transformer-based language model developed
by OpenAI that has been trained on a massive corpus of text
data. This makes it highly adaptable and able to be fine-tuned
for a variety of natural language processing tasks, including
machine translation.

One of the key features of GPT-2 is its use of a self-
attention mechanism. This allows the model to weigh the
importance of different parts of the input text and understand
the sentence’s context, generating more accurate translations.

To fine-tune GPT-2, in particular GPT-2 355, we used
a synthetic dataset of around 353,000 sentences that were
generated from a set of manually created templates with their
corresponding translation in DAW.

Since the tokens in DAW language are a defined set, sen-
tences produced by GPT-2 were filtered to ensure that they
contained only words that are contained in DAW vocabulary.

4) CONVERSATIONAL COMPREHENSION ASSESSMENT
After the conversion of the user’s request in a DAW, a con-
versational agent assesses whether the system has correctly

VOLUME 11, 2023 45977

S. Pidó et al.: Ask Your Data—Supporting Data Science Processes by Combining AutoML and Conversational Interfaces

interpreted the input sentence. To do that, the system receives
the DAW sentence and converts the operations contained in
it into a textual description. Descriptions are merged in a
single textual message that is sent to the user asking for
confirmation; the text describes operations at a high level,
abstracting from their technicalities and focusing instead on
their expected result. Data Science jargon is not used, as it
may be not understood by DSBot users.

Being interested in the outcome of the operation and not
in the functioning of the algorithm itself, we can use the
same textual description for different terms that belong to
the same algorithmic family. For example, we can transform
both ‘‘kmeans’’ and ‘‘agglomerativeClustering’’
modules in the following description: ‘‘to group your data in
such a way that objects in the same group (called a cluster)
are more similar (in some sense) to each other than to those
in other groups (clusters).’’. The same description holds for
‘‘clustering’’ term.

Hence, the symbols in the DAW belong to high and low
level classes. Each high level class symbol corresponds to
one or more symbols in a low level class. For example,
the symbol in high level class classification, corresponds to
low level symbols such as randomForest, logisticRegression,
autoClassification, etc.

Every node in the tree may have a textual description, that
contains the sentence to be produced in the conversation.
When a termmust be translated, the system retrieves, through
a tree-search, the deepest node having a textual description in
the path from the root to the searched node, and returns that
description, which is then concatenated to the descriptions
of the other words in the DAW, and sent to the user for
confirmation.

Users can confirm the textual description, or ask for more
detailed explanations, or for an example of application of
the workflow, so as to understand if they have correctly
understood. Explanations and example production follows
the same principles of the textual one. If users confirm the
workflow, the control is passed to the Workflow Enrichment
module (Sec. III-B5).
If the system has not correctly understood what the user

wants to do, the conversational agent guides the user in the
selection of an operation, following the state-machine-based
representation of the conversation flow shown in Figure 2.
Rounded corners rectangles represent the moments in which
the conversational agents sends a message to the user through
the chat, and waits for one of the responses indicated on the
exiting arrows; diamond shapes represents the agent’s deci-
sions on dataset properties; rectangles represents decisions on
the data science pipeline that will be proposed to the user.

The conversation aims at eliciting the user’s operational
goal, i.e., the high-level operation the user wants to per-
form: clustering, regression, classification, association rules,
or correlation matrix. The conversation exploits the dataset
information to improve the experience and facilitate users’
comprehension. If the dataset has a label, the first proposed
operation is the prediction of a value; in case of affirmative

response from the user, the system automatically decides
whether applying regression or classification according to the
nature of the label. If, instead, the user has not indicated any
label, then the conversational agents first asks whether the
users wants to find relationships in the data (i.e., association
rules or correlations), clustering, or prediction tasks.

When the family of algorithms is identified, heuristics on
data are used to elicit the algorithm to use. For example, once
the user agrees on finding relationships in the data, correlation
is automatically chosen if the dataset only contains numerical
variable, while it is excluded if the dataset does not continue
any numerical variable. In the same way, in prediction tasks,
classification or regression are chosen according to the nature
of the variable to predict. When the desired operation has
been elicited, a new pipeline containing the operation is pro-
duced and the control is passed to the Workflow Enrichment
module.

5) PIPELINE DICTIONARY AND WORKFLOW ENRICHMENT
As illustrated in Figure 1, the DAW obtained as translation of
the research question, together with the dataset characteris-
tics, is matched against a dictionary which includes manually
curated pipelines. The resulting best match is then used to
correct and augment the DAW, taking advantage of estab-
lished best practices in Data Science. For example, if the
dataset contains columns that have zero variance (i.e., whose
values are constant), the best match includes zeroVarianceR-
emoval step. Up to now, the pipeline dictionary contains
9634 pipelines distributed over 439 combinations of pipeline
characteristics. By design, the pipeline dictionary is extensi-
ble with new pipelines.

Consider a input dataset D, with the set of characteristics
{ds1, . . . , dsn} and a user’s question translated into a sequence
of operations opu1 , opu2 , . . . , opuU . The search in the pipeline
dictionary is meant to identify the entry:

(ds1, . . . , dsm)opk1 , opk2 , . . . , opkU

with the constraint that:

{ds1, . . . , dsn} ⊆ {ds1, . . . , dsm}

(i.e., every characteristic of the dataset in the pipeline dictio-
nary entry must be found in the input dataset). Each compat-
ible pipeline in the pipeline dictionary is then ranked with a
matching score and the most fitting one is then chosen.

In order to identify such bestmatching sequence, we imple-
mented dynamic programming algorithm inspired by the
Needleman-Wunsch algorithm for the pairwise optimal align-
ment of sequences [37]. This algorithm will select the
best matching pipeline based not only on the user’s input,
but also on the characteristics of the dataset, therefore
improving the outcome of the analysis. An example of
analysis results before and after the enrichment of the
pipeline is reported in Figure 3, considering a scenario
in which the user uploaded the Penguin dataset [38] and
asked for a clustering analysis. Figure 3(a) shows the

45978 VOLUME 11, 2023

S. Pidó et al.: Ask Your Data—Supporting Data Science Processes by Combining AutoML and Conversational Interfaces

FIGURE 2. Finite State Machine of the high level conversation flow for user’s operational goal elicitation.

results of the pipeline execution when the dataset char-
acteristics are not considered. In this case, the pipeline
executed is removeMissingValues, oneHotEncoder
and kmeans. Figure 3(b) shows the results of the second
analysis, which takes into account the characteristics of the
dataset and is able to extract more significant clusters. In this
case, the pipeline executed is fillMissingValues,
oneHotEncoder, normalization and kmeans.

6) AUTOCLASSIFICATION AND AUTOREGRESSION
MODULES
In DSBot, not all the modules require input from the user.
There are some operations that are fully automated: the most
relevant ones are IRAutoClassification and IRAutoRegres-
sion. These two execute different modules of respectively
classification and regression, tuning the parameters. The
module and the parameters with the best accuracy and root
mean squared error (RMSE), respectively, are chosen for the
analysis and are used for the prediction.

More precisely, the AutoClassification module is applied
after some preprocessing operations and a Lasso feature
selection. It divides the dataset into training and test set and
it runs four different modules of classification: a Random
Forest classifier, an Ada Boost classifier, a k-nearest neigh-
bors (KNN) classifier and a Logistic Regression classifier.
In order to decide which module is the best one, it also runs
a parameter tuning module on each of them to try the best
combination of parameters and compare the four modules
each with the best parameters. In particular, it applies a
random search strategy for the four modules, each one on its

own parameters. The search starts by evaluating all the candi-
dates (i.e., combination of parameters) with a small amount
of samples and selects the best combination of parameters
iteratively, using more and more samples. The candidates for
each modules are listed below.

• Random Forest Classifier:
– criterion: Gini or entropy;
– number of estimator from 10 to
min(max(

√
n_row ∗ n_col, 50), 500), with a step of

10;
– min_samples_split: from 2 to min(n_row∗3

2 , 100)
with a step of 5;

– max_depth: [2,
√
n_col, n_col∗32 , None].

• Logistic Regression:
– inverse of regularization strength: [1e-4, 1e-3, 1e-2,

1e-1, 0.5, 1., 5., 10., 25.].
• K-nearest neighbors:

– n_neighbors: from 1 to min(n_row10 − 1, 50) with a
step of 1;

– weights: uniform or distance;
– p: 1,2.

• Ada Boost:
– number of estimator from 10 to
min(max(

√
n_row ∗ n_col, 50), 500), with a step of

10;
– base estimator: [DecisionTreeClassifier, Extra-

TreeClassifier, SVC].
After having computed the accuracy for each module and for
different sets of parameters, the AutoClassification module

VOLUME 11, 2023 45979

S. Pidó et al.: Ask Your Data—Supporting Data Science Processes by Combining AutoML and Conversational Interfaces

FIGURE 3. Example of an analysis’ results before (a) and after (b) the enrichment of the pipeline.

defines the best combination according to the accuracy
obtained and run it on the training set. It then saves the
prediction of the testing sets and the features importance for
showing the user either the performance, with or a ROC curve
or a confusion matrix, or the importance of the features in two
different plots.

Also, an AutoRegression module is applied after some
pre-processing operations and a Lasso feature selection.
It divides the dataset into training and test set and it runs four
different modules of regression: a Random Forest Regressor,
an Ada Boost Regressor, a Linear Regressor and a Ridge
Regressor. In order to decide which module is the best one
for that dataset, it not only runs these four modules, but
also runs a parameter tuning module on each of them to try
the best combination of parameters and compare the four
modules with the best parameters. Also in the regression case,
we tuned the parameter using a random search with cross val-
idation that starts considering all the possible combinations of
parameters on a subset of samples, and then iteratively selects
the best combination applying it to a bigger subset of samples.
The parameters for the regression modules are:

• Random Forest Regressor:

– number of estimator from 10 to
min(max(

√
n_row ∗ n_col, 50), 500), with a step of

10;
– min_samples_split: from 2 to min(n_row∗3

2 , 100)
with a step of 5;

– max_depth: [2,
√
n_col, n_col∗32 , None].

• Linear Regressor.
• Ridge Regressor:

– alpha: from 0 to 1 with a step of 0.1.

• AdaBoost Regressor:

– number of estimator from 10 to
min(max(

√
n_row ∗ n_col, 50), 500), with a step of

10;
– base estimator: [DecisionTreeRegressor(), Extra-

TreeRegressor(), SVR(kernel=’linear’)].

After having computed the accuracy for each module and for
different sets of parameters, the AutoRegressionmodule
defines the best combination according to the root mean
squared error obtained and run it on the training set. It then
saves the prediction of the testing sets and the features impor-
tance for showing either the performance or the importance
of the features in two different plots with a little explanation
of the results.

C. ARCHITECTURE
The main components of the system are shown in the archi-
tecture in Figure 4.

• The frontend allows the user to interact with the tool
in a friendly way. It consists of a single-page web
application, with different modules for the web chat,
the input acquisition and the result visualization; it has
been implemented using Vue.js framework to guarantee
modularity and extendability.

• The backend comprises several components, the most
relevant of which are the query translator, the pipeline
dictionary, the pipeline executor and the dialogue man-
ager.

– The backend receives the dataset and the pipeline
executor executes the preliminary analysis on the
data.

– The query translator transforms the research ques-
tion into a DAW pipeline.

45980 VOLUME 11, 2023

S. Pidó et al.: Ask Your Data—Supporting Data Science Processes by Combining AutoML and Conversational Interfaces

FIGURE 4. Architecture of DSBot.

– The dialogue manager checks with a short conver-
sation with the user if the translation is correct and
helps the user if she does not understand what she
has to do.

– The pipeline executor looks for the best pipeline in
the pipeline dictionary, creates a module for each
operation it has to execute and run it. To com-
plete the pipeline, the pipeline executor can require
human intervention and ask the user for some
parameters or details. Other operations instead
perform automatically the analysis, two examples
are IRAutoClassification and IRAutoRegression,
detailed in Section III-B6. While executing some
operations, the pipeline executor can sometimes
notify the user by providing her with interesting
details highlighted during the execution. An exam-
ple is the percentage of removed outliers.

• The docker server is used with RASA, an open-source
Natural Language Understanding Unit (NLU) [39]. This
service is in charge of translating user sentences dur-
ing conversation in symbols understandable from the
dialogue manager (intents) and extract the parameter
necessary for the task completion (entities).

The backend is implemented in Python using the Flask
framework to serve the frontend and manage users’ ses-
sions. The analysis, and visualization function are fully
implemented in Python, leveraging the large availability of
libraries for data analysis and visualization. The commu-
nication between the frontend and the backend occurs by
means of Web Socket (using the socket.io package). This
enables fast, real-time, and bidirectional communication; the
communication is often instantiated by the backend, which
pushes pieces of information to the frontend.

IV. USE CASES
In this section we present two examples of DSBot executions,
one on a dataset of genomic features and one on a dataset of
clinical and demographic features. The first one shows a full
example of analysis starting from the upload of the dataset

until the visualization of the results; the second one focuses
on the conversational part, and shows a conversation in which
DSBot initially fails in understanding the natural language
request from the user.

A. ANALYSIS USE CASE
This use case concerns a data-driven analysis of genomic data
of patients affected by breast cancer, one of the most common
tumor types. Breast cancer is commonly classified in four
molecular subtypes, namely basal, luminal A, luminal B and
her2 [40]. Different subtypes influence the development of
the disease as well as the choice of the best therapy [40].

We assume as user a clinician who analyzes a genomic
dataset containing gene expressions (i.e., the level at which
each gene is active within a biosample) for a cohort of 1,127
patients affected by breast cancer in order to understand if
there are breast cancer subtypes that are easily confused.
Thus, in our dataset, rows refer to the patients and the columns
to the genes. For each patient, we measure the expression
of the 50 genes of PAM50 panel, which have been identi-
fied by oncologists to be the most related with the breast
cancer subtype. In addition, each patient is labeled with
her subtype.

Figure 5 shows the web interfaces for the user to upload the
dataset (‘pam50_m. . . fed.csv’), specifying the label ‘Expert
subtype’. In this phase, the user specifies three character-
istics of the dataset: if it has an index column, if it has
column names, and the label. DSBot presents a preview of
the uploaded table, then analyzes the dataset and extracts
the characteristics it needs. Particularly, this genomic dataset
has a categorical label and has outliers. These characteristics
are used to match the best pipeline according to the user’s
question.

In the following step, the user expresses a research question
using natural language using the interface shown in Figure 6.
In the example, the user wants to discover the breast cancer
subtypes that are most difficult to discern. His/her question
in natural language - reported in Figure 6, could be the
following:

Can you tell me which are the most similar subtypes?

DSBot interprets the question and identifies the follow-
ing preliminary DAW pipeline as appropriate for the user’s
request:

classification confusionMatrix

The chatbot provides a short explanation to help the
user understand how his/her request has been interpreted,
rephrasing the user’s request consistently with the prelimi-
nary pipeline identified, and then asks for confirmation to
proceed (Figure 7- right side). The confirmed preliminary
DAW pipeline, along with the inferred dataset characteris-
tics, are used as input for matching the pipeline dictionary.
The final DAW pipeline (reported below) is identified and

VOLUME 11, 2023 45981

S. Pidó et al.: Ask Your Data—Supporting Data Science Processes by Combining AutoML and Conversational Interfaces

executed, and the final results are visualized to the user
((Figure 7- left side).

labelRemove standardization
outliersRemove
lasso autoClassification confusionMatrix

During the execution of the final pipeline, DSbot provides
feedback to the user (e.g. ‘‘The 2.838% of the rows are
outliers. I will remove them’’ - (Figure 7- right side). After
the final results are visualized, the chatbot highlights the key
findings.

B. CONVERSATION USE CASE
In this second use case the user wants to analyze the stroke
prediction dataset [41], which comprises clinical and demo-
graphic features. Table 3 reports an example of the conver-
sation between the DSBot (B) and the user (U), as it would
happen in the case the system fails to interpret the first request
from the user. The conversational agent of DSBot provides
suggestions on the possible alternative analysis taking into
account the characteristics of the dataset. In particular, DSBot
proposes to do a prediction analysis since the user indicates
a label; in addition, since DSBot sees that the label is cat-
egorical, it proposes a classification algorithm rather than a
regression one. Subsequently, it wants to know if the required
analysis should provide the performances or the importance
of the features. In this example, the user requires a feature
importance analysis by asking for ‘influencing factors’.

DSBot suggests also to do a feature selection analysis
before the classification algorithm; in particular, it asks for
an automatic feature selection or for a manually one. The user
decides for a manually feature selection and provides the list
of features to remove. Subsequently, while DSBot performs
the analysis, it requires some information from the user,
such as removing or filling the missing values. Furthermore,
the conversational agent also provides some insights of the
analysis, such as the percentage of the removed outliers.

The reported conversation also demonstrates how the tool
is domain agnostic; indeed it only considers feature charac-
teristics and not feature semantics to interact with the user
and select the best pipeline.

V. EVALUATION
We performed two evaluations assessing different goals: (i) to
evaluate the performance of DSBot in terms of accuracy and
computation time, and (ii) to test the system capability to
understand the user’s research questions and to translate them
into accurate executable DS pipelines.

A. EVALUATION OF THE AUTOMATIC MACHINE LEARNING
PIPELINE EXECUTOR
With this analysis, we wanted to validate the performance
of DSBot in terms of accuracy (for classification tasks), and
RMSE (for regression tasks). Furthermore, we measured the
execution time, which must be minimized to guarantee a
smooth user experience.

TABLE 3. Conversation between DSBot and the user after the
interpretation of the first user’s request failed (use case B).

As a baseline for our experiments, we used TPOT [6],
a popular AutoML framework for classification and regres-
sion; it uses genetic programming to explore thousands of
ML pipelines intelligently and returns the one that optimizes
a user-defined score function.

TPOT was chosen as a candidate against which to test the
performance of DSBot since also TPOT is implemented in

45982 VOLUME 11, 2023

S. Pidó et al.: Ask Your Data—Supporting Data Science Processes by Combining AutoML and Conversational Interfaces

FIGURE 5. Web user interface to upload the input dataset and indicate the label (use case A).

FIGURE 6. Web user interface: textbox for questions (use case A).

Python and, similar to DSBot, it utilizes the sci-kit learnML
library.

We considered a scenario inwhich the user does not specify
the algorithm to be used for the classification or regression
task but lets DSBot automatically select one algorithm and
tune it hyper-parameters.

The evaluation was performed on datasets selected among
the ones on which TPOT was evaluated by its authors1

and some from Kaggle2. The final set comprises a total of

1http://www.randalolson.com/data/benchmarks/
2https://www.kaggle.com/datasets

18 datasets for classification and 12 for regression. In addi-
tion, we selected the collection of datasets to be as heteroge-
neous as possible, including many different domains.

Note that while DSBot is an end-to-end tool, able to
perform a complete analysis, including data cleaning, data
preprocessing and result visualization, TPOT only analyzes
datasets with nomissing values or categorical features (which
have to be encoded in advance) in order to determine either
the best classifier or the best regressor.

To allow the comparison, we fed DSBot with the original
datasets; for TPOT, we filled the missing values using an

VOLUME 11, 2023 45983

S. Pidó et al.: Ask Your Data—Supporting Data Science Processes by Combining AutoML and Conversational Interfaces

FIGURE 7. Web interface for visualization of final results and chatbot explanations (use case A).

Iterative Imputer method and we encoded the categorical
variables using a one-hot-encoder. Then, for each dataset,
we performed the following workflow for 50 times and aver-
aged the results:

• We randomly selected the 20% of the samples from the
dataset, used those as held-out dataset and the remaining
as training set;

• We run TPOT on the training set using 5 genera-
tions of populations of 50 pipelines; a typical TPOT
pipelines may include feature selection, feature engi-
neering, model selection, and parameter tuning.

• We run DSBot on the training set. It automatically
builds a pipeline covering from the data preprocessing to
the data visualization; as classifier (regressor) we used
the autoClassification (autoRegression)
module. We stopped the pipeline after the selection of
the model, as we were not interested in the result pre-
sentation. Typical DSBot pipeline may include differ-
ent method to handle missing values (impute, remove),
encoding of categorical features, outlier removal ad fea-
ture selection.

• The cases have been carefully selected so that user inter-
vention is unnecessary.

• Both the methods returns a classifier (regressor)
pipeline. First of all we saved the time needed by the
two systems to produce their candidate models.

• We applied the two candidate models on the held-out
dataset and measure the accuracy for the classification
tasks and the Root Mean Squared Error (RMSE) for the
regression tasks.

Aggregated results in term of performances and execution
times are reported in Tables 4 and 5. In both tables, each

row corresponds to a dataset on which the pipeline was
executed both with TPOT and DSBot. The columns contain
the dataset dimensions (rows × columns), the average per-
formance relative to 20 runs with DSBot with its standard
deviation (accuracy for classification, RMSE for regression),
the performance comparison between DSBot and TPOT
(DSBot mean performance − TPOT mean performance), the
average time taken to execute one run with DSBot, the time
comparison of execution time between DSBot and TPOT
(DSBot mean time/TPOT mean time × 100).

Regarding the classification, DSBot obtained better perfor-
mances in term of accuracy in 11 over 18 datasets: vowel,
vehicle, diabetes types, cleveland nominal, vote, chess, stroke,
australian, dna, dermatology and ann thyroid. In six of these
cases, we obtained an accuracy greater than 95 %. Others
four obtained an accuracy between 75% and 85%, while only
cleveland nominal obtained a low accuracy equal to 56%.
When DSBot had worst performances than TPOT, it always
got a comparable accuracy (within 95% of TPOT’s accuracy).

Also the execution time is shorter w.r.t. TPOT: for classi-
fication tasks on average DSBot spent 14.85% of the time
required by TPOT for the same analysis, while for the regres-
sion it spent 3.46% of the time required by TPOT.

Regarding the regression, we obtained better performances
on 8 over 12 datasets. In these cases, DSBot performs better
than TPOT obtaining a smaller RMSE in much less time.

B. EVALUATION OF THE TRANSLATION INTO EXECUTABLE
PIPELINE
To evaluate the performance of the GPT-2-based transla-
tor, we fine-tuned the model on the 99% of the corpus of

45984 VOLUME 11, 2023

S. Pidó et al.: Ask Your Data—Supporting Data Science Processes by Combining AutoML and Conversational Interfaces

TABLE 4. Evaluation of classification tests.

TABLE 5. Evaluation of regression tests.

sentences, to test it on the remaining 1% of the sentences in
the dataset for validation.

We used the BLEU score [42], a widely-used metric
in machine translation, to measure the performance of our
model. In our experiment, we computed the score up to
4-grams as our DAW sentences range between 1 and 4 tokens.
The BLEU score ranges from 0 to 1 and reflects the similarity
of the machine-translated text to a set of high-quality refer-
ence translations [42].

In our case, we confronted the translation produced by
GPT-2 with a set of possible DAW sentences for every
element of the test. This set was created by adding sen-
tences obtained by replacing low-level DAW terms with
their corresponding high-level ones. For example, if the
DAW translation of a sentence was outliersRemove
randomForest, its variations were outliersRemove
classification, and outliers randomForest.
With this metric, GPT-2 was able to achieve a score of 0.8,

indicating that the model’s translations were highly similar to
the reference translations.

Overall, our use of GPT-2 for machine translation from
English to DAW proved to be an effective approach. The
model’s ability to handle input sequences and understand
context, combined with its high level of adaptability, made
it an ideal choice for this task. Furthermore, the high BLEU
score achieved by the model demonstrates its ability to gen-
erate accurate translations.

VI. CONCLUSION
This paper describes DSBot, a novel approach and system to
build and execute data analysis pipelines starting from natural
language requests and datasets uploaded by the user. The
most significant aspects of DSBot include the definition of
DAW, a domain specific language for describing data analysis
pipelines; a machine translation based on a neural network for
producing aDAWsequence from the user’s query; amatching
algorithm to extract the best matching pipeline out of a dictio-
nary of pipelines; and a conversational agent interacting with
the user whenever necessary.

DSBot does not merely execute the operations explic-
itly requested by the user, but automatically augments the
pipeline so as to improve the result, in a way that is acces-
sible to a user who is not deeply expert in data analysis.
We provide empirical evidence of the potentiality of such a
tool by discussing its evolution in two case studies: one to
investigate the advantages of the conversation, the other in
which DSBot finds the optimal pipeline to answer the user’s
research question.

DSBot is a first step towards the exploitation of Data
Science by non-experts, paving the ground for a new family
of tools that makes Data Science more accessible and usable
by a larger audience.

Still, there are some open issues to address.
In the current implementation, no actions are taken in

the case of an unbalanced dataset. This problem may be

VOLUME 11, 2023 45985

S. Pidó et al.: Ask Your Data—Supporting Data Science Processes by Combining AutoML and Conversational Interfaces

addressed by either adopting rebalancing strategies during
the data preprocessing steps (e.g., downsampling or over-
sampling) or by computing different evaluation metrics (e.g.,
Matthew Correlation Coefficient). An additional area of
improvement is the automatic selection of machine learning
models, which in the current version of the system is based
on Accuracy metric, which is not appropriate in situations of
unbalanced data sets and, in such situations should be substi-
tuted by more informative metrics (e.g. balanced accuracy).
Given the modular nature of the DSBot, these extensions will
be relatively easy to develop and will be achieved in the near
future.

Other improvements concern two main issues: i) widening
and improving the set of pipelines supported by DSBot and
the operations supported by system that are currently allowed
on single-table data only; ii) enhancing the conversational
power of the chatbot in several directions: to elicit a wider
number of user’s research questions, to sustain a more natural
interaction, and to increase the transparency of the AutoML
processes and the explainability of the system (defined in [43]
as the degree at which an AI system can ‘‘enable human users
to understand, appropriately, trust, and effectively manage
artificially intelligent partners’’).

Our plan is to address the first issue not only by integrating
and automatizingmore algorithms and analysis modules, e.g.,
methods used for survival analysis or time series, but also by
testing them onwide number of datasets, to enrich the number
of supported pipelines, refine their quality, and provide more
advanced computational support to the end user. Concerning
the chatbot, we will extend the training corpora for research
question interpretation and elicitation by collectingmany new
real-world research questions, with alternative formulations,
and new exemplary conversation flows. We will investigate
the existing techniques of explainable AI [43] to identify
those more appropriate for the AutoML approach of DSBot.
They will inform the design of new conversational patterns
for the chatbot [44], to provide the user with explanations
that make the analysis processes and their outcomes more
transparent, comprehensible, and trustful.

APPENDIX A
Operations supported by DAW - Domain Specific Lan-
guage for building data analysis workflows

• missingValuesHandle: first removes columns that con-
tain more than 50% of missing values, then computes
the percentage of rows with missing values: if they are
less than 5%, then missing values are removed; if they
are between 5% and 10%, then missing values are filled;
otherwise, the user is asked to check these rows and
make decisions about them.

• fillMissingValues: using iterative imputation, fills the
numerical missing values; while the categorical ones are
filled with the most common value in the column.

• removeMissingValues: removes the rows with missing
values.

• oneHotEncoder: applies one hot encoding to categor-
ical columns so that the dataset includes only either
numerical values or 0/1 values.

• outliersRemove: removes the rows that have more than
90% of elements that are considered outliers, i.e., whose
difference between the element value and themean value
exceeds the triple of the standard deviation.

• zeroVarianceRemove: removes the columns that have
a variance equal to zero.

• correlatedFeaturesRemove: considering two features
that have a correlation higher than 0.9, it considers only
one of those two features and drop the other.

• removeFeatures: asks the users if they want to remove
the features that include more than 50% of different
elements.

• standardization: returns a standardized dataset by
applying the Standard Scaler method.

• normalization: returns a normalized dataset by apply-
ing a min-max scaler method.

• labelRemove: drops the target column from the dataset.
• labelAppend: re-appends the target column to the
dataset, when needed.

• pearson: computes the correlation matrix by applying
Pearson measure.

• spearman: computes the correlation matrix by applying
Spearman measure.

• autoClassification: tries different combinations of
parameters and classification modules among the avail-
able ones in order to retrieve the method along with the
parameters yielding to the best accuracy score.

• randomForestClassifier: implements the random for-
est classifier with the tuning of the parameters.

• logisticRegression: implements the logistic regression
classifier with the tuning of the parameters.

• kNeighborsClassifier: implements the kNeighbors
classifier with the tuning of the parameters.

• adaBoostClassifier: implements the adaBoost classifier
with the tuning of the parameters.

• autoRegression: tries different combinations of param-
eters and regression modules among the available ones
in order to retrieve the method along with the parameters
that are able to obtain the best mean squared error.

• linearRegression: implements the linear regression
with the tuning of the parameters.

• randomForestRegressor: implements the random for-
est regressor with the tuning of the parameters.

• ridgeRegression: implements the ridge regression with
the tuning of the parameters.

• adaBoostRegressor: implements the adaBoost regres-
sor with the tuning of the parameters.

• kmeans: implements the kmeans algorithm for cluster-
ing with the tuning of the parameters by applying Grid
Search.

• dbscan: implements the dbscan algorithm for clustering
with the tuning of the parameters by applying Grid
Search.

45986 VOLUME 11, 2023

S. Pidó et al.: Ask Your Data—Supporting Data Science Processes by Combining AutoML and Conversational Interfaces

• agglomerativeClustering: implements agglomerative
clustering with the tuning of the parameters by applying
Grid Search.

• lasso: applies Lasso linear model with iterative fitting
along a regularization path to perform feature selection.

• selectKBest: selects features according to the k highest
scores.

• laplace: performs feature selection with an unsuper-
vised method that uses the Laplacian score and selects
the features with the highest one.

• userFeatureSelection: allows the user to decide which
features to keep and which to remove.

• featureImportance: retrieves the importance of the
features after a classification or a regression algorithm.

• pca2: performs a principal component analysis, creat-
ing a 2D representation of the dataset (linear reduction).

• mds2: performs multi-dimensional scaling, creating a
2D representation of the dataset (non-linear reduction).

• apriori: implements the apriori algorihtm in order to
retrieve the frequent itemsets and the association rules
that lay in the provided data.

• regressionPerformance: after a regression algorithm.
it computes performance measures, such as r2, mean
squared error, root mean squared error and mean abso-
lute error.

• confusionMatrix: produces a summary of prediction
results on a classification problem.

• scatterplot: produces a scatterplot of the data, e.g., after
a clustering problem.

• clustermap: supplies a clustermap of the correlation
matrix.

• roc: computes the ROC curve and the area under the
curve after having applied a classification method.

• lassoPlot: provides a barplot of the features extracted
with lasso.

• tableRegression: provides the regression performances
in a table to show to the user.

• tableAssociationRules: saves the association rules to
be presented to the user.

• featureImportancePlot: shows in a pie chart the
importance of the features after a classification or regres-
sion problem.

ACKNOWLEDGMENT
(Sara Pidó and Pietro Pinoli are co-first authors.)

REFERENCES
[1] K. Witkowski, ‘‘Internet of Things, big data, industry 4.0—Innovative

solutions in logistics and supply chainsmanagement,’’Proc. Eng., vol. 182,
pp. 763–769, Jan. 2017.

[2] F. Murtagh and K. Devlin, ‘‘The development of data science: Implica-
tions for education, employment, research, and the data revolution for
sustainable development,’’ Big Data Cognit. Comput., vol. 2, no. 2, p. 14,
Jun. 2018.

[3] J. Honaker and V. D. Orazio. Statistical Modeling by Gesture:
A Graphical, Browser-Based Statistical Interface for Data Repositories.
Accessed: Dec. 31, 2021. [Online]. Available: http://ceur-ws.org/Vol-
1210/datawiz201405.pdf

[4] C. V. K. Iyer, F. Hou, H.Wang, Y.Wang, K. Oh, S. Ganguli, and V. Pandey,
‘‘Trinity: A no-code AI platform for complex spatial datasets,’’ in Proc.
4th ACM SIGSPATIAL Int. Workshop AI Geograph. Knowl. Discovery,
New York, NY, USA, Nov. 2021, pp. 33–42.

[5] P. Crovari, S. Pidò, P. Pinoli, A. Bernasconi, A. Canakoglu, F. Garzotto, and
S. Ceri, ‘‘GeCoAgent: A conversational agent for empowering genomic
data extraction and analysis,’’ ACM Trans. Comput. Healthcare, vol. 3,
no. 1, pp. 1–29, Jan. 2022.

[6] R. S. Olson and J. H. Moore, ‘‘TPOT: A tree-based pipeline optimization
tool for automating machine learning,’’ in Proc. Workshop Autom. Mach.
Learn., 2016, pp. 66–74.

[7] V. G. Renumol, D. Janakiram, and S. Jayaprakash, ‘‘Identification of
cognitive processes of effective and ineffective students during computer
programming,’’ ACM Trans. Comput. Educ., vol. 10, no. 3, pp. 1–21,
Aug. 2010.

[8] D. Price, E. Rilofff, J. Zachary, and B. Harvey, ‘‘NaturalJava: A natural
language interface for programming in Java,’’ in Proc. 5th Int. Conf. Intell.
User Interfaces, 2000, pp. 207–211.

[9] M. Allamanis, E. T. Barr, P. Devanbu, and C. Sutton, ‘‘A survey of machine
learning for big code and naturalness,’’ ACM Comput. Surv., vol. 51, no. 4,
pp. 1–37, 2018.

[10] J. Shin and J. Nam, ‘‘A survey of automatic code generation from natural
language,’’ J. Inf. Process. Syst., vol. 17, no. 3, pp. 1–10, Jun. 2021.

[11] S. Chong and R. Pucella, ‘‘A framework for creating natural language user
interfaces for action-based applications,’’ 2004, arXiv:cs/0412065.

[12] D. Vadas and J. R. Curran, ‘‘Programming with unrestricted natural lan-
guage,’’ in Proc. Australas. Lang. Technol. Workshop, 2005, pp. 191–199.

[13] P. Yin and G. Neubig, ‘‘A syntactic neural model for general-purpose code
generation,’’ 2017, arXiv:1704.01696.

[14] H. Lieberman and M. Ahmad, ‘‘Knowing what you’re talking about:
Natural language programming of amulti-player online game,’’ inNoCode
Required. Amsterdam, The Netherlands: Elsevier, 2010, pp. 331–343.

[15] V. Le, S. Gulwani, and Z. Su, ‘‘SmartSynth: Synthesizing smartphone
automation scripts from natural language,’’ in Proc. 11th Annu. Int. Conf.
Mobile Syst., Appl., Services, Jun. 2013, pp. 193–206.

[16] X. V. Lin, C. Wang, D. Pang, K. Vu, and M. D. Ernst, ‘‘Pro-
gram synthesis from natural language using recurrent neural net-
works,’’ Univ. Washington Dept. Comput. Sci. Eng., Seattle, WA, USA,
Tech. Rep., UW-CSE-17-03-01, 2017.

[17] J. Lin, Y. Liu, Q. Zeng, M. Jiang, and J. Cleland-Huang, ‘‘Traceability
transformed: Generating more accurate links with pre-trained BERT mod-
els,’’ in Proc. IEEE/ACM 43rd Int. Conf. Softw. Eng. (ICSE), May 2021,
pp. 324–335.

[18] M. Chen et al., ‘‘Evaluating large language models trained on code,’’ 2021,
arXiv:2107.03374.

[19] X. He, K. Zhao, and X. Chu, ‘‘AutoML: A survey of the state-of-the-art,’’
Knowl.-Based Syst., vol. 212, Jan. 2021, Art. no. 106622.

[20] C. Thornton, F. Hutter, H. H. Hoos, and K. Leyton-Brown, ‘‘Auto-WEKA:
Combined selection and hyperparameter optimization of classification
algorithms,’’ in Proc. 19th ACM SIGKDD Int. Conf. Knowl. Discovery
Data Mining, Aug. 2013, pp. 847–855.

[21] M. Feurer, A. Klein, K. Eggensperger, J. T. Springenberg, M. Blum,
and F. Hutter, ‘‘Auto-sklearn: Efficient and robust automated machine
learning,’’ in Automated Machine Learning. Cham, Switzerland: Springer,
2019, pp. 113–134.

[22] S. K. Karmaker, M. M. Hassan, M. J. Smith, L. Xu, C. Zhai, and
K. Veeramachaneni, ‘‘AutoML to date and beyond: Challenges and oppor-
tunities,’’ ACM Comput. Surv., vol. 54, no. 8, pp. 1–36, Nov. 2022.

[23] T. De Bie, L. De Raedt, J. Hernández-Orallo, H. H. Hoos, P. Smyth, and
C. K. I. Williams, ‘‘Automating data science: Prospects and challenges,’’
2021, arXiv:2105.05699.

[24] D. Bouneffouf, C. Aggarwal, T. Hoang, U. Khurana, H. Samulowitz,
B. Buesser, S. Liu, T. Pedapati, P. Ram, A. Rawat, M. Wistuba, and
A. Gray, ‘‘Survey on automated end-to-end data science?’’ in Proc. Int.
Joint Conf. Neural Netw. (IJCNN), Jul. 2020, pp. 1–9.

[25] E. Ozan, ‘‘A novel browser-based no-code machine learning application
development tool,’’ in Proc. IEEEWorld AI IoT Congr. (AIIoT), May 2021,
pp. 282–284.

[26] D. Smilkov, N. Thorat, Y. Assogba, A. Yuan, N. Kreeger, P. Yu, K. Zhang,
S. Cai, E. Nielsen, D. Soergel, S. Bileschi, M. Terry, C. Nicholson,
S. N. Gupta, S. Sirajuddin, D. Sculley, R.Monga, G. Corrado, F. B. Viégas,
and M. Wattenberg, ‘‘TensorFlow.Js: Machine learning for the web and
beyond,’’ 2019, arXiv:1901.05350.

VOLUME 11, 2023 45987

S. Pidó et al.: Ask Your Data—Supporting Data Science Processes by Combining AutoML and Conversational Interfaces

[27] M. Carney, B. Webster, I. Alvarado, K. Phillips, N. Howell, J. Griffith,
J. Jongejan, A. Pitaru, and A. Chen, ‘‘Teachable machine: Approach-
able web-based tool for exploring machine learning classification,’’ in
Proc. Extended Abstr. CHI Conf. Hum. Factors Comput. Syst., Apr. 2020,
pp. 1–8.

[28] S. Narkar, Y. Zhang, Q. V. Liao, D. Wang, and J. D. Weisz, ‘‘Model
LineUpper: Supporting interactive model comparison at multiple levels
for AutoML,’’ in Proc. 26th Int. Conf. Intell. User Interfaces, Apr. 2021,
pp. 170–174.

[29] R. Chang, ‘‘Snowcat and CAVA: Visualization tools for interacting
with AutoML and knowledgebases,’’ Tufts Univ., Medford, MA, USA,
Tech. Rep. AD11479, 2021.

[30] D. Wang, J. Andres, J. D. Weisz, E. Oduor, and C. Dugan, ‘‘AutoDS:
Towards human-centered automation of data science,’’ in Proc. CHI Conf.
Hum. Factors Comput. Syst., New York, NY, USA, May 2021, pp. 1–12.

[31] L. Meng, S. van den Elzen, and A. Vilanova, ‘‘ModelWise: Interactive
model comparison formodel diagnosis, improvement and selection,’’Com-
put. Graph. Forum, vol. 41, no. 3, pp. 97–108, Jun. 2022.

[32] G. King, ‘‘An introduction to the dataverse network as an infrastructure
for data sharing,’’ Sociol. Methods Res., vol. 36, no. 2, pp. 173–199,
Nov. 2007.

[33] A. S. Maiya, ‘‘Ktrain: A low-code library for augmented machine learn-
ing,’’ 2020, arXiv:2004.10703.

[34] R. J. L. John, N. Potti, and J. M. Patel, ‘‘AVA: From data to insights through
conversations,’’ in Proc. CIDR, 2017, pp. 1–10.

[35] E. Fast, B. Chen, J. Mendelsohn, J. Bassen, and M. S. Bernstein, ‘‘IRIS:
A conversational agent for complex tasks,’’ in Proc. CHI Conf. Hum.
Factors Comput. Syst., New York, NY, USA, Apr. 2018, pp. 1–12.

[36] R. R. Hoffman, S. T. Mueller, G. Klein, and J. Litman, ‘‘Metrics for
explainable AI: Challenges and prospects,’’ 2018, arXiv:1812.04608.

[37] V. Likic, ‘‘The Needleman-Wunsch algorithm for sequence alignment,’’
Lect. Given 7th Melbourne Bioinf. Course, Bi021 Mol. Sci. Biotechnol.
Inst., Univ. Melbourne, Melbourne, VIC, Australia, 2008, pp. 1–46.

[38] Seaborn. Penguins.csv. Accessed: Apr. 28, 2022. [Online]. Available:
https://github.com/mwaskom/seaborn-data/blob/master/penguins.csv

[39] T. Bocklisch, J. Faulkner, N. Pawlowski, and A. Nichol, ‘‘RASA:
Open source language understanding and dialogue management,’’ 2017,
arXiv:1712.05181.

[40] X. Dai, T. Li, Z. Bai, Y. Yang, X. Liu, J. Zhan, and B. Shi, ‘‘Breast can-
cer intrinsic subtype classification, clinical use and future trends,’’ Amer.
J. Cancer Res., vol. 5, no. 10, p. 2929, 2015.

[41] Kaggle. Stroke Prediction Dataset. Accessed: Apr. 28, 2022. [Online].
Available: https://www.kaggle.com/datasets/fedesoriano/stroke-
prediction-dataset

[42] K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu, ‘‘BLEU: A method for
automatic evaluation of machine translation,’’ in Proc. 40th Annu. Meeting
Assoc. Comput. Linguistics, 2001, pp. 311–318.

[43] A. Adadi and M. Berrada, ‘‘Peeking inside the black-box: A sur-
vey on explainable artificial intelligence (XAI),’’ IEEE Access, vol. 6,
pp. 52138–52160, 2018.

[44] Q. V. Liao, D. Gruen, and S.Miller, ‘‘Questioning the AI: Informing design
practices for explainable AI user experiences,’’ in Proc. CHI Conf. Hum.
Factors Comput. Syst., Apr. 2020, pp. 1–15.

SARA PIDÓ received the bachelor’s and master’s degrees in computer sci-
ence and engineering fromPolitecnico diMilano, Italy, where she is currently
pursuing the Ph.D. degree in data analytics and decision sciences. She is a
member of the DEIB Bioinformatics Group. Her research interests include
the application of data science methods and algorithms to bioinformatics,
with particular attention to the design and implementation of conversational
agents to support bioinformatics analysis.

PIETRO PINOLI received the Ph.D. degree (cum laude), in 2017. His Ph.D.
thesis was titled ‘‘Modeling and Querying Genomic Data,’’ where he pro-
posed and benchmarked data structures and algorithms tomanage, search and
elaborate huge collections of genomic datasets, by means of cloud and dis-
tributed technologies. He was a Visiting Ph.D. Student with Harvard Univer-
sity, Cambridge, MA, USA. He was a Researcher Fellow and a Lecturer with
the Department of Electronics, Information and Bioengineering, Politecnico
di Milano, Italy. He participated in the Italian PRIN GenData, ERC GeCo,
and EIT VirusLab projects. His research interests include bioinformatics and
computational biology, databases and data management, big data technology
and algorithms, machine learning, natural language processing, and drug
repurposing.

PIETRO CROVARI received the bachelor’s degree in computer science
and engineering from the University of Genoa, Italy, and the M.S. degree
in computer science and engineering from Politecnico di Milano, where
he is currently pursuing the Ph.D. degree in information technology. His
research interests include the design and implementation of multimodal
conversational interfaces for process-intensive applications, particularly in
the domain of data science and bioinformatics research.

FRANCESCA IEVA was born in Milan, Italy, in 1984. She received the
M.S. degree in mathematical engineering, in 2008, and the Ph.D. degree in
mathematical models and methods for engineering, in 2012. She is currently
an Associate Professor of statistics with the Department of Mathematics,
Politecnico di Milano. She is also the Associate Head of the Center for
Health Data Science, Human Technopole. She is the principal investigator
of three national project grants and a number of funded projects. She is
also on the Advisory Board of the Center for Healthcare Research and
Pharmacoepidemiology. Her mentoring activity is comprehensive of more
than 20 M.D. students and six Ph.D. students. Her research interests include
health analytics and statistical learning in a biomedical context. She is a
member of the Italian Statistical Society and the International Society of
Clinical Biostatistics. She is an Associate Editor of Statistical Methods and
Applications.

FRANCA GARZOTTO received the bachelor’s and master’s degrees in
mathematics from the University of Padua, Italy, and the Ph.D. degree in
information engineering from Politecnico di Milano, Italy. She is currently
an Associate Professor with Politecnico di Milano. She is also the Director
of i3Lab (https://i3lab.polimi.it/). I3Lab is a multidisciplinary research lab-
oratory focusing on advanced interactive technologies. Her main research
interests include conversational agents, embodied systems, and mixed reality
environments.

STEFANO CERI (Member, IEEE) is currently a Professor with Diparti-
mento di Elettronica, Informazione e Bioingegneria (DEIB), Politecnico di
Milano. He received two advanced ERC grants, on search computing and
data-driven genomic computing (GeCo, 2016–2021). He has authored more
than 350 publications and ten international books. His research interests
include extending database technology and applying them as a data scientist,
with a recent emphasis on genomics and viruses. He is a fellow of ACM.
He received the ACM-SIGMOD Innovation Award.

Open Access funding provided by ‘Politecnico di Milano’ within the CRUI CARE Agreement

45988 VOLUME 11, 2023

