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ABSTRACT Self-optimizing control (SOC) aiming to select most appropriate controlled variables (CVs),
is a promising control strategy in the field of real-time optimization. An approach, global self-optimizing
control (gSOC)was proposed to find globally optimal CVs byminimizing the global average of the economic
loss over the whole operation space. However, as the gSOC was developed from the local SOC, it inherited
the same theoretical basis by assuming invariant constraint activeness. Nevertheless, this will significantly
restrict the applicable range of SOC as in many real systems activeness varying constraints are common. The
difficulty for the gSOC to consider activeness varying constraints is the degrees of freedom inconsistency in
CV selection. To tackle the problem, this paper rebuilds the gSOC approach based on the Lagrange function
and the well known Karush-Kuhn-Tucker conditions to incorporate active and inactive constraints uniformly
in a Lagrange-based global average loss expression. As the gSOC approach is based on optimal measurement
data, optimal values of the newly introduced Lagrange multiplies can also be obtained from the same
optimization results as well. With this novel Lagrange-based loss function, an optimization problem for CV
selection is formulated although non-convex. Thus, the short-cut algorithm of the original gSOC approach
is amended for the Lagrange-based gSOC (LgSOC) problem to derive a closed-form solution. Furthermore,
the existing cascade SOC structure for a single constraint is generalized to guarantee all constraints satisfied
in the whole space. The proposed LgSOCmethod was proved effective to solve constraint activeness varying
gSOC problems through an evaporator case study.

INDEX TERMS Activeness varying constraints, global self-optimizing control, Lagrange-based method.

I. INTRODUCTION
Self-optimizing control (SOC) [1], [2] is a control strategy
for real-time optimization (RTO) of chemical processes. SOC
focuses on the selection of appropriate controlled variables
(CVs) under disturbances so that the near-optimal operation
(with acceptable economic loss) can be achieved by just
keeping CVs at constant setpoints through simple feedback
control.

Traditional RTO approaches usually work in a two layer
structure [3], which needs a RTO layer (which is open-
loop) to update the optimal steady-state setpoints for the
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regulatory control loops in the presence of disturbances and
uncertainties. Whereas, SOC works in a feedback control
structure, which runs faster than an upper optimizer and no
longer needs waiting time for reaching another steady state
in traditional RTO. Besides, the RTO layer can be omitted
when the selected self-optimizing CVs are able to achieve an
acceptable economic loss as shown in Fig. 1, hence there is no
need for SOC to update setpoints of CVs frequently to main-
tain optimal operation, just keep CVs at constant setpoints.
Therefore, the core of SOC is to search for optimal CVs.

A. MOTIVATIONS
Most SOC methods have assumed that disturbances do not
alter active constraints. However, in general, disturbances
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FIGURE 1. Structure of self-optimizing control (c and cs: self-optimizing
controlled variables and setpoints; H: linear combination matrix; y:
measurements; u: manipulated variables; d: disturbances).

can cause changes to the active set and may require dif-
ferent operation of the plant in different regions defined by
active constraints, which means that different CVs should
be selected in different regions. Nevertheless, it results in
relatively complicated implementation structure and we are
motivated to propose a simple yet efficacious method to
address the issue.

B. RELATED WORKS ABOUT LOCAL AND GLOBAL SOC
METHODS
Under the assumption that the constraint activeness does not
change, a great number of approaches have been proposed
to select optimal CVs by minimizing the economic loss in
the case of disturbances and uncertainties. The exact local
method [4] was proposed based on linearization around the
nominal optimal point and the optimal linear combinations
of measurements were selected as CVs through minimization
of worst case local economic loss, which was evaluated by
the second-order Taylor expansion of the cost function at the
nominal point. To derive an analytical solution of linear com-
bination matrix H, the null space method [5] and its extended
version [6] were proposed without and with considering mea-
surement noise. The null space method chooses optimal H as
the left null space of optimal sensitivity matrix with respect to
disturbances, hence just minimizing the loss caused by distur-
bances. The extended method uses extra degrees of freedom
to deal with the effect of measurement noise after minimizing
the effect of disturbances. Since the above methods are all
based on a linearized model, their optimality is locally valid
and the overall performance, in most cases, is not satisfactory.

To address the local deficiency, the global optimal CVs
were proposed to approximate the necessary conditions of
optimality (NCO) through regression over the entire oper-
ation space with data produced by Monte Carlo simula-
tion [7], [8], [9], [10], [11]. It overcomes the limitation of
local methods and a near-optimal operation can be achieved
globally when the CVs are kept at zero. The achievable loss is
greatly dependent on the regression error, which is associated
with the sampling points. To reduce the regression error,
the sampling points should be close to the optimum, where
the final system is expected to work around. However, the
gradient is zero at the optimum, which makes the regression
problem singular. To overcome this, another global SOC
(gSOC) method [12] was proposed using the optimal data for
CV selection to minimize the global average economic loss,
which were derived through the second-order Taylor expan-
sion across the whole disturbance and uncertainty space,
rather than a single nominally optimal point in local meth-
ods. The CV selection problem was formulated as a nonlin-
ear programming (NLP) problem and an efficient short-cut
algorithm [12], [13] was proposed to solve the problem by
introducing an extra constraint to force a unit Hessian matrix
at a reference point.

C. RELATED WORKS ABOUT CONSTRAINT HANDLING IN
SOC
However, all the above approaches are under the invariant
constraint activeness assumption, i.e. the set of active con-
straints does not change. This assumption is acceptable for
local SOC approaches as only a small neighborhood of a
reference point is considered in these methods. However,
in practice, varying activeness constraints commonly exist,
particularly when disturbance ranges are large. The gSOC
approach inherited the theoretic basis from the local SOC to
restrict itself for invariant constraint activeness cases. It sig-
nificantly restricts the operation range for the gSOC to be
applicable.

The constraint activeness varying issue has been studied
since the local SOC theory was developed. To solve this issue
within the local SOC theory, the main difficulty is the varying
degrees of freedom for CVs to be selected. To address this
issue, in one of these approaches, the entire operation space
was divided into several regions such that within each region,
the active constraints are invariant, hence the null space
method is applicable to derive a set of specific CVs for a spe-
cific region [14]. With this approach, a switching strategy is
also needed, which results in a complicated control structure.
As an alternative, since the cascade control structure is widely
used in many chemical processes such as integrating [15] and
unstable processes [16], [17], it can be also applied to cope
with conditionally active constraints [18]. The constrained
variables are controlled in the inner loop, whose setpoints are
determined by the self-optimizing CVs (selected as the gradi-
ent of the cost function with respect to the manipulated vari-
able) in the outer loop. The cascade control structure ensures
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that the constrained variables are controlled at their setpoints
when the constraints are active while the self-optimizing CVs
are maintained at zero setpoints to keep optimality when the
constraints are inactive. Nevertheless, due to the limitation
of the structure, the number of CVs should be no less than
the number of constrained variables which may vary between
active and inactive. To simplify the implementation policy,
the explicit constraint handling approach [19] was proposed
to find optimal CVs that make sure the constrained variables
are always within their feasible ranges. Based on the same
idea, the constraint estimation method [20] which incorpo-
rates the constrained variables with the gSOC formulation
was proposed for the globally optimal CVs. However, these
two approaches are both conservative because of off tracking
optimal values of constrained variables, which often leads to
a relatively large loss. Recently, an intelligent approach [21],
[22] was presented to find globally optimal CVs through
machine learning to make sure the optimal values of con-
strained variables are tracked as well as the economic loss is
acceptable. Whereas, it is restricted to deal with the case that
the number of remaining degrees of freedom and constrained
variables are the same.

D. PROPOSED IDEA IN THIS WORK
Due to the limitation of local SOC theory, the above meth-
ods are not able to solve the varying constraint activeness
problem satisfactorily either over complicated or over con-
servative. Such a local restriction is inherited even by the
gSOC. To overcome this problem, the theoretical basis has
to be rebuilt to get rid of the invariant constraint active-
ness assumption. For this purpose, by adopting the Lagrange
function and the well known Karush-Kuhn-Tucker (KKT)
conditions for constrained optimization problems, this paper
derives a new Lagrange-based quadratic economic loss func-
tion applicable to both unconstrained and constrained gSOC
problems. It ensures that the economic loss is always greater
than zero regardless of whether the constraints are active or
not. When the activeness of all constraints is invariant, the
new Lagrange-based loss is equivalent to the conventional
loss, hence it is a generalization of the original global average
loss. More importantly, the Lagrange-based loss provides a
unified criterion of optimality of a set of CVs so that the opti-
mal CVs can be obtained by minimizing the Lagrange-based
loss function over the entire operational space. However,
this optimization problem is complicated and non-convex.
To facilitate solving it, the short-cut algorithm of the original
gSOC [12] is adopted to work with the new Lagrange-based
loss function. An extra constraint is enforced that the Hessian
of the Lagrange function with respect to the CVs is constant
at a selected reference point. Then the explicit expression for
optimal CVs can be obtained. The proposed Lagrange-based
gSOC (LgSOC) method provides a systematic way to find
globally optimal CVs applicable to both constraint active-
ness varying or invariant cases. To further reduce the extra
loss caused by the short-cut algorithm, the LgSOC method

is retrofitted by enforcing multiple constraints at multiple
points. Furthermore, the existing cascade SOC structure for a
single constraint proposed in [18] is generalized in this work
to ensure all constraints are satisfied in the whole operational
space. A numerical example and a benchmark evaporator pro-
cess are studied to show the effectiveness of these methods.

E. CONTRIBUTIONS
The contributions to knowledge made in this paper are:

1) a general Lagrange-based quadratic loss function is
proposed to provide a unified criterion of optimality
of a single set of CVs for both varying and invariant
constraint activeness cases;

2) the LgSOC method is introduced to facilitate solving
the non-convex NLP problem which is formulated to
find optimal CVs by minimizing the Lagrange-based
quadratic loss;

3) the one degree of freedom cascade SOC structure is
generalized to guarantee that all constraints are satis-
fied.

The paper is organized as follows. Section II derives the
Lagrange-based loss function in detail and in Section III,
the LgSOC method and its retrofitted version are proposed
to find optimal CVs efficiently. Section IV introduces the
generalized cascade constrained SOC structure. A numerical
example and an evaporator case study of the proposed meth-
ods are given in Section V, and finally, the work is concluded
in Section VI.

II. DERIVATION OF LAGRANGE-BASED LOSS FUNCTION
A general constrained nonlinear optimization problem is con-
sidered as follows

min
u
J (u,d) (1)

s.t. g(u,d) ≤ 0

with available measurements

y = f(u,d) (2)

ym = y + n (3)

where J is a scalar cost function to be minimized, g are the
constraints related to operational safety and product quality
requirements, and f is the input-output model function, and
u, d, y, ym and n are manipulated variables, disturbances,
theoretical measurements, actual measurements and mea-
surement noise, respectively. The objective cost function and
constraints are both indirectly related to the measurements by
using the manipulated variables to control the corresponding
controlled variables under different disturbances.

For the inequality constrained optimization problem
(1), the necessary conditions of the problem are the
Karush-Kuhn-Tucker (KKT) conditions [23] presented as
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follows

Lu(u,d, λ) = Ju(u,d) +

ng∑
j=1

λjgju(u,d) = 0 (4)

λjgj(u,d) = 0 (5)

λj ≥ 0 (6)

gj(u,d) ≤ 0 (7)

whereL(u,d, λ) = J (u,d)+
∑ng

j=1 λjgj(u,d) is the Lagrange
function, ng is the number of constraints and λj is the jth
Lagrange multiplier corresponding to the jth constraint gj.
Lu, Ju and g

j
u represent the gradient ofL, J and jth element of

g respectively, all with respect to u. uopt(d) and λ
j
opt(d), j =

1, . . . , ng are the optimal solution to optimization problem (1)
satisfying the KKT conditions (4)-(7).

SOC method tries to find an optimal combination of mea-
surements c = Hy, where H is a linear combination matrix,
as CVs such that when c is kept at constant setpoint cs by
adjusting u, the optimal steady-state operation (1) can be
achieved. Note that measurements y can be expanded with
a constant 1, e.g. ŷ =

[
1 yT

]T, and at the same time, H can
be augmented to be Ĥ =

[
h0 H

]
, where h0 = −cs. In this

case, ĉ should be controlled at zero setpoints. For simplicity,
y and H will represent ŷ and Ĥ respectively in the remaining
part of the paper.
Remark 1: Since the economic operation of the plant often

occurs at steady-state for most continuous processes, the
objective in most continuous processes is simply to find the
economically optimal steady-state operating point. There-
fore, this paper mainly focuses on achieving asymptotic
optimal operation by finding optimal CVs, and improves
dynamic performances by tuning parameters of the feedback
controllers.

The Lagrange-based economic loss is selected as the cri-
terion of CV selection and it is defined as the difference
between the actual value of the Lagrange function and its
optimum shown as follows

L = L(u,d, λ) − Lopt(d) (8)

However, it can be difficult to calculate the Lagrange-based
economic loss straightforward from (8) since the computation
is cumbersome when the controlled system is operated in
closed-loop. To simplify this problem, the loss can be approx-
imated through the second-order Taylor expansion of L with
respect to u at the optimal point

L(u,d, λ) ≈ Lopt(d) + Lueu +
1
2
eTuLuueu (9)

where eu ≜ ufb − uopt is the input deviation from the
optimum in the closed loop and (·)fb represents the terms
of actual values after feedback control. Lu and Luu are the
gradient and Hessian matrix of L with respect to u evaluated
at the optimum respectively. Lu is obviously equal to zero
according to the KKT condition (4) and Luu is symmetric

positive definite since it is evaluated at the optimum and it
can be calculated from

Luu = Juu +

ng∑
j=1

λ
j
optg

j
uu (10)

where Juu and g
j
uu are the Hessian matrix of J and jth element

of g with respect to u at the optimum respectively.
Therefore, the Lagrange-based economic loss function can

be expressed in a quadratic form as indicated below

L = L(u,d, λ) − Lopt(d) ≈
1
2
eTuLuueu (11)

Since the global SOC method does not rely on a linearized
model like local SOC methods but the original nonlinear
model (2), the values of ufb and yfb are determined by the
following two equations

yfb = f(ufb,d) (12)

cfbm = Hyfbm = H(yfb + n) = 0 (13)

where cfbm means the measured values of CVs under closed-
loop control, which should be controlled exactly at zero at
steady state without implementation error when an integral is
included in the feedback controller. However, minimizing L
in (11) requires solving a set of nonlinear model equations for
a given H because L is implicitly related with H through ufb,
resulting in cumbersome and time-consuming calculation.

To address this issue, L can be similarly expressed in the
quadratic form in terms of c as

L ≈
1
2
eTcLccec (14)

where ec ≜ cfb − copt is the CV deviation from the optimum.
Lcc is the Hessian matrix of L with respect to c evaluated at
the optimal point, which is also symmetric positive definite
and has the following relationship with Luu [12].

Lcc = (Hfu)−TLuu(Hfu)−1 (15)

where fu is the sensitivity matrix of y with respect to u.
Since cfb = Hyfb = H(yfbm − n) and cfbm = Hyfbm = 0

through feedback control, cfb = −Hn. Because copt = Hyopt,
ec = cfb − copt = −Hn − Hyopt = −H(yopt + n). Thus, the
Lagrange-based economic loss can be explicitly with H and
expressed as follows

L =
1
2
(yopt + n)THTLccH(yopt + n) (16)

Remark 2: Since cs has been incorporated in the formula-
tion of the combination matrix, the setpoint for cfbm is zero.
When an integral is included in the feedback controller, cfbm
should be exactly equal to zero at steady state. Whereas, cfb

does not necessarily equal zero due to measurement noise.
In addition, copt is the optimal value of c for a given d, which
is also not necessarily equal to zero since the objective is to
minimize L in (16).

Note that in the unconstrained gSOC method, the original
economic loss is approximated through second-order Taylor
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expansion of J with respect to c at the optimum shown as
follows [4]

J (c,d) = Jopt(d) + Jcec +
1
2
eTc Jccec (17)

where Jc and Jcc are the first derivative and the Hessian
matrix of J with respect to c at the optimum, and Jcc satisfies
the following relationship

Jcc = (Hfu)−TJuu(Hfu)−1 (18)

Since the active constraint set is invariant in the uncon-
strained case, Jc = 0. The original global economic loss
is then L0 =

1
2e

T
c Jccec > 0 since Jcc is positive definite

at the optimal point. However, under the circumstance that
constraint activeness varies, the loss can not be guaranteed to
be greater than 0 because Jc is not necessarily equal to zero
and thus the loss can not be expressed in the quadratic form.
In this case, if L0 = J (c,d)−Jopt(d) = Jcec+ 1

2e
T
c Jccec < 0,

it indicates that the operational constraints in the system are
violated. Therefore, the CV selection criterion in the uncon-
strained gSOC method is no longer applicable to constrained
gSOC problems. As a contrast, Lc = Lu(Hfu)−1

= 0
always holds no matter whether the active set changes or not
according to (4), hence the Lagrange-based economic loss
can always be described as a quadratic form in (16) and is
always greater than zero regardless of whether the active set
changes or not since Lcc is positive definite at the optimal
point.

To sum up, the Lagrange-based global economic loss can
be regarded as an extended form of the original global eco-
nomic loss, and the Lagrange-based global economic loss
degenerates into the original one when active set does not
change. In addition, the former is suitable for both constraint
activeness varying or invariant cases while the latter only
applies to the invariant active set case.

Following the idea in gSOC method [12], the Lagrange-
based global average economic loss can also be expressed as
two parts

Lgav = E(
1
2
(yopt + n)THTLccH(yopt + n))

= E(Ld ) + E(Ln) (19)

where

Ld =
1
2
yToptH

TLccHyopt, Ln =
1
2
tr(W2HTLccH) (20)

tr(·) represents the trace of a matrix, E(·) stands for the
expectation and W2

= E(nnT) is a diagonal matrix if n are
mutually independent. Ld and Ln denote the contribution of
the disturbance and measurement noise to the economic loss
respectively.

III. LAGRANGE-BASED gSOC METHOD
For a nonlinear process, the expectations of Ld and Ln in (20)
are generally hard to be analytically calculated. To overcome
the difficulty, the Lagrange-based global average economic

loss can be approximated over a set of sampling points
through Monte Carlo simulation as below

Lgav ≈ Lgav ≜
1
N

N∑
i=1

[
Ld(i) + Ln(i)

]
(21)

where N is the number of sampled optimal points over the
whole operation region, and the subscript (·)(i) represents
the terms corresponding to the ith disturbance scenario d(i),
obtained by sampling which follows the random distribution
specified to the disturbance.

SOC method intends to find the optimal H by minimizing
the Lagrange-based global average economic loss. Note that
the solution H to the optimization problem of minimizing
Lgav in (21) is not unique, given in the Appendix.
However, minimizing Lgav in (21) is a non-convex opti-

mization problem, hence could not be solved efficiently.
In order to develop an efficient algorithm to approximate the
optimal solution, a short-cut approach [12] is adopted here.
By assuming Lcc constant over the entire disturbance region,
then, Lgav becomes a quadratic function, hence easy to be
optimized. It is worth noting that the assumption of Lcc = I,
equivalent to Hfu = L1/2

uu , is directly imposed on the loss
function Lgav but not explicitly involved in the optimization
problem. Therefore, to guarantee the uniqueness of the opti-
mal CVs as well as enforcing Lcc,(r) = I at the reference
point, the extra constraint of Hfu,(r) = L1/2

uu,(r) imposed on a
selected reference point is required, where the subscript (·)(r)
represents the terms corresponding to the selected reference
point.

Consequently, (20) can be simplified as

Ld =
1
2
yToptH

THyopt, Ln =
1
2
tr(W2HTH) (22)

and the short-cut global average economic loss can be written
as

Lgav = E(
1
2
yToptH

THyopt) + E(
1
2
tr(W2HTH))

=
1
2N

∥∥∥YTHT
∥∥∥2
F

+
1
2

∥∥∥WHT
∥∥∥2
F

(23)

=
1
2

∥∥∥ỸHT
∥∥∥2
F

where

Y =
[
yopt,(1) · · · yopt,(N )

]
, Ỹ =

[
1

√
N
YT

W

]
(24)

yopt,(i) is the optimal measurement vector at ith sampling
point.

Thus the original optimization problem can be reformu-
lated as

min
H

Lgav =
1
2

∥∥∥ỸHT
∥∥∥2
F

(25)

s.t. Hfu,(r) = L1/2
uu,(r)
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Then H can be explicitly derived as below [6]

HT
=

(
ỸTỸ

)−1
fu,(r)

(
fTu,(r)

(
ỸTỸ

)−1
fu,(r)

)−1

L1/2
uu,(r)

(26)

To sum up, the detailed procedure for implementing the
proposed Lagrange-based gSOC (LgSOC) method to find the
globally optimal CVs is shown as follows

Algorithm 1 LgSOC Method
1: Sample the whole operation space using Monte Carlo

simulation to generate N different disturbance scenarios
2: Obtain optimal data such as yopt,(i), fu,(i), Juu,(i),

gjuu,(i) and λ
j
opt,(i) for each d(i)

(
i = 1 · · ·N , j = 1 · · · ng

)
through minimizing J (offline optimization), and then
calculate Luu,(i) from (10).

3: ChooseW. Construct Y and Ỹ in (24).
4: Compute the solution H from (26).

Remark 3: Note that it is different from the gradient-based
methods [7], [8] that use non-optimal data for regres-
sion, in which case the values of Lagrange multi-
pliers λj

(
j = 1 · · · ng

)
are undetermined. The proposed

Lagrange-based method is based on optimal data inherited
from the original gSOC method [12]. The optimal data such
as yopt and λ

j
opt can be obtained through offline solving the

original optimization problem (1). Then the optimalH in (26)
can be calculated offline based on these optimal data. For
an online application, since the exact value of H is already
known, the online values of CVs can be simply calculated
using c = Hy based on online measured values of y and
offline calculated H. Hence, instead of detecting the values
of λj online, only offline obtained optimal values λ

j
opt are

needed when calculating optimal H offline.
The short-cut algorithm is derived based on the assumption

Lcc = I over the entire region, while in practice only at a
reference point this constraint can be imposed. This mismatch
determines the result obtained through the short-cut approach
is not optimal. To alleviate the deficiency, it is desired that the
extra constraints can be imposed on multiple selected points.
Based on the method of Lagrange multipliers, the expression
of H explicitly related to the multipliers can be similarly
obtained as

H̃T
=

(
ỸTỸ

)−1
f̃u

(
f̃Tu

(
ỸTỸ

)−1
f̃u

)−1

L̃1/2
uu (27)

where f̃u =
∑m

k=1 µk fu,(k), L̃1/2
uu =

∑m
k=1 µkL1/2

uu,(k), µk is
the kth Lagrange multiplier and m is the number of selected
reference points. Then (27) can be substituted into (21) and
get

min
µ1···µm

1
N

N∑
i=1

[
1
2
(yopt,(i) + ni)TH̃TLcc,(i)H̃(yopt,(i) + ni)

]
(28)

Then the optimal H̃ can be finally found once optimal val-
ues of Lagrange multipliers µk (k = 1 · · ·m) are obtained
by solving the nonlinear optimization problem (28) through
numerical optimization methods such as the sequential
quadratic programming (SQP), interior-point, etc. Since the
reference point in the LgSOC method can be selected
as the initial point in the retrofitted LgSOC method, this
retrofitted version would achieve better performance than
LgSOC method.
Remark 4: Note that λ and µ are both Lagrange multipli-

ers. However, λ is used in the KKT conditions to construct
the Lagrange-based economic loss function while µ is used
to combine extra constraints at multiple reference points in
the retrofitted LgSOC method.

In summary, the procedure for implementing the retrofitted
LgSOC method is presented as follows.

Algorithm 2 retrofitted LgSOC Method
1: Sample the whole operation space using Monte Carlo

simulation to generate N different disturbance scenarios
2: Obtain optimal data such as yopt,(i), fu,(i), Juu,(i),

gjuu,(i) and λ
j
opt,(i) for each d(i)

(
i = 1 · · ·N , j = 1 · · · ng

)
through minimizing J (offline optimization), and then
calculate Luu,(i) from (10).

3: ChooseW. Construct Y and Ỹ in (24).
4: Solve the optimization problem (28) to obtain optimal

values of Lagrange multipliers µk .
5: Compute the optimal H from (27).

IV. GENERALIZED CASCADE SOC STRUCTURE
Although all constraints are satisfied in solutions to the orig-
inal optimization problem (1) due to the KKT conditions,
it is the case for optimal but not perfect CVs. As long as the
loss is not zero, the corresponding operating condition is not
optimal but only near optimal, hence, it is not guaranteed that
all constraints are satisfied online, which is illustrated by the
numerical example in Section V. Therefore, extra measures
should be taken to ensure feasibility of operations.

To tackle the constraint activeness varying issue, a cas-
cade control structure, as shown in Fig. 2 was proposed in
2005 [18] to effectively achieve automatic switching between
an active constraint and a self-optimizing CV under distur-
bances. However, only the simplest case of one degree of
freedom was considered in the original work. Since then, the
idea was laid aside as the community considering it is difficult
to apply it to multivariate cases [2]. In this section, this idea
is revisited to propose a systematic procedure for multivariate
cases.

A. DESCRIPTION OF GENERALIZED STRUCTURE
A generalized cascade control structure is illustrated in Fig. 3.
There may be more similar loops since multiple degrees
of freedom cases are considered and only one of them is
shown here without loss of generality. It is clear that the
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FIGURE 2. Cascade control structure for one degree of freedom cases [18].

manipulated variable (MV) u1 should work in the innermost
loop, the self-optimizing CV c1 obtained based on LgSOC
method proposed in Section III in the outermost loop and
conditionally active constraints g1, g2, · · · , gng in between.
Saturation blocks are added to restrict their limits.

Note that there is at most one of them that can be active
at the same time. Specifically speaking, if the MV becomes
active, it means that it is set exactly at its limit value and
consumes one degree of freedom, leading to an open-loop
control structure. If one of the conditionally active constraints
becomes active, it should be controlled at its limit value by
adjusting MV. When the self-optimizing CV comes to be
active, the system is unconstrained and the CV is maintained
at constant zero setpoint by adjusting MV similarly.

B. VARIABLE PAIRING
Since there must be only one active variable in the same
cascade loop, constraints which can become active simulta-
neously should not be put together in the same loop. Exam-
ining data obtained from offline optimization cover the entire
operation range, simultaneously active constraints can be
identified and they should be placed separately in different
cascade loops. However, if the case that they are in the same
loop cannot be avoided, infrequently active constraints or
constraints that contribute less to the economic loss can be
put in the same loop and they can be chosen following either
of the rules:

1) Select constraints from the optimal data which become
active less frequently.

2) Select constraints whose corresponding λ
j
opt(j =

1 · · · ng) are small.

After separating simultaneously active constraints in dif-
ferent cascade loops, here comes the pairing problem, that
is, which MV should be selected to control which constraint.
Based on useful tools such as the relative gain array (RGA),
the pairings must be chosen such that the steady-state RGA of
the resulting transfer matrix is non-negative and close to the
identity matrix at crossover frequencies [24]. Additionally,
it is assumed that the control problem is feasible, in other
words, there exist solutions of MVs within their limits sat-
isfying all the constraints in the whole disturbance ranges.

Sometimes there may be more constraints than the number
of degrees of freedom that will switch between active and

inactive, but the number of simultaneously active constraints
should be no more than the number of degrees of freedom
at the same time. Therefore, after the pairing is complete
based on the steady-state RGA rule, there may be remain-
ing constraints, which can be paired with corresponding
MVs in the same way to form a nested cascade control
structure.

To be specific, as shown in Fig. 4, assume that there are
two MVs u1 and u2 and three conditionally active constraints
g1, g2 and g3 but only two of them will be active at a given
time. Two self-optimizing CVs c1 and c2 have been obtained
based on the proposed LgSOC method. If g1 and g3 can
become active at the same time, they should be separated
in two cascade loops. Then it can be assumed that g1 and
g3 are paired with u1 and u2 respectively according to the
steady-state RGA rule. Then the remaining constraint g2 can
also be paired similarly. Assume g2 is paired with u1, hence
g1 and g2 can be nested in cascade with either g1 or g2 in the
inner or outer loop.

The systematic design procedure of the generalized cas-
cade SOC structure can be summarized by the following
steps:
Step 1. Separate simultaneously active constraints in different
cascade loops.
Step 2. Pair constraints with suitable MVs based on the
steady-state RGA rules.
Step 3. Check that all constraints can be satisfied by adjusting
corresponding MVs to ensure feasibility.
Step 4. Remaining constraints (if exist) can be nested in
cascade with corresponding MVs paired in the same way.
Step 5. Put self-optimizing CVs in the outermost loop with
zero setpoint.
Step 6. Design SISO controllers to compute setpoints for
inner loops.
Remark 5: The sequence in which conditionally active

constraints are cascaded can be arbitrary in terms of the
steady-state sense. Considering the dynamic characteristics
of cascade control, variables with fast response should be
placed in the inner loop while those with slow response in
the outer loop.
Remark 6: As for self-optimizing CVs pairing with MVs,

since left multiplication of H by a non-singular matrix such
as B does not change the steady-state economic performance
as mentioned in Section III, it can be tactfully selected as
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FIGURE 3. Generalized cascade control structure.

FIGURE 4. Generalized cascade SOC structure for more constraints than the number of degrees of freedom.

B = (Hfu)−1 so that it is decoupled from self-optimizingCVs
to MVs. Therefore, any MV can be chosen to pair based on
the decoupling calculation.
Remark 7: Note that the cascade structure can ensure all

constraints satisfied at steady-state. However, the limits in the
saturation block should be consideredwith a suitable back-off
to avoid possible dynamic violation under worst case, which
introduces conservatism.

V. CASE STUDY
A. TOY EXAMPLE
Consider the following toy example

min
u
J =

1
2

(u− d)2

s.t. g =
1
4
u2 −

1
2
d ≤ 0 (29)

with available measurements

y1 = u (30)

y2 =
1
4
u2 −

1
2
d (31)

where u and d are both scalars. The disturbance
range is uniformly distributed between 0.5 to 4, i.e.,
d ∈ [0.5, 4].

Through solving the optimization problem (29), the opti-
mal value of the constraint g is conditionally active as shown

in Fig. 5 and the whole disturbance region can be divided
into two parts accordingly. Region I (d ∈ [0.5, 2]) is fully
unconstrained with g < 0 while Region II (d ∈ (2, 4]) is
fully constrained with g = 0.
To find the optimal self-optimizing CV based on the pro-

posed LgSOC method, 100 optimal data are obtained in the
whole disturbance region through Monte Carlo simulation,
and then the optimal CV can be computed

c = Hy = [0.3773, −0.1487, 1.1377] [1, y1, y2]T (32)

The closed-loop steady-state performance by controlling c
at zero setpoint is illustrated in Fig. 6. It can be seen that the
steady-state value of g after self-optimizing control almost
tracks its optimal value in both regions, and the optimality
of the system after self-optimizing control is evaluated by
the Lagrange-based global average economic loss Lgav =

0.0051. Note that the constraint g ≤ 0 is sometimes
violated in Region II, hence it is needed to apply cascade
control structure to enforce the constraint satisfied in both
regions.

The dynamic SOC performance using cascade control
structure is shown in Fig. 7. The disturbance changes
from 1 to 3.5 at time=5 s, and at the same time the constraint
changes from inactive to active while the self-optimizing CV
the opposite with no constraint violation when the system
reaches steady-state.
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FIGURE 5. Optimal values of measurements as a function of the
disturbance.

FIGURE 6. Closed-loop steady-state performance of SOC.

B. EVAPORATOR MODEL
1) MODEL DESCRIPTION
A benchmark process, the forced-circulation evaporator [25],
is investigated for testing the proposed approach as shown in
Fig. 8.

There are in total 20 process variables involved in the
process. The description of the 20 process variables and their
nominal optimal values are listed in Table 1. Detailed model
equations are given in the appendix.

The objective cost function comprises five terms related to
steam, water and pumping, as well as the raw material cost
and the product value, which is defined as [26]

J=600F100+0.6 F200+1.009 (F2 + F3)+0.2 F1 − 4800F2
(33)

There are 3 state variables, 5 manipulated variables and 3 dis-
turbance variables listed as below

x = [L2 X2 P2]T (34)

TABLE 1. Process variables and their nominal optimal values.

u = [F200 F1 F2 F3 P100]T (35)

d = [X1 T1 T200]T (36)

where the ranges of disturbances are defined as ±5% for
X1 and ±20% for both T1 and T200 of their corresponding
nominal optimal values. There are 10 available measurement
variables in total shown as follows

y = [F5 T2 T3 F100 T201 P2 F2 F200 F3 F1]T (37)

The measurement noise for the pressure and flow measure-
ments are taken to be ±2.5% and ±2%, respectively, of the
nominal operating values. For temperature measurements,
it is considered to be within ±1 ◦C.

Several constraints related to operational safety and prod-
uct quality are listed below

X2 ≥ 35.5% (38)

40 kPa ≤ P2 ≤ 80 kPa (39)

P100 ≤ 400 kPa (40)

0 kg/min ≤ F200 ≤ 400 kg/min (41)

0 kg/min ≤ F1 ≤ 20 kg/min (42)

0 kg/min ≤ F3 ≤ 100 kg/min (43)

In order for the plant to work optimally, active constraint
control is always required to maintain the active constraints
at their limits [1]. In this case, there are two active constraints
X2 = 35.5% and P100 = 400 kPa at the optimal point.
From a physical perspective, it requires more steam, water
and pumping cost to achieve a higher product composition,
so X2 is active at its minimum. For the second active con-
straint, reducing P100 will increase F3 due to energy balance,
thus increasing the objective cost since the sensitivity of F3
to the objective is larger than that of P100 [18]. Therefore,
P100 should be controlled at its maximum. According to the
rule of active constraint control, these two active constraints
consume two degrees of freedom. Since L2 is unstable,
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FIGURE 7. Dynamic performance using cascade constrained SOC structure.

FIGURE 8. Evaporator model.

it should also be controlled, thus consuming another degree
of freedom. Therefore, the remaining available manipulated
variables are u = [F200 F1]T without loss of generality.

Besides, F200, F1 and F3 are always inactive within the
predefined disturbance range, which means there is no input
saturation, hence they can be ignored and need not to be
controlled. As for the constraint (39), the optimal value of the
operating pressure P2 varies from 40 kPa to 80 kPa depending
on different disturbances and maintaining P2 at a constant

setpoint cannot necessarily minimize the economic objective
function.

2) RESULTS AND DISCUSSIONS
a: STEADY-STATE EVALUATIONS
The whole disturbance region is randomly sampled into N =

2000 scenarios. Optimal data including measurements and
manipulated variables are obtained through minimizing the
cost function under these disturbances. Note that the optimal
values of P2 in the constraint (39) vary between active and
inactive within the whole disturbance scenarios. Then the
matrices such as W,Y,Ỹ, fu and Luu can be obtained to find
optimal CVs.

The optimal measurement subsets corresponding to the
number of measurements from 2 to 10 are selected using
LgSOCmethod based on searching algorithm such as exhaus-
tive search method. As shown in Fig. 9, with more measure-
ment variables involved in CV selection, the minimal average
economic loss gradually decreases and it reaches the mini-
mum of 2.2268 when all measurement variables are included.
It can be seen that when only 2 measurements are chosen,
it gives the average loss of 18.6362 and there is a drop when
ny = 3 (ny denotes the number of measurements selected).
It is clear that there is no need to use all of the measurements
considering the cost of sensors and installation, and ny =

3 or 4 can achieve relatively good performance.

VOLUME 11, 2023 44609



H. Su et al.: Lagrange-Based Global Self-Optimizing Control for Constraint Activeness Varying Processes

TABLE 2. Nonlinear model evaluated loss using 100 random samples with measurement noise (ny = 4).

FIGURE 9. Minimal average economic loss against different
measurement subset size.

It is further investigated when choosing ny = 4 as mea-
surement subset by 100 random samples through Monte
Carlo simulation. For demonstration, another gSOC method
handling variant active constraint set, namely the constraint
estimation method [20] (which is denoted as method 2 in the
reference), is compared with the proposed methods. The non-
linear model evaluated economic loss and the corresponding
optimal linear combination matrixH are tabulated in Table 2.
More specifically, for the first one, the best measurement
subset when ny = 4 is selected using constraint estimation
method through exhaustive search, which is [F5 P2 F2 F200]
and meanwhile the corresponding optimal H is obtained
using constraint estimation method. For the second one, the
subset is the same as the first one, but the corresponding
optimal H is obtained using LgSOC method. As for the
last two ones, the best measurement subset when ny =

4 is found using LgSOC method through exhaustive search,
which is [F5 F100 F2 F200] and the corresponding optimal
H is obtained using LgSOC method and its retrofitted ver-
sion respectively. The difference between the two optimal
measurement subsets lies in P2 and F100, which is probably
because J is more sensitive to F100 than P2, hence including
F100 instead of P2 may perform better.

Comparing these four cases, the average economic loss
decreases in order. More specifically, the average, maximum
and standard deviation of the economic loss of the second
case are largely reduced compared with those of the first one

and the economic performance of the last two cases are better
in further, which indicates that given the same subset, the
LgSOC method performs better than the constraint estima-
tion method, and furthermore, the LgSOC method can give
even better performance when the optimal subset is chosen
using the LgSOC method. In addition, by comparing the last
two, the retrofitted LgSOC method can achieve even better
performance than the LgSOC method, which demonstrates
the effectiveness of considering multiple reference points.
Therefore, through the comparison, it is clear to see that the
proposed LgSOCmethod can achieve better steady-state eco-
nomic performance than what the existing method achieves.

b: DYNAMIC SIMULATIONS
As for online implementation of the proposed LgSOC
method, the proposed cascade control structure is applied in
the dynamic simulation under disturbances and measurement
noises. The optimal matrix H =[

−10.2683 2.5153 4.2310 −49.0691 0.0713
−24.3848 6.0142 8.4050 −74.1862 −0.0241

]
is applied in the dynamic simulation. To decouple at the
reference point, the combination matrix H calculated above
was left multiplied by a non-singular matrix B, such as B =(
Hfu,(r)

)−1, which leads to BHfu,(r) = I. Therefore, the
combination matrix used in dynamic simulations is modified
into H∗

= BH. Note that this will not affect the steady-state
economic properties but can improve the dynamic perfor-
mance.
To avoid constraint violation, the proposed generalized

cascade control is adopted to close the self-optimizing CVs
in the outer loop while close the constrained variables in the
inner loop. Since there are two self-optimizing CVs, namely
c1 and c2, and only one constraintP2 whichmay vary between
active and inactive, there should be one cascade control
loop and another simple feedback control loop. As shown
in Fig. 10, P2 is closed in the inner loop, whose setpoint is
determined by the outer loop controller, while c1 is controlled
in the outer loop at zero setpoint by adjusting F200. The satu-
ration block restricts P2 not to exceed its limits and a suitable
back-off is also needed to avoid dynamic constraint violation.
The other self-optimizing CV c2 is simply controlled at zero
by F1. Since P2 is more sensitive to F200 than F3, P2 is
cascaded by F200. In this way, the self-optimizing control
loop and the constraint control loop will automatically switch
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FIGURE 10. Control structure for self-optimizing controlled variables.

FIGURE 11. Simulation results of self-optimizing control (blue solid line: actual values; red dashed line: setpoints or optimal values): (a) Feed
composition, (b) Feed temperature, (c) Cooling water inlet temperature, (d) Self-optimizing controlled variable 1, (e) Self-optimizing controlled
variable 2, (f) Operating pressure, (g) Cooling water flowrate, (h) Feed flow rate, (i) Economic cost.

between active and inactive to ensure system optimality all
the time. As for the configuration of rest control loops, L2 is
controlled by F3, X2 is controlled by F2 and P100 is controlled
by itself [18]. PI controllers are adopted in all closed loops
and the parameters are tuned according to the SIMC rule [27].

The dynamic simulation results of a 2400-min operation
are shown in Fig. 11. Three disturbances X1, T1 and T200
vary in their predefined ranges, and their changing scenarios
are shown in Fig. 11(a-c) with a time interval of 600 min.
Note that the disturbances do not change abruptly and sharply
but gradually. Gaussian noise within the predefined varia-
tion ranges is added to all the measurement variables and

manipulated variables. The self-optimizing CV c1 is tightly
controlled at zero except for 700 to 1200 min in Fig. 11(d),
during which time the constrained variables P2 is active at
40 kPa as indicated in Fig. 11(f). This is because that during
that time F200 is used to control P2 at its minimum while
c1 is no longer under control hence does not equal zero.
From Fig. 11(e), the deviation of c2 to zero is relatively small
by manipulation F1. It is clear that in Fig. 11(i) the actual
economic cost tracks the optimal values well and it achieves
good steady-state economic performance, which indicates
that the proposed LgSOC method works quite well in the
dynamic case.
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VI. CONCLUSION
This paper rebuilds the theoretical basis so that the con-
straint activeness varying gSOC problem can be solved as
easy as the invariant constraint activeness problems. The
Lagrange-based global average economic loss is derived
to unify the optimality evaluation when only a single set
of self-optimizing CVs is applied in the whole operational
region. Also, it can be used to obtain optimal set of CVs
by minimizing the new Lagrange-based loss function over
the entire operational space. To facilitate the optimization
process, the Lagrange-based gSOC method and its retrofitted
version are proposed based on the short-cut algorithm of
gSOC. Furthermore, the one degree of freedom cascade
SOC structure is generalized to multiple degrees of freedom
cases to ensure all constraints satisfied in the whole region.
As demonstrated in the numerical example and the evapo-
rator benchmark, the proposed methods achieve both good
steady-state and dynamic performance.

APPENDIX
A. PROOF OF THE NON-UNIQUENESS OF H
Suppose H = BH, where H is the solution and B is
an arbitrary non-singular matrix. Then (BH)TLcc(BH) =

(BH)T(BHfu)−TLuu(BHfu)−1(BH) = HTLccH, so
Lgav(H) = Lgav(H), indicating that H = BH is another
solution.

B. DETAILED MODEL EQUATIONS OF THE EVAPORATOR

dL2
dt

=
F1 − F4 − F2

20
dX2
dt

=
F1X1 − F2X2

20
dP2
dt

=
F4 − F5

4
T2 = 0.5616 P2 + 0.3126 X2 + 48.43

T3 = 0.507 P2 + 55.0

F4 =
Q100 − 0.07 F1 (T2 − T1)

38.5
T100 = 0.1538 P100 + 90.0

Q100 = 0.16 (F1 + F3) (T100 − T2)

F100 =
Q100

36.6

Q200 =
0.9576 F200 (T3 − T200)

0.14 F200 + 6.84

T201 = T200 +
13.68 (T3 − T200)
0.14 F200 + 6.84
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