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ABSTRACT Obstructive sleep apnea (OSA) is a prevalent yet potentially severe sleep disorder. Polysomnog-
raphy (PSG) is most commonly used to assess the severity of OSA. However, there have been numerous
studies to find OSA patients more effectively since running a PSG test is expensive and time-consuming.
The existing studies, however, raise four major concerns, such as (i) the use of inaccurate sleep time
data to calculate the apnea-hypopnea index, (ii) the use of poor preprocessing techniques for real patient
clinical datasets, (iii) the lack of multi-stage classification capability, and (iv) the absence of experiments
on sufficiently large data sets. To address these concerns, we propose a novel OSA severity classification
scheme based on single-lead electrocardiogram (ECG) data, as well as a novel deep learning model, CLNet,
to perform apnea/hypopnea and sleep stage classification. By identifying apnea/hypopnea events from a
patient’s ECG data and computing AHI using ‘‘pure’’ sleep duration via CLNet, our method improves patient
OSA severity degree estimation. CLNet was trained and evaluated using two different real-world datasets
containing 286 OSA patient records and a total of 2,155 hours of ECG data. In our experiments, the proposed
scheme outperforms existing approaches by up to 10% in total accuracy and AUC on the public PhysioNet
dataset. In terms of apnea classification sensitivity, we show that the proposed CLNet model outperforms
the state-of-the-art model by up to 41.8% for our clinical dataset. Our scheme can be used as a successful,
high-quality pre-screening tool by more effectively prioritizing prospective OSA patients. We will be able
to perform PSG on only the most severe patients, saving both time and money. Our algorithms are publicly
available on GitHub.

INDEX TERMS Apnea-hypopnea index, classification, deep learning, electrocardiogram, polysomnogra-
phy, sleep apnea severity classification.

The associate editor coordinating the review of this manuscript and

approving it for publication was Md. Kafiul Islam .

I. INTRODUCTION
Obstructive Sleep Apnea (OSA) is a significant sleep disorder
that can cause various complications, including a high risk
of cardiovascular diseases such as heart attacks, high blood
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pressure, or stroke, to name a few. Recently, patients with
OSA are rapidly increasing due to widespread obesity [1], [2]
and the aging population [3].

Polysomnography (PSG) is an overnight multi-parameter
sleep study measuring body functions including brain waves,
skeletal muscle activity, blood oxygen levels (SpO2), heart
rate, breathing rate, and eye movement. The severity of OSA
is diagnosed by clinical experts using PSG examinations.

Despite being the most reliable OSA severity measurement
tool, PSG has a critical drawback. While patients stay at an
overnight sleep facility with multiple sensors attached to their
bodies, clinical experts must monitor the PSG sensor signals
capturing the patient’s sleep overnight. Hence, a PSG exam
can be costly, cumbersome, and time-consuming [4].

To overcome this limitation, there has been a rich body
of existing literature that seeks an alternative to PSG by
using easily measurable single-lead bio-signal data such as
electrocardiogram (ECG) signals [5], [6], [7], snoring [8],
or oxygen saturation [9], [10] (a.k.a SpO2), referring to the
percentage of oxygen in one’s blood. By pre-screening the
degree of OSA severity before the actual PSG examination is
taken, can help prioritize potential patients.

One of the most important issues in automatically deter-
mining the degree of OSA severity via single-lead bio-signal
data is to accurately calculate the apnea-hypopnea index
(AHI). Existing studies [11], [12] have two critical prob-
lems in calculating the AHI. First, given that ECG signals
are divided into 30-second or 1-minute epochs for counting
apnea/hypopnea (A/H) events, there may be some disparity
in calculating the exact number of A/H events. For exam-
ple, when modeling the widely used PhysioNet Apnea-ECG
data [13], A/H events are detected only when the beginning
of the epoch has an abnormal respiratory signal (as shown in
Figure 2(a)).

It is essential to conduct accurate labeling on the dataset
because there may be a significant discrepancy between the
A/H count annotated by the actual expert and the A/H count
of the labeled dataset. Second, the exact sleep time is sel-
dom reflected when AHI is calculated. The total sleep time
recorded in PSG includes ‘‘wake-after-sleep-onset,’’ so it is
not equal to ‘‘pure’’ sleep time [4]. If the wake time is not
excluded from the total recorded sleep time, the accuracy
of the AHI calculation may substantially drop, leading to
significantly underestimating OSA severity.

To address these concerns, we propose a novel OSA sever-
ity classification scheme leveraging a deep learning model
we devise for respiratory status and sleep stage classification.
First, we explore a method of accurately detecting an A/H
event per 1-minute epoch. Apnea and hypopnea are defined
by the American Academy of SleepMedicine as the cessation
of airflow for at least 10 seconds consecutively [14]. The only
difference between the two is that apnea is a complete pause
in breathing where airflow is cut down by more than 90%,
whereas hypopnea is a period of shallow breathing where
the airflow is reduced by 30% or more and SpO2 shows a

decrease of 3% or more [4]. We follow this definition to
label our data. Specifically, we define an apnea event when
there is a period of over 10 seconds of continuous abnor-
mal respiratory events, including both apnea and hypopnea.
Second, we seek another method of deriving pure sleep time
by excluding intermediate wake time from the total recorded
sleep time via the sleep state classification model. We then
combine these methods to form the model, termed CLNet,
introduced in this paper. The CLNet is a novel deep-learning-
based model that estimates OSA severity by dividing the
number of identified A/H events by the extracted pure sleep
time in hours. Unlike previous studies [11], [15], [16], our
proposed scheme is the first to identify and eliminate wakeup
time from recorded sleep time for a more accurate OSA
classification. It employs new labeling techniques and the
classification model.

There are several practical impacts that we anticipate from
our model. The first is that clinical experts can see the degree
of estimated OSA without fully scanning complicated PSG
signals. If the pre-screened results are Severe, the experts
can choose to proceed with the actual PSG test for a fuller
examination. Another is that a potential patient may wear a
simple ECG device to check their OSA status before deciding
whether to undergo the more reliable PSG test based on their
pre-screened OSA severity level. By doing so, the patient
may save a considerable fee for an actual PSG examination
as well. We expect our model to evolve into a useful OSA
pre-screening tool, by which we can prioritize OSA patients
under limited PSG resources.

Our contributions are briefly summarized below.
• We propose a novel OSA severity classification scheme
using deep learning models trained with actual datasets,
including rigorous ablation studies, to contribute to
establishing and optimizing our classification model.

• We present a novel labeling technique using the closest
definition to OSA. Specifically, our technique, termed
C-20, shows a mere 2.3% MAPE compared to the
human-expert annotation method. This results in outper-
forming the existing labeling method by reducing the
number of measurement errors up to 14×.

• We resolve the data imbalance problem, which is
the most challenging in this OSA severity estimation
research, by populating more of the underrepresented
Apnea and Wake data into the training set and apply-
ing the Synthetic Minority Oversampling Technique
(SMOTE).

• We introduce a new technique to derive pure sleep time
by deducting the nontrivial wake-after-sleep-onset time,
which contributes to overcoming underestimating the
degree of OSA severity.

• We demonstrate in our experiments using actual clinical
datasets that the proposed CLNet scheme outperforms
the state-of-the-art work by up to 41.8% in sensitivity
and 4.4% in accuracy. In particular, we achieve a 100%
recall rate in classifying severe OSA patients.
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FIGURE 1. The overall process of our OSA severity classification using single-lead ECG signal data.

The rest of this paper is organized as follows. In the
following section, we propose our overall methodology for
estimating OSA severity. Then, we present the performance
evaluation results of the proposed model on two different
datasets and discuss significant implications. Subsequently,
we review the existing literature. Finally, we conclude our
work and suggest future research directions in Section V.

II. PROPOSED METHODOLOGY
In this section, we elaborate on our OSA severity estima-
tion method using deep learning techniques as depicted in
Figure 1. The datasets we use are a private clinical dataset
collected fromKyungpook National University Chilgok Hos-
pital (hereafter, KNUCH Dataset) and the PhysioNet Apnea-
ECG database [13], [17], [18] (hereafter, PhysioNet Dataset).
Informed consent was obtained from all subjects involved in
the study. The KNUCH Dataset is provided in a full PSG
data format, which is a mixture of several different signals
in varying sampling frequencies, such as SpO2 (100Hz),
ECG (250Hz) and snoring (250Hz). First, we extract the
raw ECG signal which comes in varying sampling frequency
depending on the PSG machine in which the data was col-
lected. We have access to 250Hz and 1024Hz ECG signal
data from the KNUCH Dataset. We then perform data seg-
mentation and labeling. The PhysioNet Dataset is pre-labeled
by the authors of the dataset, hence we have no control over
the segmentation and labeling of this data and use the data
in its given labeled format. The filtering process is used for
the labeled KNUCH Dataset and the pre-labeled PhysioNet
Dataset. We then extract important features derived from the
ECG signal analysis. Below, we explain each step in detail
beginning with preprocessing.

A. PREPROCESSING
This section describes our preprocessing method including
segmentation, labeling, filtering, and feature extraction.

1) SEGMENTATION AND LABELING
The PhysioNet Dataset is the most commonly used dataset in
sleep apnea detection [6], [7], [11], [15], [16]. It is segmented

into 60-second epochs to provide ECG signal data where each
epoch has an annotation of Apnea or Non-apnea. Following
the example of this well-known dataset, sleep apnea detection
studies typically use 60-second long epochs. In the case of
determining sleep stage, due to the fact that sleep experts
normally annotate sleep stages every 30 seconds, we also
segment the data to determine sleep into 30-second epochs.
For the KNUCH Dataset, segmentation is performed using
30-second epochs when classifying sleep stage, and 1-minute
epochs for sleep apnea classification. The PhysioNet Dataset
does not provide sleep stage labels, but only recorded sleep
time.

FIGURE 2. Example of ECG data snippet with three different labeling
methods applied: (a) P-60 (existing), (b) C-60 (proposed), and (c) C-20
(proposed).

The PhysioNet Dataset is sampled at 100 Hz and has 6,000
sample points within a 1-minute epoch. Among them, the
respiratory event of the first data point is designated as the
label of the corresponding epoch as shown in Figure 2(a).
(This labeling technique is termed P-60.) This is con-
trary to the medical definition of an apnea event. Accord-
ing to the medical definition, an apnea event occurs when
abnormal breathing persists for more than 10 seconds [4].
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This discrepancy leads to many errors when comparing the
A/H count of the P-60 label to the real-world data, thus
making it difficult to measure the exact A/H count in sleep
apnea detection.

To address these concerns, we propose two methods of
OSA data labeling in this paper. For both methods, we use
the expert annotated data as input. The first is C-60 labeling
technique. If breathing stops for more than 10 consecutive
seconds within a 60-second epoch, the epoch is labeled as
‘A’ (Apnea). Everything else is labeled ‘N ’ (Non-apnea).
The C-60 label is a 2-class configuration, consisting of A
and N . In this labeling method, the A/H count is defined
by the number of epochs labeled A. Therefore, the total
number of A becomes the actual A/H count as seen in
Figure 2(b).

The second labeling technique, C-20 is shown in Algo-
rithm 1. The C-20 label is a 3-class (‘N ’, ‘A’, and ‘F’)
configuration. This labeling method uses 20-second epochs
for labeling (Lines 2 and 5-6). If all the data points in the
20-second epoch are non-apnea, the epoch is labeled N , if all
the data points are apnea, it is labeled A (Lines 7-8). In all
other cases where there exists a mixture of non-apnea breath-
ing and apnea data points, thus fragmenting the 20-second
epoch, we label ‘F’ for fragmented (Line 10). (Refer to
Figure 2(c).)
The main idea behind the method of counting OSA events

for both C-20 and C-60 is that we count the number of epochs
that are not labeled as N . However, in C-20, we have an
additional label termed F , resulting in a slight divergence
in the counting method as shown in Algorithm 2. To count
the A/H events using this label, we sequentially check the
labels until the label is A or F (Line 5). The A/H count is
incremented, flag is set to 1, and we continue to look at the
next label (Lines 6-7). If the next label turns out to be A,
we keep on with our search without changing the count or
flag since it is still the same Apnea event. If the next label is
F orN , the flag is set to 0 (Line 9) since the Apnea has ceased.
We continue looking through the list until we run into another
label that is A or F .

2) FILTERING AND FEATURE EXTRACTION
In the ECG signal, there are a series of waveforms P,
Q, R, S, and T and various intervals such as S-T, Q-T,
P-R, and R-R (RR) as illustrated in Figure 3(a). Among
them, the RR-interval and R-peak amplitude contain sig-
nificant information about OSA detection operations [8],
[15], [19], as can be seen in Figures 3(b) and 3(c). Our
ECG signal preprocessing sequence borrows from that of
Wang et al. [15]. To remove noise from the ECG signal, we go
through a filtering process. The Finite Impulse Response fil-
tering methods built into BioSPPy [20] and the median filter-
ing methods from SciPy [21] are used for this purpose. There
may exist epochs in which noise is not completely eliminated
despite applying the filtering methods. These epochs are

Algorithm 1 C-20 Labeling Method
Input : The Expert Annotated List (Label) and

Sampling Frequency (Hz)
Output: The Labeled List

1 Function Labeling(Label, Hz):
2 e← Hz * 20; // e: Epoch

3 l← len(Label) - mod(len(Label), Hz*60);
// l: label length

4 L← an empty list;
5 for i = 0 to l, i = i+ e do
6 Find x ∈ [i, i+e) for Label.
7 if x is unique then
8 L[i]← x; // x: A or N

9 else
10 L[i]← F ; // F: Fragmented Label

11 end
12 end
13 return L;

Algorithm 2 C-20 OSA Event Counting Method
Input : The Labeled List (LabeledList)
Output: Apnea/Hypopnea Counts (count)

1 Function Counting(LabeledList):
2 count ← 0;
3 flag← 0;
4 foreach x ∈ LabeledList do
5 if x ̸= N and flag = 0 then
6 count ← count + 1;
7 flag← 1 ;
8 else
9 if x ̸= A then flag← 0 ;

10 end
11 end
12 return count;

removed by applying certain thresholds to eliminate highly
abnormalR-peaks and physiologically impossible heart rates.

Feature extraction is performed using a 5-minute win-
dow in which the characteristics of the ECG signal are best
revealed for 1-minute epochs [15]. Depending on the ECG
signal’s sampling frequency, a discrepancy in the R-peak
detection may exist. To complement this difference, we use
the sampling rate of each ECG signal to determine not only
the threshold for R-peak detection but the sampling size
of the interpolation. Our work applies the Hamilton algorithm
[22] from BioSPPy [20] to extract R-peaks. The R-peak
amplitude is then used to calculate the RR-interval by the
distance between two adjacent R-peaks. The numbers of
R-peak amplitudes and RR-interval differ by epoch, which
makes these potential features inadequate input for themodel.
Thus, cubic interpolation is used to align the number of
R-peak amplitude and RR-interval of all epochs to 900 points
each.
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FIGURE 3. Snapshots of sample ECG waveform and signal.

FIGURE 4. Our CLNet model architecture showing the classification part of the overall OSA severity classification scheme process in detail.

B. MODEL TRAINING AND CLASSIFICATION
1) DATA IMBALANCE PROBLEM
As prevalent in many real-world data used in classifying
problems, PSG data also suffers from the data imbalance
problem [22]. The data imbalance problem arises when the
classes of a given dataset are not represented equally, which
leads to unfair disadvantages to the classification result for
the minority class. In our study, the Normal to Apnea ratio
for the PhysioNet Dataset is 7:4, while that of the KNUCH
Dataset is 6:1 for OSA classification. The Sleep to Wake
ratio for the KNUCH Dataset is 9:2 for sleep classification.
However, the Sleep toWake ratio for the PhysioNet Dataset is
unknown, due to the fact that the PhysioNet Dataset does not
provide Sleep and Wake labels. We find the Wake and Apnea
classes to be grossly underrepresented. To alleviate this data
imbalance problem, we apply SMOTE [23]. But the results
did not show a noticeable difference (as will be demon-
strated in a later table). Hence, we suggest an additional
method of introducing specific patient data representing
more of the underrepresented class as the training data. This
allows our model to look at a sufficiently balanced binary
class, allowing for a fair chance of classification for both
classes.

2) RESPIRATORY STATUS AND SLEEP STATE
CLASSIFICATION
We propose a hybrid deep learning model, termed CLNet,
of CNN (Convolutional Neural Networks) and LSTM (Long
Short Term Memory), built to classify respiratory states and
sleep states using single-lead ECG data. CNN shows high
classification performance while LSTM is suitable to classify
time series data such as patient ECG signals. Figure 4 is
the deep learning classification model structure of our work.
Once the ECG data goes through the segmentation, labeling,
filtering, and feature extraction processes, it is fed into the
CLNet model with a size of 900× 2 as input. In other words,
the input of our model is a feature map of 900 by 2, in which
the first and second rows are the respective sequences of
time-series points from the RR-interval and R-peak features
extracted from a preprocessed ECG signal with a 30-second
epoch.

We have conducted an ablation study to understand our
model better as we determine the causation of a better met-
ric and apply it to our CLNet model. Here we show the
two most significant results of our ablation study, where we
investigated the optimal number of convolution layers and
the dropout rate. In this study, the filter size is set to 64,
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FIGURE 5. Results of the ablation study on our proposed CLNet model.

showing the best performance among several options ranging
from 16 through 128 by a factor of two. As exhibited in
Figure 5, we chose 4 to be the number of our convolution
layers. A dropout rate of 0.7 shows the best sensitivity and
AUC results.

Consequently, CLNet has two convolution layers with
64 filters and a max pooling layer in the first block which
builds a feature map. The second block is identical to the first
block, with a dropout set to 0.7 to prevent overfitting. This
results in a 5 × 64 feature map output. Adding an additional
dropout after the first block resulted in an extreme reduction
of features. Then, we use LSTM with 128 cells to generate a
model that can well reflect the characteristics of time series
data.We then use the dense layer to generate a fully connected
layer of features from LSTM. Finally, the softmax function is
used to classify respiratory and sleep states.

3) AHI CALCULATION AND OSA SEVERITY ESTIMATION
As mentioned, AHI represents how many A/H events
occurred during pure sleep hours. The AHI indicates how
often a human subject cannot breathe consecutively for more
than 10 seconds during sleep. AHI can be derived by dividing
the total counts of the A/H events by the genuine sleep
hours [2]. Hence, the occurrence of A/H events during the
Wake state must be excluded from the total number of A/H
events during the entire sleep time. (There was no such case
where an A/H event was observed at the Wake state in our
dataset.) Also, the true sleep time must be calculated without
the time classified as Wake.

The degree of OSA severity is measured by AHI, as shown
below in Equation 1:

AHI =
A/H count during entire sleep time
entire sleep time− wake time

. (1)

An AHI lower than 5, which can be interpreted as the
subject having fewer than 5 A/H events on average in an

hour of sleep, is deemed normal. Otherwise, the subject
suffers from OSA. We then further classify the different
degrees of OSA severity [4] into a 4-class definition where
Normal is (AHI < 5), Mild (5 ≤ AHI < 15), Moderate
(15 ≤ AHI < 30) and Severe (AHI ≥ 30). We use this
4-class definition for our performance evaluation.

III. EMPIRICAL EVALUATION
A. ENVIRONMENT SETTINGS
The evaluation was run on an Ubuntu 20.04 LTS server with
Intel i7-9700K, 128 GB RAM, and 1 TB M.2 NVMe SSD.
Our models were written in Python. Our code and publicly
available datasets, to be described shortly, are released at
https://github.com/lab-paper-code/CLNet.

For our evaluation, all data were validated using the
inter-patient method, which does not use the same patient’s
data in training and testing. Two types of features were used,
with 900 data points extracted per feature per 1-minute epoch.
We used CNN and LSTM for our sleep state and respira-
tory event classification models. As shown in Figure 4 our
convolution filter size is 64, Kernel size 5, stride 2, Pooling
size 5, Dropout 0.7, LSTM 128, Dense 32, padding valid
with a categorical cross-entropy loss function. The Adam
optimizer was used with a batch size of 128. Note that these
parametric values were all determined by our rigorous abla-
tion studies as exemplified in Figure 5.

In this paper, we use two datasets: a publicly available
widely-used data set [13], [17] (termed PhysioNet Dataset)
and a private hospital dataset collected from Kyungpook
National University Chilgok Hospital (termed KNUCH
Dataset) [24]. Next, we describe each dataset and discuss the
experimental results of the dataset in detail.

B. PUBLIC PhysioNet DATASET
1) DATA SET INFORMATION
The Public PhysioNet Dataset is the well-known Apnea-ECG
database 1.0.0 used at the Computer in Cardiology Challenge
2000 available on PhysioNet [13], [17]. This database con-
sists of 70 ECG records containing 35 in the training set
and 35 in the test set. Each ECG signal is 6 to 8 hours long
and sampled at 100Hz with sleep apnea states annotated by
experts. Segmentation was performed at 1-minute epochs,
resulting in 34,428 epochs which translates to 573 hours
and 48 minutes worth of data. Non-apnea is labeled as N
while Apnea is labeled A. Apnea and hypopnea are not dis-
tinguished in this dataset. Additionally, basic patient informa-
tion such as age, gender, height, and weight, including AHI
(0 - 83), is provided for each record. Sleep is not annotated
in this particular dataset, and only the total sleep time is
recorded. This condition is equal for all research done on this
public dataset. A brief summary of the patient demographic
is exhibited in Table 1. Figure 6(a) shows the patient distri-
bution of different degrees of OSA severity presented in the
data.
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TABLE 1. Descriptions of the datasets used in this study: data structure, source, demographic information, number of subjects, and dataset size.

FIGURE 6. OSA severity distribution of both datasets.

2) RESPIRATORY EVENT CLASSIFICATION RESULTS
Table 2 provides a comparative evaluation of the performance
of our proposed model and that of the various earlier studies
using the PhysioNet Dataset with the existing label, P-60. As
exhibited in Table 2, CLNet, our proposed model, showed
91.2% accuracy, 97.2 AUC, 91.1% sensitivity, and 91.3%
specificity. We show a higher level of accuracy compared
to the relevant studies, even while using the existing P-60.
Especially, AUC increased by up to 10.3% with an accuracy
increase of 9.8%. All in all, our CLNet is overall the best and
outperforms all other existing work.

C. PRIVATE KNUCH DATASET
1) DATA SET INFORMATION
This dataset is derived from a private database consisting
of single-lead ECG among PSG data collected at KNUCH.
As illustrated in Table 1, ECG records of on average 7 hours
for a total of 216 patients (40 female, 176 male) with sleep
problems were collected. This adds up to 94,849 1-minute
epochs, translating into 1,580 hours and 49 minutes of overall
data. 105 patients were recorded at 250Hz and 111 patients
were recorded at 1024Hz, depending on the type of PSG
machine utilized. A single expert annotated sleep stages and
respiratory events. In the case of sleep stage, the American
Academy of Sleep Medicine Guideline [4] was followed.
In the case of apnea events, it consisted of Normal, Obstruc-
tive Apnea, Hypopnea, Mixed Apnea, and Central Apnea.
Note that Mixed Apnea includes Obstructive Apnea and

Central Apena. In addition, a PSG report for each patient is
provided to check basic patient information including AHI.
The subjects are between the ages of 5 and 97, with 3
non-adult subjects whose ages are 5, 17, and 18, respectively.
The number of non-adults was not sufficient enough to sep-
arate into a different group, so we merged the non-adult
subjects as one group. However, with the number of non-adult
subjects being minuscule, the effect on the overall data set
should be minimal. Subject BMIs (Body Mass Indexes) are
measured between 13.3 and 45.9. AHI varies much from
0.2 to 98.3, resulting in a mix of Normal, Mild, Moderate,
and Severe OSA cases as seen in Figure 6(b).

2) SEGMENTATION AND LABELING METHOD EVALUATION
RESULTS
Table 3 compares the actual expert annotated A/H count
and the A/H count resulting from each labeling technique
described in Section II-A1. C-20 was the best with the
lowest errors. Specifically, MAE (Mean Absolute Error) of
5.7, MAPE (Mean Absolute Percentage Error) of 2.3%, and
RMSE (RootMean Square Error) of 16.6, whileP-60 showed
the worse with MAE of 84.9, MAPE of 47.7% and RMSE
of 103.7. C-20 showed a whopping 20 times improvement of
MAPE over P-60. Meanwhile, C-60 fell approximately in the
median of the other two methods.

3) RESPIRATORY EVENT CLASSIFICATION RESULTS
Machine learning has been widely used in automatic
apnea detection before the introduction of deep learning.
In this paper, we have compared the results of several
machine-learning techniques with our proposed scheme.
In order to build a machine learning model on ECG data,
a feature extraction process is needed. HRV (Heart Rate
Variability) in the ECG data is a key feature for apnea detec-
tion [31]. We use NeuroKit [32] for extracting HRV features,
consisting of time-domain, frequency-domain, and nonlinear
features.

The time-domain feature is the most widely used, intu-
itive measure to explain the characteristics of HRV [33].
It uses statistical methods to evaluate the RR-interval fluctu-
ation. Specifically, 14 features, including the average, stan-
dard deviation, and median values from RR-interval, are
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TABLE 2. Performance comparison on the PhysioNet dataset using the existing labeling scheme (P-60).

TABLE 3. Labeling performance comparison where the apnea/hypopnea
count for each labeling technique is compared to the ground truth.

extracted. The frequency-domain feature estimates the power
spectrum density to split the RR-interval frequency band-
width [33]. From the Low-Frequency band (0.04 - 0.15Hz)
and High-Frequency band (0.15 - 0.4Hz) we extract 7 fea-
tures such as the ratio and normalized values. Since the
time-domain and frequency-domain features do not reflect
the changes in HRV, we use the nonlinear features to quan-
tify the difference [34]. Additionally, we extract 34 fea-
tures, including the Area Index, Guzik’s index [34], Slope
Index, and Porta’s Index [34]. We apply the 5-minute window
method to extract these features.

For classification on the KNUCH Dataset using machine
learning, we experiment with well-known algorithms such
as Gradient Boosting [28], K-Nearest Neighbor [28], Light
Gradient Boosting [29], Logistic Regression [28], Random
Forest [28], and XGBoost [30]. Table 4 shows the sleep
apnea classification results when applying the existing P-60
and new C-60 labeling methods, respectively, for the various
classification algorithms. In all classifiers with theP-60 label,
the specificity is very high. Still, the sensitivity is too low,
meaning that most cases are classified as Non-apnea, but
Apnea can not be well classified. However, with the C-60
label that we propose applied, the Apnea sensitivity has con-
siderably grown in most existing machine learning models up
to by about 18 times (in Logistic Regression). We confirm
that our proposed C-60 is very effective and specialized in
classifying sleep apnea correctly.

On one hand, to address the data imbalance problem,
we created four variations of our proposed model (CLNet):
‘unbalanced’ using a randomly configured training set,
‘balanced SMOTE’ using the SMOTE oversampling tech-
nique, ‘balanced Severe’ which introduces high propor-
tion of minority classes in the training set, and ‘balanced
Severe+SMOTE’ which combines both balanced Severe and

SMOTE. When applying the P-60 label, the Non-Apnea to
Apnea ratio for the unbalanced group is 4.5:1, the balanced
Severe group is 2:1, and the rest is 1:1. With the C-60
labeling technique, the Non-Apnea to Apnea ratio for the
unbalanced group is 2.5:1, while the other balanced groups
showed 1:1. In effect, the proposed C-60 labeling method
allows us to introduce unbiased Non-Apnea and Apnea data
into the model’s training set, which helps resolve the data
imbalance problem.

We evaluated the performance of our variations of the
proposed CLNet classification model performance on the
KNUCHDataset labeled by P-60 and by C-60. (Note that any
ECG data with respiratory event annotations can be labeled
by these two labeling techniques.) The PhysioNet Dataset is
public, with many known studies available. However, since
the KNUCH Dataset is a private dataset that is used for the
first time in this paper, for performance comparison, we have
implemented Wang et al.’s model [15], termed ‘Modified
LeNet-5,’ on this same dataset, given that their code is pub-
licly available.

As exhibited in Table 4, the proposed CLNet when
combined with ‘balanced Severe+SMOTE’ outperforms the
compared model [15] with up to 5.8 difference in the
experiment using the P-60 label regarding AUC, and an
astonishing 41.8% difference regarding sensitivity. In the
competitor, the sensitivity (31.7%) is significantly lower than
the specificity (97.9%). Namely, the model is highly biased
toward the majority class, which shows high performance
in the Non-Apnea classification but low performance in the
Apnea classification. Overall, our sensitivity results are the
highest, showing the best performance on Apnea classifica-
tion, which is critical in our work.

The results of the experiment using the C-60 label are also
shown in Table 4. Our model improves the accuracy and AUC
by 4.4% and 6.7, respectively, compared to the Modified
LeNet-5 [15]model. However, we show a shocking increment
of 32.1% in sensitivity, meaning that the Apnea class is highly
well classified despite a decrease in Non-apnea classification
with 84.2% specificity. When using a well-balanced train-
ing set, the classification for the minority class increases
while the classification for the majority class may decrease.
AUC evaluates classification performance using sensitivity
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TABLE 4. Performance comparison on the KNUCH dataset.

and specificity. The fact that AUC is high indicates that both
classes of the model are well-represented and well-classified.
For the balanced Severe+SMOTE, AUC is highest at 92.1,
indicating that the overall classification of both classes is
unparalleled.

We also include the results of running only CNN and
LSTM of CLNet each on the KNUCH Dataset labeled
with P-60 and C-60 as a baseline for our work. The
accuracy of CLNet for P-60 label is slightly higher than
CNN, but the sensitivity, which represents the performance
of Apnea classification, shows a significant increment of
28.8%. This means that Apnea classification performed
poorly for CNN, which can be interpreted as most of the data
points being classified as Non-Apnea, leading to high speci-
ficity. Meanwhile, the accuracy, AUC, and sensitivity are all
higher for C-60; in particular, the sensitivity shows a 16.8%
difference. Also, LSTM underperforms CLNet for both P-60
and C-60; in particular, the sensitivity of LSTM offers a crit-
ically low 2.4% and 11.1% performance for P-60 and C-60,
respectively.

In the case of C-20, which is 3-class, the introduction of
the F label creates a harsher data imbalance attributed to
relatively more minor labeling of A classes than with the
2-class labeling. The balanced Severe+SMOTE is applied
to show an accuracy of 79.2% while the F1-scores of N ,
A, and F class show 87.2%, 51%, and 71%, respectively.
Future work needs to improve the classification performance
of theA label to achieve amore sophisticated respiratory-state
classification.

4) SLEEP TIME ESTIMATION RESULTS
Here we discuss the overall sleep time estimation perfor-
mance measured using the error metrics. To derive true sleep
time, our proposed CLNet model performs a binary class
classification: Sleep or Wake. As a result, our model achieves
an accuracy of 85.3%, anAUCof 85, and a sensitivity of 87%.
Pure sleep time is calculated by deducting the classifiedWake
time from the entire sleep time. As with the respiratory event
classification, the minority class was intensively configured
in the training set.We compared the estimated pure sleep time
with the expert annotated sleep time without any Wake time.
Consequently, our model achieves an MAE of 0.73, MAPE
of 10.92%, and RMSE of 0.99.

TABLE 5. 4-Class OSA severity classification report.

5) OSA SEVERITY ESTIMATION RESULTS
Exhibited in Table 5 are the results of the 4-class OSA severity
classification that our model performs.When we detect OSA,
the higher the precision, the higher the confidence that the
subject estimated as OSA is truly an OSA patient, and the
higher the sensitivity, the higher the probability of estimating
OSA patients as true OSA. The precision in boundary cases
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such asMild is relatively low, at about 85%, but the estimation
for serious OSA patients show perfect precision at 100%,
in both Moderate and Severe cases.
Figure 7 compares the performance of OSA severity

classification between our proposed model and Wang et al.’s
model [15]. Our model’s total accuracy for 4-class shows
90%, as displayed in Figure 7(c). In the compared model,
the authors used the ‘‘mixed’’ sleep time without excluding
the Wake time when calculating AHI. Thus, to make a fair
comparison between ours and their model, we also compute
a value of AHI over the entire sleep time, including the Wake
time. As a result, our model wins their model by gaining an
increase of 2% (Figure 7(a) vs. Figure 7(b)). When the deduc-
tion of theWake time is reflected, our model still outperforms
their model by 12% (Figure 7(a) vs. Figure 7(c)). From these
results, we find that the proposed CLNet is more effective
than the compared model [15] in OSA severity classification.
Furthermore, our model’s accuracy spikes when we consider
and deduct theWake time. These empirical results support our
decision to use a Wake time-aware sleep state classification
model to estimate sleep time for better calculating AHI to
classify OSA severity.

6) SIGNIFICANCE AND IMPACT
Our proposed CLNet model yielded a total accuracy of 90%
for the 4-class OSA severity classification on the 50 tested
human subjects, as visualized in Figure 7(c). We empha-
size that our results were obtained across many human sub-
jects never used in training. We could reproduce a similar
estimation model [15] using modified LeNet-5 and fit this
on our datasets. Our model also performed 12% better total
accuracy on the KNUCH dataset in 4-class classification
compared to the state-of-the-art model.

Based on these results, our model has revealed a clear
potential as a ‘‘pre-screening’’ tool to locate patients with
Severe OSA more accurately. Again, to the best of our
knowledge, this is the first to estimate the degree of OSA
severity, reflecting the Wake state in the sleep stage on
a large-scale group of actual human subjects reaching a
triple-digit number.

7) DISCUSSION
Table 6 summarizes the advantages and drawbacks of our
model compared with the closest work, LeNet-5 [15]. Our
CLNet and LeNet-5 models use a single-lead ECG signal,
getting them to work easily in a wearable device. Our work,
though, is superior to the LeNet-5 in many folds. One of
the biggest advantages, which makes our work original and
novel, is that our model can estimate OSA severity degree
more accurately by deducting Wake time from the total sleep
hours. In the meantime, the LeNet-5 does not consider this;
thus, it may risk underestimating the OSA severity degree.
Also, our CLNet resolves the data imbalance problem by
intensively learning Wake and Apnea/hypopnea labels when
trained, but the compared work does not address this imbal-
ance issue. Moreover, our model outperforms the LeNet-5

up to 12% in accuracy; in particular, it achieves 100% recall
on severe OSA cases. In the meantime, the proposed CLNet
model spends slightly more training time than the LeNet-5
model, mainly due to its complexity.

On one hand, both works reveal three disadvantages. First,
due to an ECG epoch segmentation, an apnea or hypop-
nea event may occur between two 60-second epochs, and
a 60-second epoch may contain several apnea and hypop-
nea events. In addition, the data used in the models cannot
distinguish between apnea and hypopnea events, soliciting a
more sophisticated classification model. Lastly, both works
do not consider detecting central sleep apnea that occurs less
frequently than OSA.

In the following section, we compare our work with other
major studies [15], [16], [19], [35], [36] in greater detail.

IV. RELATED WORK
Many researchers have studied sleep apnea and experimented
on better detecting and classifying patients with this OSA
disease. A wealth of the research employs machine learning
techniques, such as Support Vector Machine (SVM) [37] or
Gaussian SVM [6] and Hidden Markov [11] to name a few.
Kim et al. [35] explored various machine learning models
such as Logistic Regression, Random Forest, XGBoost as
well as SVM and concluded that SVM showed the best result
in their study. Many others imported assorted deep learning
techniques such as various adaptations of CNN [7], [15],
[16], [19], [38] or other deep learning models [11], [37]
in an attempt to classify patients with OSA. Others used
different biosignals such as SpO2 [39] or respiration signals
such as Oronasal thermal airflow (FlowTh), Nasal pressure
(NPRE), and abdominal respiratory inductance plethysmog-
raphy (ABD) [40]. Even when using single-lead ECG to
classify Apnea, previous work used different features such
as Instant Heart Rate (IRH) [39], [41].

Schlüter et al. [36] used frequency analysis techniques to
extract features from ‘‘quadruple’’ bio-signals captured by
PSG, classify sleep stages using decision trees, and detect
A/H, resulting in a 95.2% accuracy for sleep stage scor-
ing and 94.5% for classifying A/H. However, they used
the Rechtschaffen and Kales rule annotation [42] with
multi-channel classification. Thus, their work fundamentally
differs from our American Academy of Sleep Medicine
Guideline [4] on single-lead ECG signal classification.
This makes it difficult to perform a fair comparison
with our work. Also, there are previous studies to pre-
dict the sleep stages by using other biosignals such as
Electroencephalography (EEG) [43]. In contrast, we use the
ECG signals, making it possible to test the degree of OSA
severity in a wearable device.

Almutairi et al. [19] used CNN and LSTM networks to
automatically extract the features from the ECG signals.
SVM was used to classify OSA and healthy ECG signals,
with sensitivity, specificity, and overall accuracy being
91.24%, 90.36%, and 90.92%, respectively.
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FIGURE 7. 4-class confusion matrix on OSA severity classification.

TABLE 6. Advantages and drawbacks of our model and other studies on the PhysioNet dataset and the KNUCH dataset.

Mashrur et al. [16] explored a Scalogram-based CNN to
detect OSA using single-lead ECG data on the PhysioNet
Apnea ECG dataset. Their sensitivity, specificity, and overall
accuracy were 87.3%, 89.3%, and 88.5%, respectively.

Wang et al. [15] selected the R-peak feature from the ECG
signal, which is highly relevant to breathing. By introducing
a modified LeNet-5 deep learning model using RR-interval
and R-peak amplitude, the accuracy, sensitivity, and speci-
ficity were 87.6%, 83.1%, and 90.3%, respectively. We could
reproduce this model thanks to the released code provided
by the authors. We have used this model as the closest com-
petitor for direct comparison to our model. Our work reveals
better accuracy, sensitivity, and specificity, as demonstrated
in Tables 2 and 4.

V. CONCLUSION AND FUTURE WORK
In this paper, we proposed a novel deep learning-based
scheme for accurately estimating the degree of sleep apnea
based on single-lead ECG data recorded during actual PSG.
Unlike previous works, for more accurate AHI estimation
results we introduced a method of calculating and excluding
the total duration of Wake states from a night of overnight
sleep. Moreover, we presented another method of accurately
detecting A/H events by applying CNN and LSTM on a
single-lead ECG. Using these two methods, along with a
novel labeling technique as well as features extracted from
the data such as RR-interval and R-peak amplitude, we were
able to predict a subject’s apnea classification with a total

accuracy of 84.5% on the KNUCH dataset of 216 subjects,
and 91.2% total accuracy on the PhysioNet Dataset of 70 sub-
jects. Our scheme demonstrates the effectiveness of accu-
rately predicting Severe OSA or Normal cases on real-world
clinical datasets.

In the future, we plan to strengthen the proposed classi-
fication model from a variety of viewpoints. First, we can
use a combination of other bio-signals such as SpO2, adding
more features to extract such as EDR(ECG-Derived Res-
piration), or utilizing different deep learning techniques
to further improve the performance, such as Bidirectional
LSTM (BiLSTM) and Gated Recurrent Unit (GRU). In addi-
tion, it would be meaningful to investigate the most impor-
tant features of the model from the clinical perspective.
Another research path will include ways to further resolve
the data imbalance problem, using different undersampling
and oversampling techniques or a mix of both [44]. It is also
essential to build a better sleep time estimation model [45]
on real patient datasets. We are currently developing a
lightweight version of our model with plans to launch an
OSA pre-screening service for wearable or mobile devices. A
better judgment between the boundary cases at the interme-
diate level of OSA is to be investigated. Although our work
focuses on determining the degree of OSA severity through
binary classification of breathing events, it can be extended
to classify respiratory status into three categories: Apnea,
Hypopnea, and Normal. Future work may include regres-
sion analysis to assess Apnea severity, investigate potential
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influences of abnormal respiratory events on the estimation
of OSA severity degree using ECG signals, and explore fea-
ture selection using image interpretation techniques such as
Grad-CAM [46] and deepSHAP [47]. Additionally, exploring
the effects of appropriately handling AC power and EMG
artifacts in raw ECG signals during preprocessing could be
interesting in enhancing the accuracy of estimating the sever-
ity degree of OSA. Finally, we will extend our model to cover
more patients and look into other clinical datasets.
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