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ABSTRACT Many practical systems can be considered as networks of nodes interacting. Explicit network
topology is a straightforward method to understand the actual system, so it is of practical significance to
obtain the complete network topology from the empirically measured time series. With the premise that the
dynamics equations and coupling matrix are known, a method to reconstruct the network topology from the
measured time series is proposed, and based on regression theory the estimated matrix form of the adjacency
matrix is given. Also, the method is suitable for predicting arbitrary weights of network connections, and its
practicality is verified by numerical simulations. Importantly for the 0−1 matrix, a new method for judging
the prediction performance of the model using the false negative rate is proposed. It can estimate the accuracy
of model prediction with only partial sampling data when the information of network topology is unknown.
In addition, a method that can control false positives is proposed, and the feasibility of the method is verified
by numerical simulation. Finally, two factors that affect model performance, the amount of sample data and
the intensity of noise, are discussed.

INDEX TERMS Reconstruction, false negative rate, regress theory.

I. INTRODUCTION
A complex network is a network structure composed of a
huge number of nodes and intricate relationships between
nodes. Complex systems are ubiquitous in nature, such as
weather systems [1], electric power systems [2], and gene
regulation systems [3], which can be abstracted into com-
plex networks for study. By representing the individuals in
a system as nodes of a network and the interactions between
individuals as connections between nodes, the nature of the
network can be used to understand and control the function of
the actual system [4], [5]. Complex networks are now widely
used in various scientific fields, such as biology, engineering
and sociology [6], [7], [8], [9], [10]. However, the topology of
complex networks is often unknown, yet the structure affects
the functionality of the system, so an important issue for
complex networks is the structure problem.

In recent years, more and more attention has been paid to
the study of network topology. In order to show the topology
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structure of the network directly, it can be simplified into
a graph for study. The Laplacian matrix [11] of the graph
can be estimated under some observed data, which is usually
expressed by the adjacency matrix, and the Laplacian matrix
can reflect the properties of the graph [12], [13], so the Lapla-
cian matrix can be used for topological reconstruction. For
example, Ying et al. proposed to learn sparse graphs from the
Laplacian constrained Gaussian graph model [14]. Sandeep
et al. proposed a variety of algorithms that can simultaneously
learn the graph structure and their weights [15]. The study of
network topology is helpful to solve many problems in the
real world [16], [17], [18].

The reconstruction of topology and dynamics from time
series data has been the focus of research in the problem of
studying network topology [19]. Various methods have been
proposed and validated in recent years. For example, network
reconstruction is based onmissing complements and spurious
screening of connection relationships, so link prediction can
be used as a method for network reconstruction.Using this
method, future links and existent yet unknown links in the
network can be obtained [20], [21]. LÜ discussed structural
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similarity-based and maximum likelihood estimation-based
link prediction methods to predict unknown connections in
networks, which can be applied to social networks and protein
interaction networks, etc [22]. In addition, the correlation
method can be used to determine whether there are links
between nodes based on the correlation of the node time
series, which can be applied to establish a gene-coexpression
network [23]. It can also be applied to the economic and
financial spheres. R.N.Mantegna studied the hierarchical
organization that exists within the stock market through cor-
relation coefficient matrices [24]. For the problem of delay
effects affecting each other in real systems, L.Kullmannm,
Zhang et al. transformed it into a delay correlation problem of
time series and gave the corresponding links between nodes
to reconstruct the network structure according to this method
[25], [26].

A classical idea of reconstructing networks from time
series is to transform a nonlinear system of dynamical equa-
tions into a linear system by certain methods to solve the
network reconstruction problem. In recent years, methods
based on this idea have been proposed and continuously pro-
moted. Compressed sensing is gradually applied to network
reconstruction and becomes the focus of research [27], which
is applicable to sparse networks. For problems with large
amounts of experimental data and low practicality, sparse
solutions can be obtained using compressed sensing theory
to identify the node connectivity relationships contained in
the sparse solutions [28], [29]. For the problem that the
dynamic basis function of network nodes is unknown, Li et al.
proposed a new method based on Taylor expansion and com-
pressive sensing to reconstruct the network topology [30].
Under the intra-network interaction functions to be known,
Levnajić Z proposed a method for reconstructing dynamic
networks from time series, and derived a simple equation that
directly yields the adjacency matrix [31]. In the presence of
significant noise and low data availability in sparse networks,
Napoletani and Sauer used linearization of the dynamics
around the center of a neighborhood of data points, and
constrained optimization technology based on L1 norm to
reconstruct the topology of sparse connected networks [32].
André Fujita et al. proposed the Sparse Vector Autoregressive
model to estimate gene regulatory networks, which can infer
true positive links even under conditions in which the number
of samples is smaller than the number of genes, and proposed
the use of statistical tests to control the false discovery rate for
the first time in gene regulatory networks [33]. Shandilya S
G proposed the analytical solution to the inverse problem of
finding the network topology from observing a time series
of state variables only, provided that the kinetic and coupling
functions are known. [34].

The focus of these methods is to transform the system
into linear equations. The network reconstruction problem
is transformed into a mathematical problem of equation
solving coefficients. Based on this idea, we propose a sim-
ple and straightforward method to build a network struc-
ture recovery model based on time series using regression

theory. It is possible to reconstruct various types of network
topologies. The practicality of the method is verified by
numerical simulation experiments. In addition, the method
is extended to predict the nonzero weights of connections
between network nodes. Two factors, sample data and noise
intensity, which affect the recovery performance of the model
are analyzed.

The traditional evaluation methods for 0-1 matrix require
information on the topology of the prophetic network [32],
[33], [35], while in practical systems it is generally not pos-
sible to obtain an explicit adjacency matrix, which limits its
application. To overcome this difficulty, we propose a model
evaluationmethod that does not rely on the original adjacency
matrix: the false negative rate. The method relies only on
sample data, which makes it possible to estimate the accuracy
ofmodel predictions with incomplete a priori information and
is more realistic. In addition, for the overall hypothesis testing
problem of regression coefficients, we propose to control the
false discovery rate (False Discovery Rate) by statistical tests,
and we adopt the BH method [36] to control the number of
false positives within a predetermined range.

This paper is divided into three parts. The first part intro-
duces the network structure reconstruction model, gives the
form of the estimation matrix of the adjacency matrix, and
additionally introduces the necessary statistical knowledge;
The second and third parts evaluate the reconstruction per-
formance of the model using numerical simulation methods
and illustrate the feasibility and practicality of selecting the
false-negative rate as the evaluation index. The cases in which
the model reconstructs the network topology and the case in
which the model predicts the connection weights between
the network nodes are simulated, respectively. Two factors
affecting the performance of the model are discussed.

II. METHOD
Regression analysis is a statistical method used to determine
the quantitative relationship of interdependence between two
or more variables. The actual network system studied in this
paper contains multiple independent variables and shows a
linear relationship between the dependent and independent
variables. Therefore, multiple linear regression model can be
used to reconstruct the node connection relationship of the
actual network.

A. NETWORK STRUCTURE RECONSTRUCTION MODEL
Consider a complex system consisting of N interacting
units, which is represented as a network of N nodes,
with the dynamics of the i-th node being described
by

ẋi = f i (t, xi) +

∑N

j=1
cijAxj + εi, i = 1 . . .N (1)

where xi = (xi1, xi2 . . . xid)T is d-dimensional state vari-
ables; f i describing the local dynamics of node i; C =(
cij
)
N×N represents the adjacency matrix, describing the

connection status between node i and node j. cij = 1 (i ̸= j)
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means that there is a connection between node i and node
j, cij = 0 (i ̸= j) means that there is no connection between
node i and node j, and its diagonal elements are defined
as cii = −

∑N
j=1,j ̸=i cij . A represents the internal coupling

matrix; εi represents the error, which is assumed to be mutu-
ally independent and obey N

(
0, σ2

)
distribution.

In the network represented by (1), assuming that f i and
A are known. The network structure reconstruction model is
established to reconstruct the network topology by using the
xi obtained from the observable records, that is, to predict C.
Thus the problem of recovering the network topology can be
interpreted as estimating C from the measurable data X and
Y in the form Y = XC + ε, where C is an N × N matrix.
Considering it as a multiple linear regression problem, the
reconstruction can be achieved by letting the error sum of
squares be minimized, that is

min
(
Y − Ŷ

)2
where Y and Ŷ represent the observed and predicted values,
respectively. In order to recover the topology of the network
(1), it can be transformed into the above form for analytical
discussion.

Since the system dynamics equation is known, equation (1)
can be rewritten as

ẋi − f i (t, xi) =

∑N

j=1
cijAxj + εi, i = 1 . . .N (2)

Since xi is a d-dimensional variable, one has ẋi =

(ẋi1, ẋi2 . . . ẋid)T . Then for the i-th node the k (k = 1 . . . d)

components have

ẋik − f ik (t, xi) = χ ikC i + εik (3)

where

χik = (1,Ak1x11 + Ak2x12 + . . . + Akdx1d,

Ak1x21 + Ak2x22 + . . . + Akdx2d, . . . ,

Ak1xN1 + Ak2xN2 + . . . + AkdxNd)

Ci = (ci0, ci1, ci2, . . . , ciN )T

The m-group time series obtained from the experimental
observation records as sample data, the following equation for
the k-th dimension of the i-th node in the form ofY = CX+ε:

Yik =


ẋik(t1) − fik (t1, xi)
ẋik(t2) − fik (t2, xi)

...

ẋik(tm) − fik (tm, xi)



=


χik (t1)

χik (t2)
...

χik (tm)

Ci + εik = XikCi + εik

The problem of restoring the network topology structure
is transformed into the problem of solving multiple linear
regression parameter C. Here the approach of individual
regression analysis is taken for each node, and each column

C i (i = 1, . . . ,N) of the adjacency matrix C is estimated by
the sum of squares of the minimum error, and the predicted
adjacency matrix Ĉ i is obtained. The loss function utilizes
the form of the mean square error, which is also the objective
function, that is

L (C i) =
1
2

(X ikC i − Y ik)
T (X ikC i − Y ik) (4)

To determine the parameter C of the model and make
the predicted value as close to the real value as possible,
it is equivalent to finding the minimum value of L (C i). The
objective function (4) contains the parameter C required to
be solved, so the parameter C in model (3) can be solved in
the process of solving the minimum value of (4). Here, the
least square method is selected for solving. The point where
the first partial derivative of C i is 0 is the minimum point of
(4).

∇CiL (Ci) =
1
2

∇Ci(XikCi − Yik)T (XikCi − Yik)

=
1
2

∇Ci

(
CiTX ik

T
− YikT

)
(XikCi − Yik)

=
1
2

∇Ci

(
CiTXikTXikCi − CiTXikTYik

−YikTXikCi + YikTYik
)

=
1
2

∇Ci tr
(
CiTXikTXikCi − CiTXikTYik

−YikTXikCi + YikTYik
)

=
1
2

[
∇Ci tr

(
CiTXikTXikCi

)
−∇Ci tr

(
CiTXikTYik

)
− ∇Ci tr

(
YikTXikCi

)]
=

1
2

(
XikTXikCi + XikTXikCi

−XikTYik − XikTYik
)

= XikT (XikCi − Yik)

= 0.

where tr (A) =
∑n

i=1 aii denotes the trace of the
matrix A. It follows that Ĉ i =

(
X ik

TX ik
)−1

X ik
TY ik is the

least-squares estimate of Ci, and the method is applicable to
the case when the inverse matrix of XikTXik exists (m > N).
When the inverse matrix does not exist, it adopts the form
of pseudo-inverse. Ĉ i is an unbiased estimate of Ci, and
unbiasedness ensures that the least squares estimate has a
better result, where notation Ĉ i =

(
ĉi0, ĉi1, . . . , ĉiN

)T .
B. FALSE-NEGATIVE EVALUATION MODEL
After the regression result of adjacency matrix C is obtained
by estimating the parameters of model (3), the regression
coefficient needs to be tested to determine whether there is
a connection between nodes. Hypothesis testing is adopted in
this paper. Since the adjacency matrix of the study network
is a 0 − 1 matrix, there are only two hypotheses cij = 0
and cij = 1, where cij = 0 means there is no connection

44236 VOLUME 11, 2023



X. Zhang, C. Yan: Novel Method for Estimating Accuracy of Network Structure Recovery Model

between node i and node j and cij = 1 means there is
connection between node i and node j, and one and only one
of these two hypotheses will occur. In order to find which
nodes are connected to each other, that is, to judge which
position elements in thematrix are 1, we can consider from its
opposite. Firstly, we assume cij = 0. If there are good reasons
why it is not true, then we can accept cij = 1. Therefore, the
following assumptions are established:

H0
ij

: cij = 0, H1
ij

: cij = 1

The hypothesis testing method chosen in this paper is the t-
test. Knowing ĉij ∼ N

(
cij, σ2wjj

)
, construct the test statistic

when the hypothesis H0
ij is true

tij =
ĉij√
wjj σ̂

2
∼ t (m− N − 1)

where t (m−N − 1) denotes the t-distribution with
(m−N − 1) degrees of freedom,wjj is the (j+1)-th diagonal
element of

(
XikTXik

)−1, σ̂
2

=
Se

m−N−1 is the unbiased

estimate of σ2, Se =

(
X ikĈ i − Y ik

)T (
XikĈ i − Yik

)
is

the residual sum of square. tij is the statistic used to test
whether cij is equal to 0. Taking the significance level as
α (0 < α < 1), we select α = 0.05. The null hypoth-
esis H0

ij is rejected and the alternative hypothesis H1
ij

is accepted when
∣∣tij ∣∣ ≥ t1− α

2
(m−N − 1). In this case,

cij = 1 in the adjacency matrix C is considered; Conversely
when the null hypothesis is not rejected, it is considered that
cij = 0. The predicted matrix is denoted Ĉ, whose diagonal
elements are defined as ĉii = −

∑N
j=1,j ̸=i ĉij and called Ĉ as

the estimation matrix.
Define evaluation metrics:
E =

d
D is the model unrecognized rate, where d denotes

the number of connections between network nodes that are
not recognized by the model, and D denotes the number of
true connections between network nodes;
FPR =

l
L is the model false positive rate, where l denotes

the number of network nodes that are not connected to each
other but are recognized by the model as connected, and L
denotes the number of network nodes that are not connected
to each other;
FDR =

l
K is the model false discovery rate, where K

denotes the number of nodes between which the model iden-
tifies the network as having connections.

The rejection region of the hypothesis test is W ={
|t| ≥ t

1−α
2

(m−N − 1)

}
. When cij falls into the rejec-

tion domain then the null hypothesis should be rejected and
cij ̸= 0, cij = 1. When H0

ij is true, ĉij ∼ N
(
0, σ2wjj

)
.

There are two types of errors that can be made when making
judgments. If there is an error in which the null hypothesis
H0

ij is not valid, but the cij does not in the rejection regionW ,
the error is said to be a false negative error. The false negative

rate is

β = p
(
ĉij /∈ W

∣∣cij=1
)

= p
(
|t| < t1−

α
2

(m− N − 1)
∣∣cij=1

)
= p

(
−t

1−α
2

(m−N − 1) <
ĉij

√wjj σ̂

< t1−
α
2

(m−N − 1)
∣∣cij=1

)
= p

(
−t

1−α
2

(m−N − 1) −
1√
wjj σ̂

<
ĉij − 1√
wjj σ̂

< t
1−α

2
(m−N − 1) −

1√
wjj σ̂

∣∣cij=1

)

= 8

(
t
1−α

2
(m−N − 1) −

1√
wjj σ̂

)

− 8

(
−t

1−α
2

(m−N − 1) −
1√
wjj σ̂

)
(5)

where 8 (u)= 1√
2π

∫ u
−∞ e−

x2
2 dx (u ≥ 0) denotes the nor-

mal distribution function.
Evaluating the predictive performance of the network

structure reconstruction model using the unrecognized rate
E, ROC and AUC requires knowledge of the topology of the
network, while the adjacency matrix C cannot be obtained
in practice. This difficulty can be solved by our proposed
false-negative rate β, which estimates the accuracy of the
model when C is unknown, based on only partial sample data.
This allows us to calculate the accuracy of model reconstruc-
tion with incomplete a priori information about the system.

C. CONTROL FOR FALSE POSITIVE
If there is an error in which the null hypothesis holds but
cij falls into the rejection region W , the error is said to be
a false positive error (Type I error). In the Neyman-Pearson
hypothesis test, the false positive rate can be required to
be within an acceptable range. The test level α=0.05 is
set to limit the probability of committing a Type I error,
through which error control of statistical inferences from
single-weighted hypothesis tests is achieved. The false pos-
itive rate is controllable within a single hypothesis test, but
for multiple hypotheses as a whole, the false positive results
increase with the number of tests and become invalid beyond
a predetermined range. Therefore, multiple hypothesis tests
should be conducted for the regression coefficient C as a
whole. The Benjamini-Hochberg method is selected to con-
trol FDR, which can control FDR below the statistically
significant level α. Adjust the p-value to control the false
discovery rate. The process is as follows:

For the hypothesis test
{
H ij

0

}
i, j=1 . . .N, i ̸= j,

H ij
0 denotes the null hypothesis for the ij-th test. The p-

values of all tests are sorted to generate sequential numbers
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{pk} , k=1, . . . , s. Let qmax=pmax. Define

qk=min
{
pk
s

k
, pk−1

}
, k=1, . . . , s − 1

where s represents the number of tests. When qk < α, the
first k hypotheses are rejected and the nodes in the network
are considered to be connected to each other.

III. NETWORK STRUCTURE RECONSTRUCTION RESULTS
AND ANALYSIS
A. NUMERICAL SIMULATION
Consider a network consisting of Lorenz systems as
nodes, which consists of 10 bidirectionally coupled
Lorenz oscillators [37], whose topology is shown in
Figure 1.

Its adjacency matrix is as shown at the bottom of the page.
The nodal dynamics is described as a Lorenz system:

fi (xi)=


a (xi2 − xi1)

cxi1 − xi1xi3 − xi2
xi1xi2 − bxi3

where a, b, c0 are real parameters, a=10, b=8/3, c=28.
Take the internal coupling matrix as

A=

0 0 0
0 0 0
0 0 1


The fourth-order Runge-Kutta algorithm is used to gener-

ateM sets of time series in (2), in which anym sets are taken
as sample data. Experimental observations were fixed at a
uniform time interval 1t=0.01 sampling, selected Gaussian
white noise with σ2

=0.5, and use model (3) to reconstruct
the connection relationship between network nodes. Since
the experiments are subject to randomness, the following
experiments are taken to average the results of multiple exper-
iments.

By linear approximation the time derivative as

ẋik
(
tq
)

: =
xik
(
tq+1

)
− xik

(
tq−1

)
tq+1 − tq−1

, q=1, ..,m

FIGURE 1. Network topology.

B. FALSE NEGATIVE RATE
The null hypothesisH0

ij
: cij=0 to the alternative hypothesis

H1
ij

: cij=1, taking the significance level α=0.05. Ĉ is the
adjacency matrix reduced using model (3), and the unrecog-
nized rate E of the model can be obtained from the network
topology and the number of node connections predicted by
the model.

The rejection region of the hypothesis test is W={
|t| ≥ t

1−α
2

(m−N − 1)

}
. The experiment was set to

m=25, and the experimental results showed a rejection rate
of 0.4698 by hypothesis testing, among which 2 rejection
errors, accounting for only 0.0515, which indicates that it is
feasible to restore the network topology by using this model
in this case. The false negative rate can be calculated by
equation (4).

FromFigure 2, it can be found that for different sample data
amounts m, the two curves correspond to basically the same
error rate, and the false-negative rate β can be a good judge
of the structural recovery performance of the model. It can be
observed that when calculating the unrecognized rate E, the

C=



−4 1 1 0 0 0 0 0 1 1
1 −5 1 1 0 1 0 0 0 1
1 1 −5 1 1 0 0 0 1 0
0 1 1 −4 1 1 0 0 0 0
0 0 1 1 −5 1 1 0 0 1
0 1 0 1 1 −5 1 1 0 0
0 0 0 0 1 1 −4 1 1 0
0 0 0 0 0 1 1 −4 1 1
1 0 1 0 0 0 1 1 −5 1
1 1 0 0 1 0 0 1 1 −5
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FIGURE 2. For the network structure reconstruction model (3), the
unrecognized rate E and the false negative rate β with their standard
deviations for different sample data amounts m.

FIGURE 3. For the network structure reconstruction model (3), the
probability and standard deviation of false positive rate under different
sample data amount m and different noise intensity σ2.

topology of the network must be known, which is difficult
to obtain in reality. However, our method can accurately
calculate the recovery performance of the model only when
the sample data is known. Therefore, it is perfectly feasible
and more concise to assess the accuracy of the reconstructed
network structure by the false negative rate, which is more
practical.

After applying FDR correction to the overall multiple
hypotheses, it can be seen from Figure 3 that the false positive
rate after correction will decrease compared with that before,

FIGURE 4. For the network structure reconstruction model (3), the
unrecognized rate E and the false negative rate β with their standard
deviations under different sample data volume m after using FDR
correction, the red and black lines represent the unrecognized rate E
before and after correction, respectively.

which achieves the purpose of controlling the false positive
results. The false positive rate will always be within the range
of (0, 0.05), but it will increase the number of false negatives
to some extent.

False positive error and false negative error cannot be
increased or decreased simultaneously with a fixed amount
of sample data. Therefore, FDR correction will inevitably
increase false negative errors after reducing false positive
errors. As shown in Figure 4, only by increasing the amount
of sample data can both types of errors be reduced simulta-
neously, and the recovery performance of the model reaches
a steady state at about 50 sample data. After FDR correction,
it is still feasible to use the false negative rate to evaluate the
accuracy of model prediction.

C. EFFECT OF m AND σ2 ON MODEL ACCURACY
In the actual system, the sample data will be disturbed by the
acquisition method or the internal noise of the system, which
will have some influence on the results. Two factors affecting
the results of model reconstruction are considered. First, the
accuracy of the model recovery connection is affected by the
amount of sample data, and the prediction performance of
the model with different amount of sample data is analyzed.
Second, the system is affected by internal noise and thus
cannot obtain high-quality sample data, and the impact of
noise on the prediction performance of the model is analyzed.

1) EFFECT OF SAMPLE DATA SIZE m ON THE RESULTS
In general, the model prediction results are influenced by
the amount of sample data m. As m increases, the larger the
amount of system state information obtained, the better the
prediction performance of the model. From Figure 2, it can
be found that the curve shows an obvious decreasing trend
with the increase of m. The β and E unrecognized rate of
the model are gradually decreasing, which indicates that the
model has a significant effect on the recognition between
nodes gradually. When m=25, β=0.1392, the β is small,
and the model can effectively identify the network topology.
When the amount of sample data reaches about 50, the false
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FIGURE 5. For the network structure reconstruction model (3), the false
negative rate β at different noise intensities σ2.

negative rate is close to 0, which indicates that the model
can efficiently identify the connection relationship between
nodes. Moreover, further increase in the sample data volume
does not have a great impact on the model prediction results,
maintaining a relatively stable state.

2) EFFECT OF NOISE INTENSITY σ2 ON THE RESULTS
When σ2

=0, model (3) has β=0.1033 with 70 sample
data, which indicates that the model can restore the topology
better. Consider the effect of different noise intensity σ2 on
the model recovery results. Figure 5 shows the experiments
conducted under 25 sample data. From the figure, it can be
found that the false negative rate β predicted by the model
gradually increases with the increase of σ2, that is, the more
inaccurate the model identifies the connection relationship
between the nodes. This is because with the increase of σ2,
the sample data becomes more and more polluted, and the
network information cannot be efficiently reflected, resulting
in a decrease in the number of node connections found by the
model.

IV. WEIGHTED NETWORK STRUCTURE RECOVERY
MODEL AND ANALYSIS
The network structure in Figure 1 is chosen as the study
object, and weights are assigned to the connections between
its nodes. After determining the connection relationship
between nodes, it is also necessary to predict the weight
value of their connections. Assuming that the rest of the

FIGURE 6. Matrix color block diagram. (a) represents the adjacency
matrix Cij ,

(
b
)

represents the estimated matrix Ĉij predicted using the
network reconstruction model (3), (c) represents the error between them,
and

(
d

)
represents the comparison of the weight of each connection

between nodes, x is the number of zero weight and non-zero weight,
Cij (◦), Ĉij (×). rex =0.8207, rno=0.8888.

network conditions remain unchanged, the adjacency matrix
is as shown at the bottom of the page.

A. MODEL EVALUATION
Using model (3) to predict the weight of connections between
network nodes. In order to quantify the predictive perfor-
mance of this method on the weight of connections between
nodes, the evaluation index prediction error, rex,rno is defined
as:

rex=

∑
i

=1Mex
(
Ĉex−Cex

)
Mex

, where Ĉex denotes the predicted
value of the matrix with connections, Cex denotes the actual
value of the matrix with connections, and Mex denotes the
number of connections between nodes;

rno=

∑
i

=1Mno
(
Ĉno−Cno

)
Mno

, where Ĉno denotes the predicted
value of the matrix without connections, Cno denotes the
actual value of the matrix without connections, and Mno
denotes the number of no connections between nodes.

According to the aforementioned method, different time
series can be obtained. The adjacency matrix of the net-
work can be reconstructed by using these data according to
model (3), and the estimated matrix Ĉ can be obtained. The
experiment is conducted under 20 sample data and σ2

=0.5,
and the results are shown in Figure 6 with rex=0.8207 and

C=



−7.3 2.1 0.3 0 0 0 0 0 3.4 1.5
2.1 −11 1 0.2 0 5.5 0 0 0 2.2
0.3 1 −7.8 3.8 0.9 0 0 0 1.8 0
0 0.2 3.8 −8.5 3 1.5 0 0 0 0
0 0 0.9 3 −13.4 2 2.9 0 0 4.6
0 5.5 0 1.5 2 −18.7 5.7 4 0 0
0 0 0 0 2.9 5.7 −10.5 0.2 1.7 0
0 0 0 0 0 4 0.2 −10.3 5.2 0.9

3.4 0 1.8 0 0 0 1.7 5.2 −16.4 4.3
1.5 2.2 0 0 4.6 0 0 0.9 4.3 −13.5
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FIGURE 7. Matrix color block diagram. (a) represents the adjacency
matrix Cij ,

(
b
)

represents the estimated matrix Ĉij predicted using the
network reconstruction model (3), (c) represents the error between them,
and

(
d

)
represents the comparison of the weight of each connection

between nodes, x is the number of zero weight and non-zero weight,
Cij (◦), Ĉij (×). rex =0.1645, rno=0.1901.

FIGURE 8. For the network structure reconstruction model (3), the
prediction errors rex , rno, and their standard deviations for different
sample data amounts m.

rno=0.8888. It can be found that the reconstruction of the
model is feasible for the zero weight and non-zero weight
of inter-node connections, but the prediction accuracy is not
good. This is because the predicted results are affected by the
experimental data containing the system state information.
Next, the sample size of the experiment is increased. 50
sample data and σ2

=0.5 are selected and the adjacency
matrix is reconstructed using them. The results are shown in
Figure 7 with rex=0.1645 and rno=0.1901. It can be found
that the accuracy of predicting the weights of connections
between network nodes using model (3) increases with the
amount of data.

B. EFFECT OF m AND σ2 ON MODEL ACCURACY
As can be seen from Figure 6, the accuracy of the model in
predicting node connection weights differs greatly under the
same sample data amount. This represents that the system
state information contained in the time series affects the
prediction quality. To assess the impact of the sample data
amount m on the prediction performance of the model, the
following experiments are taken to average the results of
100 experiments.

As shown in Figure 8, the prediction accuracy of model (3)
for the connection weight increases with the increase of sam-
ple data amount m. When m=25, rex=0.895, rno=1.024,
the model can predict the weights between nodes well, and
when the sample data amount reaches about 60, it can predict

FIGURE 9. For the network structure reconstruction model (3), the
prediction errors rex , rno, and their standard deviations at different noise
intensities σ2.

the zero and non-zero weights between nodes efficiently. And
the increase of the sample data volume does not have a large
impact on the model results, maintaining a relatively stable
state.

Figure 9 shows the effect of noise intensity σ2 on themodel
prediction discussed under 25 sample data. It can be found
from the figure that as σ2 increases, the prediction error
of the model rex, rno gradually increases, that is, the more
inaccurate the model identifies the size of the connection
weights between nodes. This is because as σ2 increases, the
sample data is more contaminated, and the connection weight
between nodes cannot be accurately predicted.

V. CONCLUSION
It is of great practical significance to clarify the network
topology structure. We propose a network reconstruction
model based on regression theory. The relationship between
network structure and linear regression model is illustrated,
and a separate regression analysis is performed for each
node. The model requires that the dynamics equations and
coupling matrix are known, while the network topology and
system noise can be unknown.With experimentally measured
time series, the model provides a relatively simple form of
estimation matrix Ĉ for predicting the adjacency matrix C.
It relies only on randomly selected time series and does not
require additional human intervention, demonstrating that it
is theoretically feasible and concise to reconstruct the net-
work topology based on time series. The feasibility of the
proposed method is verified by simulation experiments in a
bidirectional coupling network composed of Lorenz system
nodes.

After the regression coefficients are obtained by least
squares estimation, the regression coefficients need to be
tested to determine whether there are connected edges
between nodes. The hypothesis test method used in this paper
is the t-test, at which time the network topology recovery
problem is transformed into a classification problem to be
solved. The prediction matrix Ĉ of the adjacency matrix C
can be obtained, and a statistical test is needed to determine
its accuracy. A novel method is proposed to evaluate the
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prediction results of the model by the false negative rate β,
which has certain advantages compared with the unrecog-
nized rate E. This is demonstrated by numerical simulations.
Calculating E requires prior knowledge of the network topol-
ogy, while β can judge the prediction results of the model
without knowing the network topology, which relies only
on experimentally obtained random time series. At the same
time, it illustrates that themodel can know the overall network
structure well by sample cases only. This advantage makes its
application scope wider. Traditional hypothesis test can only
control the false positive rate of a single hypothesis, but for
the regression analysis as a whole, the false positive results
will increase with the number of tests, beyond our precon-
ceptions. Therefore, multiple hypothesis testing is required
and the Benjamini-Hochberg method is selected to control
the overall false positive rate.

In addition, two factors affecting the topological structure
of the model recovery are discussed, the amount of sample
data m and the noise intensity σ2. First, the system infor-
mation contained in the sample data reflects the state of
the nodes. Therefore, with the increase of m, β gradually
decreases, that is, the connections between the nodes are
well identified. When m=25, β=0.1392, the beta is small,
and the model can effectively identify the network topology.
When m is about 50, the model reaches a better prediction
result, at which time the effect of further increase inm on the
model prediction is no longer significant. Second, noise inter-
feres with the sample data. Therefore, the larger the noise σ2

intensity is, the more serious the sample data pollution is, and
the less accurate the network information can be reflected,
leading to a reduction in the number of node connections
found by the model.

Finally, based on the above identification of connection
relationships between nodes, the method is extended to pre-
dict arbitrary connection weight between nodes, transform-
ing the problem into a regression problem for solution. The
feasibility of using the model to predict zero weight and
non-zero weight of inter-node connections is demonstrated
by numerical simulations. Two factors that affect the accu-
racy of weight prediction are discussed. First, the amount
of sample data, when m=25, rex=0.895, rno=1.024, the
model can predict the weights between nodes well, and when
the sample data amount reaches about 60, it can predict
the zero and non-zero weights between nodes efficiently,
at this time, the influence of m increase on the model pre-
diction is no longer significant. Second, the noise will inter-
fere with the systematic information of the sample data,
so it will affect the prediction of the weight size between
nodes.

In summary, our method can reconstruct the network
topology under arbitrary experimental data, and the method
is applied to predict arbitrary weights of the connections.
Importantly for 0 − 1 matrix, the proposed false-negative
rate can be used to estimate the accuracy of the model pre-
diction based on only part of the sampled data in the case of
incomplete prior information.

NOMENCLATURE
AUC Area Under the Curve
E unrecognized rate
ROC Receiver Operating Characteristic
FDR False Discovery Rate
FPR False Positive Rate
m sample data
β false negative rate
σ 2 noise intensity
C adjacency matrix
A internal coupling matrix
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