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ABSTRACT The cyber risk insurance market is rapidly developing in consideration of the potentially
huge losses attributed to cyberattacks. This requires the insurance business to have a valuation and risk
management framework that will enable cyber insurance policy issuers to fulfil their future obligations.
We present such a framework for cyber risk modelling, wherein the cyberattacks’ occurrences as well as their
inter-arrival and duration are captured by a regime-switching Markov model (RSMM). In this customised
RSMM, the transition probabilities of the Markov chain are governed by another hidden Markov chain
representing the various states of the cyber security environment. A self-calibrating mechanism is provided
via filtering and a cyber kill chain is built based on the stages of the cyberattack. With the aid of change of
reference probability measures and the EM algorithm, the estimators for the transition matrix are derived. Our
main point of interest is the random losses from cyberattacks, which are assumed to follow a doubly-truncated
Pareto distribution. The Vasi¢ek model is utilised to describe the interest rate process for the discounting
of losses. The premium for a cyber security insurance contract is calculated with the use of a simulated
data set based on two pricing principles. Our methodology featuring dynamic parameter estimation and
flexible adjustments in modelling various risk factors widens the available tools for pricing and cyber risk
management.

INDEX TERMS Cyber insurance, HMM filters, premium calculation, regime-switching Markov model.

I. INTRODUCTION to have direct losses of approximately 2 to 3 billion dollars

The need for cyber risk insurance is now appreciated more
than ever in this digital age by virtually all businesses relying
heavily on e-commerce mode and information technology
systems. Cyber risk refers to any risk of financial losses and
costs incurred from reputational damage borne by a business
organisation due to breaches in its computer networks. The
damaging consequences include ransomed or stolen infor-
mation, interruption of business operations, corrupted com-
puter systems, and serious professional impacts (e.g., identity
theft), amongst others. As per the document maintained by
the National Protection and Programs Directorate under the
Department of Homeland Security [52], the USA is estimated
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per year whilst the total indirect costs could reach as high
as 40 billion dollars per year in the USA. The demand for
cyber risk protection has increased recently giving impetus
to a growing business line for insurers. Insurance companies
develop cyber risk insurance products with coverage that is
not provided by traditional types of policies.

Such products not only meet the requirement of the cus-
tomers but also reduce legal costs triggered by legal disputes.
Precise underwriting tools and detailed coverage description
help resolve disputes between the insureds and insurers on
what should be covered. The coverage is usually split into two
categories. The first-party coverage is for losses and damage
to the business of the insureds, while the third-party coverage
or liability coverage is for losses of the insureds’ customers
or clients incurred as a result of a cyber event.
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There is enormous potential in the cyber risk insurance
business. In the Betterley Report [9], the annual gross written
premium for this segment of the insurance market increased
from $2.75 billion in 2015 to $3.25 billion in 2016. According
to Best’s column [61], the top cyber writers in 2018 are the
Chubb with 16% of the market share ($325.8 million) and
AXA US with 12.6% of the market share ($255.9 million).
In terms of policies in force identified in [61], Hartford ranks
first with 510,000 policies. Despite the potential for earning
considerable profits, companies are prudent about their total
exposures and underwriting remains difficult. Biener et al.
[10] discussed three major insurability problems of cyber
risk. These are (i) the absence of information to aid the
determination of independence and predictability of losses;
(ii) information asymmetry and adverse selection as compa-
nies that experienced serious cyberattacks tend to be more
willing to invest in cyber risk insurance; and (iii) existing poli-
cies only cover small losses but plausible extreme scenarios
are not protected, which limits the development of the cyber
risk insurance market. For example, the Data Breach Liability
for small businesses offered by the CNA Financial Corpo-
ration, one of the top cyber liability insurance providers,
has limits ranging from $100,000 to $2,000,000; see [23].
Apparently, the cyber insurance market is still at its early
stages and standardized terminology and product regulations
need further development.

Research in this area faces many challenges. This could
be due to the scarcity of quality data that model validation
entails, and the non-disclosure of the cost involved in data
breaches. Sustained efforts are paramount in adjusting mod-
elling approaches to be adaptable to an environment that is
heavily dependent on fast-changing technology. Such efforts,
as pointed out in Eling and Schnell [24], include modifi-
cations attuned to laws and regulations governing various
aspects of cyber security risk.

Several researchers investigated the modelling of cyber
risks using stochastic methods. Others focused on mod-
elling the extreme losses or severities of cyberattacks.
Wheatley et al. [67] found that the extremely heavy tailed
truncated-Pareto distribution is an appropriate choice to
model the recent data set covering 2007-2015 concerning the
sizes of personal data breaches per incident. Jung [42] found
that the data series on breach-loss maxima are stationary and
serially correlated; the data series follow the Fréchet type
of generalised extreme value distribution. The data source
in [42] is Cowbell Cyber Inc, which is one of the largest
private databases for data breach risk.

Certain studies on modelling the occurrences of cyberat-
tacks were conducted in the past. Bessy-Roland et al. [§]
proposed multivariate Hawkes processes, with specific kernel
choices, aimed to capture the clustering and autocorrelation
of the times of cyber events depending on their character-
istics (e.g., type, target and location). In Fang et al. [33],
the sparsity of enterprise-level data breaches is dealt with
by leveraging the inter-entity or inter-enterprise dependence
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between multiple time series. Certain investigations centre on
the dependence between the occurrences and the severities of
cyber events. The computational complexity emerging from
the correlation structure gives impetus to the utilisation of
copulas, which are well-suited in capturing non-linear depen-
dencies and in generating potential marginal distribution.
For instance, a 7-copula is an appropriate tool in examining
extreme events as proposed by Bohme and Kataria [11].
Following Mukhopadhyay et al. [51], the joint distribution
of the number of failures (frequency) and the loss given
default (severity) were modelled by normal copulas and the
derivation of the overall loss distribution was also shown.
Xu et al. [69] modelled the dependence between the inci-
dents’ inter-arrival times and the breach sizes by the Gumbel
copula and demonstrated as well that the ARMA-GARCH
model could describe adequately the hacking breach sizes.
A novel frequency-severity model for hacking breach risks
of an individual company was proposed by Sun et al. [60]
in which the breach frequency is modelled by a hurdle
Poisson model and the breach severity is modelled by a
non-parametric generalised Pareto distribution. The incor-
poration of network’s features into a stochastic model is
an enriching method for cyber risk modelling. An innova-
tive approach of Xu and Lei [68] utilised epidemic mod-
els to characterise cyberattacks and facilitated the derivation
of the dynamic upper bounds of the infection probabili-
ties by applying Markov models. The premium principles
were applied and demonstrated in [68] via simulation. Jevti¢
and Lanchier [41] presented a structural model of aggregate
cyber loss distribution for small and medium-sized businesses
under the assumption of a tree-based local area network
(LAN) topology. Other relevant examples could be found
in [5], [15], [31], and [32].

Considering the prime importance of digital advancements
as the backbone of today’s economic progress and way of life,
technical groundwork tackling cyber risk issues appear to be
gaining more traction. In Bohme and Kataria [11], cyber risk
is modelled in two steps. The beta-binomial distribution is
used to model the aggregate risk within a single company’s
network and the one-factor latent risk model is proposed to
model the risks in multiple firms with similar characteristics
at the global level. In [11], it was also discovered that cyber
insurance is best suited for risks with high internal and low
global correlations. A high internal correlation stimulates
the need of cyber insurance for institutions whilst a low
global correlation affects the insurers’ decision in setting the
premium. A related research work by Bohme and Schwartz
[12] proposed a comprehensive framework in probing cyber
risk’s inherent properties such as interdependent security,
correlated risks, and information asymmetries and in showing
which parameters could provide guidance in the creation of
future models with greater adaptability and improved func-
tionality. Eling and Wirfs [26] identified ‘““cyber risks of daily
life” and extreme cyber risks” by employing the peaks-
over-threshold method from the extreme value theory with
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their analysis based on actual cost data. Their model produced
consistent risk estimates, depending on country, industry,
size, and other variables. Taking advantage of the emerging
interests and growing developments in machine learning,
applications of deep-learning techniques have permeated the
field of cybersecurity. For example, Zhang et al. [70] made
accurate high-dimensional point predictions via deep learn-
ing and the multivariate cyber risks and predicting the high
quantiles using the extreme value theory.

Apart from the aforesaid methodologies, Husdk et al. [38]
found that Markov models function well in the presence
of unobservable states and transitions. In contrast to other
discrete modelling techniques such as attack graphs and
Bayesian networks approaches, Markov models do not
require possessing complete information to detect intrusion
and predict attacks. This finding widens the applications of
the hidden Markov models (HMMs) that include the detection
and prediction of cyberattacks on computer networks; see [4]
and [16]. This research also considers the utility of the HMM
to model cyberattack occurrences. To estimate the model
parameters, we rely on the Expectation-Maximization (EM)
algorithm due to its robustness and ease of implementation.
The EM algorithm is a numerical optimisation routine aiming
at maximising the (log) likelihood of a batch of observa-
tions [14].

The EM-inspired methods are classified into two major
categories: finite-memory approximations of the required
smoothing computations [44] and finite-memory approxima-
tions of the data log-likelihood itself [56]. To numerically
maximise the likelihood function, it is common to find the
maximum likelihood parameter estimates (MLEs) in con-
junction with the Kalman filtering. The Kalman filter is
a special version of the HMM filter with continuous state
space of latent variables and normally-distributed latent and
observed variables. Moreover, the Kalman filter is an efficient
recursive filter in the estimation of the internal state of a
linear dynamic system from a series of noisy measurements.
Research progress has been continually made in generalising
the Kalman filter within the aspects of robustness to measure-
ment outliers, accuracy of state estimations, and applicability
to nonlinear systems (e.g., [35], [36]). For example, Gao
et al. [34] proposed a novel Cubature Kalman Filter (CKF)
approach for a tightly-coupled GNSS/INS (Global Naviga-
tion Satellite System/Inertial Navigation System) integration,
which can be applied to vehicle positioning. The CKF put
forward controls the interferences of both kinematic and
observation modelling errors on state estimation. For this
paper, we shall construct the EM algorithm based on the
adaptive filter-based scheme introduced by [28]. By using the
change of measure technique, we can derive filters under an
ideal measure and obtain the real-world quantities through
the Bayes’ theorem for conditional expectations. Elliot and
Hyndman [29] demonstrated the advantage of the filter-based
algorithm over smoother-based EM algorithms. The filter-
based algorithm will be at least twice as fast because it only

44296

needs a forward pass. Additionally, the filter-based algorithm
can be easily implemented in parallel on a multiprocessor
system. There may also be specific computational advantages
for different models, such as the constant coefficient model in
our case, where the filter-based algorithm can be modified to
use the steady-state properties of the Kalman filter.

Recent research in the EM algorithm for HMMs has
focused on developing more efficient and accurate algorithms
for estimating model parameters (e.g. [1], [46]) as well as
on applying HMMs to new and diverse applications and
synthesising HMMs with new techniques for learning and
inference such as deep learning and reinforcement learning
(e.g. [45], [49]). Steady developments in the EM algorithm
for HMMs have opened up more avenues for research and
innovation in a wide range of fields.

In this paper, we consider the pricing of cyber risk insur-
ance for a single company, focusing on policies that cover
data breaches. We start with the modelling of the dynam-
ics of cyberattacks based on the cyber kill chain (CKC).
As outlined by Lockheed Martins Corp - one of the largest
companies whose lines of business encompass aerospace,
military support, security, and technology - the CKC defines
seven stages of a cyberattack. In Fig. 1, we concentrate on
the three stages or states of the CKC for the purpose of our
cyber risk modelling and pricing. These stages are firewall
working (stage 1), firewall fail (stage 2), and anti-phishing
fail (stage 3). In stage 2, for example, when the firewall is
unable to block malicious emails from spammers but the
company’s IT employees have mechanisms (e.g., phishing
awareness training) to identify successfully spam emails, this
could prevent unsuspecting email recipients from giving out
their passwords via some webpage links in the email spam.

To model the transitions among the three states, Dion-
isi [21] applied the Markov chain, an idea that we gener-
alise by considering a non-homogeneous regime-switching
Markov model. More specifically, the transition probability
of the Markov chain is stochastic and driven by another
unobserved Markov chain that reflects the “state” of the
cyber security environment. We derive the representation
of the transition probabilities and the expected number of
cyber attacks in a given amount of time. This model offers
greater flexibility for the transition probability when fitting
data that exhibit a wide range of characteristics. Compared to
the discrete-state space of an HMM in discrete time intro-
duced in Chapter 2 of Aggoun et al. [28], our proposed
modelling approach is more appropriately suited to capture
the transition patterns of the three states. In the discrete HMM
of [28], the discrete finite-state stochastic process’s states are
the observed states and they follow a finite-range discrete
distribution with probabilities driven by the hidden Markov
chain. This fails, however, to explain the direct impact of the
previously observed state compared to our formulation of the
regime-switching Markov model (RSMM).

The Privacy Rights Clearinghouse [54] defined the cat-
egories of data breaches. On the basis of this definition,
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State 1: Firewall working

**The firewall is working and the cyberattacks are successfully prevented.

State 2: Firewall fail/ anti-phishing working

**The firewall fails and cyberattacks are stopped by manual operations.

State 3: Anti-phishing fail

** Cyberattacks succeed.

FIGURE 1. A diagram depicting the cyber kill chain.

different types of data breaches could be catalogued by the
transition from state 1 or 2 to state 3. For instance, a transition
from state 1 to state 3 could occur when a portable device
such as a laptop is lost. The data stored in the laptop may be
leaked when password hacking by unscrupulous individuals
succeeds. A transition from state 2 to state 3 could occur
when the company’s system is infected by malware and the
employee opens an.exe attachment leading to the spread of
computer virus infection. The losses are associated with the
transition from state 1 or 2 to state 3. We employ the Monte-
Carlo simulation to generate the transitions between the CKC
states and to obtain the premiums based on two valuation
principles used in practice for traditional insurance contracts.
The relevant severities or breach sizes follow a doubly trun-
cated Pareto distribution as advanced in Wheatley et al. [67]
in which the models were based on the number of recorded
data. The losses are deduced from breach sizes via the pro-
portionality or functional-form assumption. The breach size
refers to the number of data records lost while the loss size
is the dollar amount of the loss incurred. In summary, the
estimation of transition probabilities, determination of the
number of attacks, and the calculation of premiums constitute
a complete sequence of valuation steps.

Our work considers two main types of cyberattacks: hack-
ing and insider threats. We recast the cyberattack event as
an attacking/phishing process that could be described by
stochastic models. Our proposed model could be calibrated
not only to data on incident arrivals but also to incident dura-
tion. In contrast, most established frequencies or counting
processes for cyber events capture the cyber incident counts
over a specified period or inter-arrival times of cyberat-
tacks. Modelling examples include established frequencies or
counting process for cyber events following a negative bino-
mial [22], hurdle Poisson model [60], Hawkes process [8],
and autoregressive conditional mean model [69]. In addition,
our starting point is to model the firm-level risk rather than
aggregating risks, which is the common way in literature such
as those in [22], [25], and [32]. The aforementioned discus-
sion is summarised in Fig. 2. A complete pricing framework
is also given to facilitate insurers with a cyber risk evaluation.

The paper is organised as follows. Section II introduces
a regime-switching Markov modelling framework for the
occurrences of data breaches. In Section III illustrates the
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FIGURE 2. A comparison between proposed frequency models and
current frequency models.

construction of the total-loss process and the premium-
calculation principles. The applicability and validation of our
approach are demonstrated in Section IV through numeri-
cal implementation using simulated data. Lastly, Section V
concludes.

Il. REGIME-SWITCHING MARKOV MODEL

In this section, we outline our development of a regime-
switching Markov model customised for the modelling of the
CKC.

The regime-switching Markov model is constructed in
Subsection II-A. Subsection II-B outlines the change of mea-
sure technique as a preliminary for the recovery of parameters
from data. In Subsections ch: RSMM filter and II-D, the steps
are detailed to obtain the optimal recursive estimations of
parameters with online filters and the Expectation-Maximum
(EM) algorithm. The long-run proportion of the number of
attacks is derived in Subsection II-E.

A. DESCRIPTION OF THE REGIME-SWITCHING

MARKOV MODEL

Adbhering to the convention in matrix algebra, all vectors will
be denoted by bold letters in lowercase while all matrices
will be denoted by bold English or Greek letters in upper-
case. Suppose z; is a homogeneous discrete-time Markov
chain with finite states. Assume that the initial state zg is
known. As in Elliott et al. [28], the state space of zy is
taken as the set of unit vectors {er, e, ..., e,}, where ¢; =
©,...,0,1,0,. ..,0)—r € R"” and T denotes a vector or
matrix transpose. The semi-martingale representation of z
is

Ziy+1 = Mz + Vi1 (D

In equation (1), IT = (7r;) is a transition matrix, Vg4 is
a martingale increment with E[vi4(|F;] = 0, and F} is
the complete filtration generated by z1, z», . . . Zx. The above
conditional expected value is computed under the real-world
probability measure P.

The CKC’s state process yy takes values in {f, f5, ..., £},
where f; = (0,...,0,1,0,...,0)7 € R”. In our case,
m = 3 and the state f; signifies that the CKC is in state i.
Assume that y; evolves as a Markov chain with transition
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matrix B(z;) =
bji(zy)|

This implies that

(bij(zx)) € R™™, where

P(yir1 =filyk =fizr=e). (2

=€ *

Ye+1 = B@)yr + Wit 3

where w41 is a martingale increment with E[wy41|Fr] = 0;
Fi = Ff\ f,f and .7-',3’ is the complete filtration generated
by {y}-

Remark 1: Although the state equation (3) is similar to the
form of the discrete HMM proposed in chapter 2 of Elliott
et al. [28], our formulation here differs in two respects:

(i) the transition matrix B is time-dependent and hence,
more general; and

(ii) the dynamics of yr+1 depends directly on y; and not
Zi.

The theoretical difference leads to various modelling appli-
cations. For instance, a model for coin tossing in [62] is
an illustration of a discrete HMM in pp. 15-56 of [28].
A sequence of coin-tossing outcomes is observed but it is
modelled by two different and biased coins corresponding to
two underlying Markov states. Given the choices of the coins,
the tosses’ outcomes are independent. This characteristic of
the observed series does not fit with our RSMM as ours
suggest correlated observed series given hidden states.

Our idea is to rewrite model (3) so that certain established
results of homogeneous HMM with a discrete range could
be adopted and extended into our case. We introduce C =
(cij(yr)) € R™" where

¢ji(yx)| P(ye+1 =Flyr =tz = €;)

yi=t =
= b)), _,. )
Thus, invoking (2), (3) is equivalent to
Yi+1 = C(Yo)Zk + Wi1. 5

Equation (5) is a one-step delay model and a reasonable
model as yz+1 may not react to z immediately.

B. CHANGE OF REFERENCE PROBABILITY MEASURE

The rationale for the measure change is that, under the new
measure P to be defined later, the sequence of observations y
is transformed into a sequence of independent and identically
distributed (IID) random variables each having a uniform
distribution. So, a probability — is assigned to each element

f;,1 < i < m, in its range space. The transition matrix IT
remains the same under P; a proof tailored to our application
is included as a lemma in Appendix A.

Define A; and A as

A= ﬁ (mcgl)) , (6)

i=1

k
A:=[]m. k=1 Ao=1, (7
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wherey = (y;, f;) and c;l) = (C(y;—1)z—1, ;). Then, Ay in
(7) is referred to as the Radon-Nikodym derivative of P with
respect to P, which is written as

dpr —

— = Ag.

dP| gz,

We aim to estimate z, given the observations under the
real probability measure P. All calculations will be done
though under P to take advantage of the IDD assumption,
making the evaluation of conditional expectations more man-
ageable. In other words, defining a new measure P is similar
to constructing an idealised statistical setting under which
calculations are performed with great ease because random
variables are IID. The calculation results are then related
back to the real-world setting (measure P) with the aid of the
Bayes’ theorem. To explain how this works, let us begin by

letting Z; be the conditional expectation of z given f,f under
P. That is,

B ElulA] = @033 e,
2 =P (2 = el F)) = E [(z, e)|F}].
By the Bayes’ theorem for conditional expectation,
E [Axzi| 7|
E [Xk |.7:]Z ] '
which shows that the optimal estimate under P is expressed

in terms of the c_alc_ulations under P.
Write py := E [ Axzi| 7] |- This gives

E[A|F]=E [Kk(é(zk,ei))‘fky}

E [(Arzk, e)| 7} ]
1

Zi =E[Zk|.7:1§] =

=

n
(E [Akz, eil Fi]) = Z(Pk, €),
1 i=1
where for the middle expression in the first equality above,
we make use of the fact that Zle (zx, €;) = 1. Therefore,
% = Pk
> (P, e

C. COMPUTATION OF ONLINE FILTERS
As a prelude to the constructlon of online or recursive filters,
define the vector d; = (dk ,d<2) e dk"))—r by

m
. (
d;?) H (cijlyr—1)™*

|
M=

t)
l<j=n

Let Gy be any scalar F) +-adapted process; Go is .7-3 -
measurable. The best estimate for Gy, is defined as E[Gy | F].
Again, by the Bayes’ theorem,

E[GyAv|F]]  EIGeA¢|F}]
E[AF Ziii(pr &)
The filter for Gy is y(Gy) := E[Gx Ax|F} 1.

E[Gk|F]1= ®)
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Remark 2: It has to be noted that (E[szkaL}",Z], 1) =
y(Gi(zx, 1)) = y(Gy), where 1 is a vector of 1's.
In terms of the filters, therefore, (8) becomes

y(Gr) _ (y(Gkz), 1)
vy 2 (e )
These filters will aid in obtaining an online parameter estima-

tion scheme.

Before we delve into the calculation of optimal model
parameters, we define (for r,j = 1,2,...,n and s,

E[Gy|F]1= ©)

i=1,2,...,m) the following quantities:
) k
T =D (1, e u, €), (10)
lil
Op =D (1. e), (a1
=1
k
Tyt =D (mo ey By, £, (12)
121
T (@) =D (m1,e)(yi1, £i). (13)

=1

In equations (10)-(13), j,{’r is the number of jumps from e,
to state €; in time k; (9; is the amount of time that the Markov
chain z spent in state e, up to k; 7, (yx, f;) counts the number
of times up to k that y is in state f; given that previously the
Markov chain z was in state e, and y was in state f;; 7, (f;)
counts the number of times up to k for which the Markov
chain z visited state e, and y entered state f;. From (9), the
filtered estimates of 7", Of, T;"" (yx, £;) and 7;" (f;) are given
by

. rdtrwa)

~ o). 1
T (e 1) = v (gf!lyl(cpkf):k)) 1)

In turn, the recursive relations of py, j,{'r, Or T (v, £)
and 7,/ (f;) are:

pr = I diag(di)pi—1. (14)
V(J;{’rzk) =1 diag(dk)y(J,{’_’lz;{_l)
+d" (1, €))7, (15)
Y (Orzx) = T diag(dy)y (O; _ Zx—1)
+d" (i1, ), (16)

¥ (T3 (i £z ) = T diag(dp)y (7., (Vk—1. £)za—1)
+m(pr—1, € ) (Y, £5) (yx—1, fi)csr (B 1,
(17)
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v (T €z ) = T diag(dp)y (T (F)zi—1)
+d0 o, ) it B, (18)

The proofs of (14), (15) and (16) can be found in Mamon
et al. [48] whilst the proofs of (17) and (18) are detailed in
Appendix B.

D. PARAMETER ESTIMATION OF THE
REGIME-SWITCHING MODEL

The estimation of the model parameters is based on a
sequence of measure changes along with the Expectation-
Maximum (EM) algorithm, which can be found in section
2.7 of [28]. The EM algorithm is introduced below; see Elliott
and Krishnamurthy [27] for a detailed exposition.

Let Y C F and {P’, 6 € ®} be a family of probability
measures on a measurable space (€2, F), which is absolutely
continuous with respect to a fixed probability measure PY;
and O is a parameter space. The likelihood function entailed
in estimating 6 on the basis of information contained in ) is

dp?
ar ¥

and the maximum likelihood estimator (MLE) of 0 is

L£©®) = E*? [

0e argmax £(6).
6e®

We seek an estimator of 6 that maximises the conditional
expectation of the density. Nonetheless, the MLE cannot be
calculated directly in general especially for a complicated
density. The course of action is to resort to numerical or
iterative methods such as the EM algorithm that approximates
the true parameter estimates.

The algorithm’s first step is to set / = 0 and choose é;). The
second step, also referred to as the E-step, is to set 6* = é\l
and the posterior is

P” (Yir1 = £|V)P(zi = e;)
S P (Y1 = &I V)P(z =€)
_ Csr(fi)P(zk = er)
> e )Pz =€)

where P(z; = e;) are prior information of z;. Next, we com-
ar’

pute
apr?” y} '

The third step, also referred to as the M-step, is to deter-

mine 64 € argmax Q(9, 6*). The last step is to replace [ by
)
! 4+ 1 and repeat the procedure from the second step until a

stopping criterion is met. The estimated values {é\;, [ > 0}
are nondecreasing as guaranteed by the Jensen’s inequality
and they converge to a likelihood’s local maximum. Guided
by [19], this convergence is facilitated in our initialisation
stage. We use the fininsearch in package ‘“‘pracma” [13] to
find cg,-(f;)’s that minimises the likelihood

P (2 = e,|)) =

0,6%) =E” [

l<s<m1<r=<n

L1, ... Yk; csr(£),
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n m
— H Z Z Csr(fl.)<zk—11er)()'ksfv)<y1c—l»fi)‘
k r=1s=1
The search of the parameters will be carried through in the
range of [0, 1], which yields “global” optima within that
range.
The optimal parameter set 0 = (T, cor(f), 1 < j,r <
n, 1 <s,i < m} maximizes the Q function, and through the
EM algorithm, these optimal parameters are:

_ Jh
= , 19
= 0p (19
Tor(£) = M (20)
y (T ()

The respective proofs of (19) and (20) are presented in [48]

and Appendix C. We also compute the variances of the esti-

mators from the following Fisher information:
ﬂ,r

T(ry) = 2o 1)

T(cg) = X (22)

The derivation of (21) and (22) can be found in [37] and
Appendix D, respectively.

E. THE LONG-RUN PROPORTION OF THE ATTACKS

From the model specification in (1), the Markov chain z; has
the transition probability matrix IT. We shall assume that z;, is
irreducible with finite states. Thus, z; is positive recurrent and
has the long-run proportions & = (a1, o2, ..., )", which
uniquely solve the equation

n
a=oll with > ;=1
i=1
The Markov chain y; is also assumed irreducible with
finite states when z is fixed. Suppose further that &, =
T
(Ei(l), e, Si(m)) , fori = 1,...n, is the long-run propor-

tions of y; given that z;_; = e;. That is,

m
§=&Be) with D &7 =1,
j=1
where by, (€;) = cyi(f,) as indicated in in (4). Note that & and
&, are also stationary probabilities, that is, if P (zg = e;) =
o, P(zx = e;) = «;, k > 1; similar properties hold for &;.
By conditioning on z, in the long run,
n
Pyk=f) = Zgi(l)ai-
i=1
Recall that a cyberattack occurs when y; jumps from state 1 or
2 to state 3. Hence, the long-run proportion of cyberattacks is

2 3 )
D> e aibjaen. (23)
j=1 i=1
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Finally, the number of cyberattacks is equal to the value
produced by (23) multiplied by the number of y; within a
certain time horizon.

IIl. THE TOTAL LOSS PROCESS AND

PREMIUM CALCULATION

We now consider the total losses over the time period T
and the principles underlying the calculation of premiums.
We shall ensure that the subdivisions Af; := t; — fr—1 of
[0, T'] will coincide with the time-unit subdivisions of y. It is
assumed that the optimal estimates of 7;,’s and c,,(f;)’s are
produced by our proposed filtering method in the previous
Section upon application to a data set. The ensuing discussion
is divided into three Subsections dealing with an interest rate
model to discount the losses, the total loss process, and the
computation of premiums.

A. THE INTEREST RATE MODEL

Let r; be the interest rate at time k£ and independent of
{yx,k = 1,2,...,T}. The r; process is based on a
continuous-time version of r; possessing the Vasicek dynam-
ics via the stochastic differential equation

dr; = t(a — r;)dt + vdW;, (24)

where the parameters 7, a and v > 0 are constants and {W;}
is a standard Brownian motion. The solution of (24) is

t
rn=ro+a(l —e ")+ v/ e T qw,.
0

Clearly, ry follows the normal distribution with

Urk :=Elr] = roe” ™ + a1 — e ") and
2 v 2tk
. —LT
Ur,k = Var[rk] = Z (1 —e ) .

The interest rate model in (24) is discretised when incorpo-
rating it into the insurance valuation. As k goes to infinity,
we obtain the respective long-term mean and variance

Wy i=a (25)
2
2 U
= — 26
oy =5 (26)

It is apparent that the constant interest rate situation is a
special case of our generalised framework, which naturally
embeds stochastic discounting. For the related annuity val-
uation that takes into account our stochastic interest-rate-
modelling approach, see [71].

B. THE TOTAL LOSS PROCESS

The incurred loss L,({i), fori =1, 2, occurs when y; goes from
state i to state 3, i.e., yy = f3 and yx—; = f;. Suppose L,Ei)’s
are IID random variables with the same distribution as L.

The total discounted loss during [0, T], denoted by S, is

T 2
St =2 > vk B)ye—r. f)L e @27)
k=1 i=1
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where ry is converted to the force of interest rate per time
interval Atx. The distribution of losses may be estimated
from real data. In general, the costs per cyberattack could
be not determined exactly. But, since the data breach sizes
are disclosed and they are useful information given their very
close link to the losses. Such a link could also be described in
a quantitative way. We denote the breach sizes by A®). In this
paper, the relationship between A”) and L® is illustrated
under two separate assumptions: (i) proportionality assump-
tion, i.e., L% is proportional to A®”; and (ii) functional-form
assumption, i.e., L® is derived from A through the equation

log (L@) — 7.68 4 0.7568 x log (A(i)) .28

Assumption (i) was supported by the empirical reports that
provide average costs per data breach record, such as $161 per
record in [39]. Therefore, the losses with a known number of
breached records can be estimated via average costs. The log-
log model in Assumption (ii) was shown by Jacobs [40], and
was widely applied to estimate costs in multiple models such
as [22], [25], and [60]. Algarni and Malaiya summarised var-
ious models available to compute the costs of data breaches;
see [3].

Proposed probability distributions to model the cyber-
attack severities include the log-normal family of
distributions [22], non-parametric generalised Pareto distri-
bution [60], and mixed distributions [33]. The severity of
large casualty losses for certain lines of business such as gen-
eral liability, commercial auto, and workers’ compensation is
approximately Pareto-distributed. These results motivate the
use of Pareto distribution in modelling cyber losses; see [58]
and page 94 of [43]. In this paper, we assume that A®) follows
a doubly truncated Pareto (DTP) distribution as suggested
in [67].

Thus, the distribution function of A® is

= /up) ™
1 — (vi/u;)=%"
where 0 < u; < x < v;,0 < § < landi = 1,2. The
expectation and second moment of A are

E[a%]

Fpo(x) =

I/ta Vz — V(S I/t2

8y, 1,0 2

uv—v°u »

— (@) —

=53 andE[(A’):|— R

respectively. Suppose that the initial states of z and y are
assigned as the corresponding stationary probabilities. Then,

T 2

ESr1=).>" Zzlf,-(/)aibﬁ(ei)E [L(j)] E [e_r"k] ;

k=1 j=1 i=I

where the discount factor is calculated under the interest-rate
setting in [47]. For simplicity, the interest-rate model is dis-
cretised and the rates’ long-term mean and variance are used
to approximate the expected total losses. Therefore,

2 2

E[S7] = i z Z Ei(f)aibj3(ei)E [L(’)] E [e_’kk]

k=1 j=1 i=1
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[
MN}

[ _rkk] 22122:51 aibj(e)E [L(f)]

j=1 i=1

1
exp (—/L,k + Easz)

Z ZZ: aibp(e)E [LV]

T

,\w
Il
-

Il
»MN}

Rl

exp | —prk Loz
pl\—ur +2O'rk dk

2
X Z Z Ei(/)a,'bﬂ(e,')E I:LU)]

j=1 i=l1

n(eTz—l) 12
()

V20, 20}

2 2
x >3 elaibpe)E [L9], (29)

j=1 i=1

X
h
|38

where 7, and o, are defined in (25) and (26) and the integral
calculation in (29) can be found in Appendix E. If the horizon
time T is large enough, we can approximate the sum of ry’s
moment generating functions by an integral as we did in (29).
For the special case of a constant interest rate over the time
horizon [0, T], i.e., ry = r, the expected total losses becomes

Z Z £Dabjs(e)E [L</>]

j=1 i=1

E[Sr] =

C. THE PREMIUM CALCULATION
From the standard-deviation premium principle, the premium
H(ST) is given by

H(St) = E[ST] + AV VIST], (30)

where A, > 0 is the risk loading that represents the level of
transaction costs. A more risk-averse insured, for instance,
is willing to pay a premium with larger A,. Alternatively, the
premium H (S7) based on the principle of equivalent utility is
the solution of the equation

uw) = E [u(w— St + H(S7))], 3L

where u is an increasing concave utility wealth and w is the
initial wealth. We shall consider in our numerical implemen-
tation the utility function of the form

—KX

ux)=1—e"**, x>0.

The solution to (31) has the closed-form representation

H(Sy) = log ( [ S]) , (32)

where k is the risk-aversion parameter. When « approaches 0,
the premium converges to E[S7]. Given the above-mentioned
utility function, the premium principle is called the exponen-
tial premium principle; for more details, see [20].
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IV. NUMERICAL ILLUSTRATION
The procedure for implementing our pricing framework is as
follows:

o Step I: Simulate the data as an underwriting basis of
cyberattack occurrences.

o Step 2: Implement the RSMM and obtain the transition
probabilities.

o Step 3: Simulate the total losses with parameters esti-
mated in Step 2 and calculate the premiums.

In this section, how the data simulated in step 1 is illustrated
in Subsection IV-A and the estimation results of Step 2 are
presented in Subsection IV-B. We discuss how the param-
eters of losses are set and the behaviours of simulated
premiums under different principles and loss assumptions
in Subsection IV-C. The semi-parametric approximation is
displayed in Subsection IV-D. Finally in Subsection IV-E,
we conduct a case study with higher chances of cyberattacks
and compare the RSMM with other models in terms of AICs
and BICs.

A. DATA SIMULATION

In the absence of a reliable data set, we use a simulated data
set to demonstrate the practicalities of our online parameter
estimation via HMM filtering. This is followed by determin-
ing the number of cyberattacks through simulation with the
utilization of the estimated parameters. This leads to the final
step of obtaining the premiums.

Firewalls are equipped with real-time cyber security mon-
itors. They provide a record of cyber-attack stages in min-
utes. Reports encapsulated in the PRC data [60] indicated
that majority of companies had only one incident and only
8 companies had more than two incidents from 01 January
2010 to 31 March 2019. It could be reasonably assumed that
there are no multiple cyberattacks in one day for a single
institution. Thus, the transitions between CKC states that
lead to cyber-attack incidents on a minute-frequency basis
over a 24-hour period will be recorded as the transitions in
the daily frequency. For example, in the famous WannaCry
ransomware incident [66], the attack was ongoing from 07:44
to 15:03 UTC on 12 May 2017. In this case, we shall record
a CKC stage 3 on the 12th of May and a CKC stage 1 on the
13th of May. By changing the frequency of the data, the model
complexity is reduced. Unfortunately, the publicly available
data only specifies the date when the cyberattack was made
known to the public. To apply our RSMM model, the starting
and ending times of the cyberattacks are needed. Collecting
reliable data from the firewalls directly, if possible, would
be ideal. Due to limited data and resources, we illustrate our
framework by simulated data. Suppose we have one-year data
sets from a group of 200 institutions that share similar cyber
risk characteristics such as data and organisational types. This
data set will serve as an underwriting basis for the insured that
could be classified into the same group. Additional details
on how cyber risk insurance carriers assess the risk are given
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Set zo = (1,0)',
Yo = (1,0,0)'
Letk=1 -

l

Simulate y, with the transition
matrix B(zy—,)

l Yes

Simulate z with the transition
matrix I1

l

k=k+1,
k < 365?

FIGURE 3. Simulation flow chart.

in [55]. Our simulated data set has 365 x200 = 73, 000 obser-
vations.

Following the simulation steps in Fig. 3, the data set for
one company could be obtained. These steps could then be
repeated 200 times to generate the full underwriting data.
Note that for each company, we have paths of the CKC
process with daily frequency for one year. The cyber security
environment is assumed to be switching between good (ej)
and bad (e) states. Suppose the transition matrix of z is

- 0.995 0.010
—10.005 0.990 |-
The entries of B(e;) and B(e,) are assumed to be
[0.997 0.800 0.030 ]
B(e;) = | 0.002 0.000 0.020 | and
| 0.001  0.200  0.950 |
0.995 0.700 0.010]
B(e;) = | 0.003 0.000 0.010 {.
| 0.002  0.300 0.980 |

The transition diagram reflecting the above transition matrix
of the CKC is depicted in Fig. 4. The numbers in black and
black are the transition probabilities when y is in states e; and
ey, respectively. For example, the probability of y; going
from state 1 to state 2 given z; = e is 0.002; and the
probability of y; going from state 2 to state 3 given z; =
ey is 0.2. With this set of parameters, more than half of the
institutions end up with no incidents for the whole year, and
around one third end up with one incident. In comparison with
the PRC data, the setting of these parameters is reasonable.

B. APPLYING RSMM MODEL

We shall estimate the transition probabilities for each com-
pany and the average of the estimates is the final estimate.
In other words, the data for each group of 365 observations
are processed giving the various filters and hence, the model
parameter estimates; each data point being processed consti-
tutes one algorithm step. Fig. 5 displays the estimated results
for the various transition probabilities after the completion of
365 algorithm steps.
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FIGURE 4. A portrayal of the CKC's state transitions.

As expected, the estimated values of 7j.’s and c-(f])’s
converge to their “true” values for a sufficiently large amount
of time. However, ¢, (f2)’s and ¢y, (f3)’s do not exhibit con-
vergence. Checking Fig. 5(a), we find that the CKC chain
visits state 2 or 3 only infrequently, which indicates there
is not enough data for the model to update its parameters
dynamically going towards the “true” values. We shall see
parameter-estimate convergence when there are more cyber-
attack occurrences as illustrated in Subsection I'V-E. Recall
that there are 200 sample paths corresponding to 200 institu-
tions, and each path has a one-year length of data points. The
transition probability estimates of each institution are plotted
in Fig. 6. The dashed lines represent the corresponding 95%
confidence interval using the standard errors calculated from
the parametric bootstrap [63]. In contrast, the estimates of
csr(f7)’s are significantly affected by the states of y’s. In par-
ticular, cy-(f)’s estimates still fluctuate widely throughout
the entire period.

Our ‘best’ estimate of each transition probability is the
average of the estimates from the 200 institutions, and they
are recorded in the following matrix:

g _[09% 0014
~ [ 0.004 0986 |

_ 0.997  0.850  0.036 ]
B(e;) = | 0.002 0.000 0.019

| 0.001  0.150  0.945 |
R [0.993 0721  0.034]

and B(e;) = | 0.004  0.000 0.026 |.
| 0.003 0279 0.940 |

These estimates are further implemented in the premium cal-
culation. The standard errors of these estimates are obtained
with the parametric bootstrap and displayed below.

= _ [0.00167 0.00610
SE (M) = [ 0.00167 0.00610} ’
[0.00298  0.09618  0.05899 ]
SE (B(er)) = | 0.00232  0.00000  0.04161
| 0.00182  0.09618  0.06664
[0.01201  0.10842  0.05963 ]
and SE (B(e2)) = | 0.00752  0.00000  0.04935 | .
| 0.00970  0.10842  0.07169 |
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We observe that the accuracy of final estimates could
be improved despite some non-convergence for a single
path. The SEs are apparently larger though for bs(e,)’s
and bg3(e,)’s as there are fewer transitions starting from
state 2 or 3.

C. SIMULATIONS FOR PREMIUMS

The simulation of the breach sizes A?)’s is performed using
the DTP distribution with the parameters u; = up, = 1,
vi = 2,202,078, v, = 11,818,259, §; = 0.0668, and
82 = 0.0068. The parameters are chosen based on the PRC
dataset [54] from 2013 to 2017. The starting year corresponds
to that of the data set used to demonstrate the functional-
form assumption in (28) whilst the ending year is chosen
based on the completeness of the PRC data. We compare the
PRC data with the raw incident reports in one of its major
sources, the U.S. Department of Health and Human Ser-
vices Office for Civil Rights, and discover that the numbers
of cyberattacks are not consistent from 2018. In particular,
we select cyberattacks of medical-organisations type because
data from medical organisations are sufficiently available and
reliable. We then classify the cyberattacks into two subsets
(subset 1 and subset 2) based on attack types whether hacking
is involved or not with the goal of setting up parameters for
i =1andi = 2, separately.

Next, we randomly choose 60 samples from each subset 1
and subset 2. The parameters u;’s, v;’s §;’s are taken as
the MLEs of the samples. The above process is replicated
10 times and the averages of the results in each iteration
become our inputs in this experiment. Note that the above
process only assists us in finding reasonable parameter values
to conduct the simulation.

In practice, the parameters must be estimated based on the
data of a group of companies that share similar traits with the
company seeking cyber risk insurance such as the type, size
and historical breach records. With the simulated number of
records per attack, we shall obtain the corresponding losses
under two loss assumptions in Subsection III-B: (i) propor-
tionality and (ii) functional-form assumptions. In particular,
we assign $161 for the cost-per-record assumption (i), which
is the global average cost in 2021 [39]. By applying the Euler
discretisation scheme to (24) and simulating the interest rate
process with T = 55.8711,a = 0.0739 and v = 0.3452,
we get the discount factor in percentages. The simulated
parameters are set with the reference to the 1-year U.S.
T-bill yields in 2021. The simulated annual interest rates
range from 0.006% to 0.162%.

The cyber-risk insurance premium for three months, six
months and one year could be computed now with the gen-
erated discount factors and loss random variables. Suppose
that there is no deductible limit in the insurance contract and
the loss is paid on the day that it is incurred. As mentioned
in the previous section, we apply two methods based on:
(i) standard-deviation and (ii) exponential-premium princi-
ples following equations (30) and (32), respectively. In prin-
ciple (i), we set A, = 0, 0.1; whilst in principle (ii), we have
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FIGURE 5. Evolution of the transition probability estimates for ;. and csr (f;) (/ = 1,2, 3) on a daily basis for 365 algorithm steps.

1 1 1

K = 1006 T0.000° 100,000 The same values of A, and « are 200 subgroups with equal sizes of 5,000. The expectation
used in [25]. and the variance involved in (30) and (32) are both estimated

There are one million one-year scenarios generated from 5,000 scenarios in each subgroup. We display the means
by the simulation, and these scenarios are divided into and the standard errors (SEs) of the premiums obtained per
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FIGURE 6. Estimates of Tp and csr(f;) (i = 1, 2, 3) on a 12-hour interval (200 estimates for each parameter).
subgroup in Table 1; the average premiums and their SEs of 3, 6, and 12 months. In particular, each 3-month scenario is
based on 200 subgroups are shown for each combination of extended to 6 and 12-month scenarios with the same random
the loss assumption and the premium principle with terms seed. From Table 1, we have the following findings:
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TABLE 1. Premiums in millions under the (i) standard-deviation and (ii) utility-based premium principles.

Principle (i)

Principle (ii)

Assumption

A =0 Ar = 0.1 k=103 kK=10"% k=107
Term: 3 months
Mean  29.2679 44.5373 48.4185 30.4883 29.3854
SE 2.0828 2.9765 4.8832 2.2236 2.0962
i) Term: 6 months
Proportionality  Mean 61.0705 82.7197 99.1278 63.5178 61.3063
assumption SE 3.0999 4.0124 7.1209 3.3029 3.1191
Term: one year
Mean  118.6995  148.6075 191.1689 123.3661 119.1490
SE 4.2738 5.1951 10.4878 4.5608 4.3010
Term: 3 months
Mean  10.5781 15.2208 11.7794 10.687 10.5890
SE 0.6248 0.8422 0.7397 0.6348 0.6258
(i) Term: 6 months
Functional-form Mean 22.0634 28.6289 24.4527 22.2814 22.0850
assumption SE 0.9358 1.1540 1.0981 0.9499 0.9372
Term: one year
Mean  42.5934 51.5152 46.9889 42.9954 42.6332
SE 1.2807 1.4923 1.4981 1.2994 1.2827

1) The premiums are proportional to the terms of the
cyber-risk insurance given a loss assumption and a
premium principle.

2) The means and the SEs increase as A, increases or as k
decreases under both assumptions.

3) For a fixed term and a given assumption, the premiums
and the SEs under principle (i) with A, = 0 are close to
those under principle (ii) with k = 1077,

4) The means and SEs under the proportionality assump-
tion are much larger than those under the functional-
form assumption.

5) The SE of premiums could be as large as 10 million
under the proportionality assumption.

The first finding could be explained by the formula for E[ST]
whenever the role of interest rates is negligible and a suffi-
cient number of scenarios are simulated. The second observa-
tion is straightforward. The third one supports the theoretical
result that as xk goes to 0, the expected premium will con-
verge to the expected total losses. Additionally, we verified
what lead to the fourth finding. In the original literature of
assumption (ii) [40], the number of records per cyberattack
in the data that supported the model is at most 100,000 whilst
the simulated severities could be up to 11 million. It seems
that the log-log model should be updated and we should rely
on the results from the proportionality-based model. As for
the last one, the aim is to decrease the SE of the premium. The
SE would be 21.4831 million when there are 200 subgroups
with 1000 scenarios in each subgroup whilst the SE increases
to 22.3257 million when there are 1000 subgroups with a
size of 1000 scenarios. This suggests that increasing the size
of the subgroups rather than the number of subgroups could
decrease the SE. Therefore, including more institutions will
help in premium determination more accurately.
Furthermore, we apply a pairwise t or F test to check
whether the findings in the second and third observations are
statistically significant. Below are our statistical test results:
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1) The premiums and the SEs increase significantly as X,
increases under both assumptions.

2) Under the proportionality assumption, the premiums
and SEs of premiums decrease significantly when «
decreases but the SEs do not differ significantly as «
changes from 10~ to 107 for all the three contract’s
terms.

3) Under the functional-form assumption, cases become
more complicated. In a three-month policy, the pre-
miums and SEs of premiums decrease significantly
when « decreases from 1073 to 10~ but not from
107% to 1075, In comparison, the premiums decrease
significantly when « decreases from 10~ to 107 for
other policy terms.

4) For a fixed term and a given assumption, a paired
t—test demonstrates that the premiums calculated when
k = 107 are significantly larger than the premiums
calculated when A, = 0 based on a p-value of less than
10722, On the contrary, the variances of the premiums
under these two cases are the same with a p-value of
over 0.99 from the F test.

In summary, by adjusting the risk-averse parameters, we
could achieve different levels of premiums. The changes
in the means and their SEs are term-independent when X,
or k changes under the proportionality assumption; more
specifically, the significance of the change is the same for all
the three terms. We find, however, that the means are more
sensitive to the change in « than to the change in SEs.

Romanosky et al. [55] pointed out that quoted cyber-
insurance premiums a few years ago are typically for policies
with limits of $100,000 and deductible of $10,000. Notice-
ably, our simulated-based premiums are unrealistically high.
To reflect the present business settings in our valuation,
we calculate the premiums with a deductible of $50,000 and a
payment limit of $500,000 in Table 2. The premiums remark-
ably drop to a reasonable range and the premiums under two
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TABLE 2. Premiums in thousands with a deductible of $50,000 and a limit of $500,000 under the (i) standard-deviation and (ii) utility-based premium

principles.

Principle (i)

Principle (ii)

Assumption =0 X\ =01 k=107 k=107 r=107
Term: 3 months
Mean  65.4365 82.2964 81.4809 66.8753 65.5788
SE 2.1300 2.3628 2.5467 2.1695 2.1339
@) Term: 6 months
Proportionality =~ Mean 1253017  146.9595 150.6062 127.6661 125.5364
assumption SE 2.9709 3.1427 3.3170 3.0079 2.9747
Term: one year
Mean  218.5111  243.2706 249.4873 221.5818 218.8176
SE 3.7154 3.7623 3.7553 3.7263 3.7166
Term: 3 months
Mean 65.5714 82.4335 81.6185 67.0106 65.7137
SE 2.1320 2.3650 2.5490 2.1716 2.1359
(ii) Term: 6 months
Functional-form Mean 1258114  147.4723 151.1151 128.1764 126.0462
assumption SE 2.9645 3.1349 3.3075 3.0012 2.9682
Term: one year
Mean  220.2729  245.0043 251.1486 223.3363 220.5787
SE 3.7373 3.7819 3.7713 3.7476 3.7384

loss assumptions also become practically comparable. Still,
if the coverage is set to a maximum of $500,000, the product
could be deemed insufficient to meet the needs of the client.
Given the situation that more than half of the underwriting
institutions experience a cyberattack, it is reasonable that the
premiums could be raised at a level half of the payment limit.
Of course, the premiums could be lowered if the underwriting
group has lower cyber risk.

D. SEMI-PARAMETRIC APPROXIMATION

OF TOTAL LOSSES

Although the simulation of the total discounted loss St is
helpful when ST does not have an explicit functional form,
the simulation method requires considerable computing time
and resources. To remedy this issue, the distribution of St
is characterised by some accurate approximation. Given our
discussion in Subsection IV-C, we only consider total losses
obtained under the proportionality assumption. To get a rough
idea of what distribution could approximate S7, we plot the
histograms of 1,000,000 simulated S7’s when calculating
premiums for each policy term in Fig. 7(a)-(c). We notice that
there is a large portion of St being zero and the range of St
is wide. Therefore, we introduce a transformed total loss X%,
obtained by truncating St at zero and taking the logarithm of
positive S7’s so that

L undefined, S7 =0
log(ST), St > 0.

=
The respective cumulative distribution functions (CDFs) of
X% and St are

FST (eX) - FST(O)
1 —Fg(0)
Fs,(0), x=0
Fs,(0) + (1 — FST(O)) FX%(logx), x>0

e R,

Fle()C) =
Fg;(x) =
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Empirically, Fg,(0) could be approximated by the propor-
tions of zero-total losses. In our simulated study, Fs,(0) =
0.8608, 0.7264, and 0.5130 for 3-month, 6-month, and one-
year terms, respectively. The histograms of X%’s are plotted
in Fig. 7(d)-(f). We see the apparent multi-mode patterns of
the three histograms. For this reason, we use the mixture
models due to their flexibility in capturing the distribution
of X%’s. McLachlan et al. [50] provided recently a review
of finite mixture models and noted that mixture models
are increasingly utilised as a convenient, semi-parametric
way to model unknown distributional shapes. For example,
Park and Lord [53] modelled vehicle-crash occurrences by a
two-component finite mixture of negative regression models.
There are also research outputs devoted to the parameter
estimation of mixture models. In this paper, we use a fast
and stable algorithm proposed by Wang [64] to estimate the
non-parametric mixing component. The algorithm codes are
included in the R package “nspmix” [65].
The density of a mixture model has the form
f&:H,¢)= /Qf(x; U, $)dH (D), (33)
where ¢ is the structural parameter, f(x; ¢, ¢),x € X, 9 €
Q C R is the component density, and H(¢) is the mix-
ing distribution function. In particular, we restrict the non-
parametric H (¢ as a discrete distribution function with finite
mass points. Denote Iy, as the indicator random variable at
9 € Qforj=1,2... .M Let H®) = 32 wjly, where
wi, wa,...,wy > 0, and Z]Ail w; = 1. Now, the density
(33) could be rewritten as

M
fasw, #,6) =D wif (v 9, ),
j=1

where w = (w1, wa, ...,wM)—r and ¢ = (¢4, 97, ..., ﬂM)T.
Given that X% takes both positive and negative values, its
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FIGURE 7. Histograms of S; and X# under different terms.

model candidate could be the normal density

1 e
e 2%,
Varg
Wang [64] proposed the CNM algorithm to estimate the
MLEs of w, # and M with a fixed ¢. In the CNM algorithm,
CN stands for the constrained Newton method and M for
the multiple support points being added at each iteration.
As ¢ decreases, the number of normal components used
for approximation increases. To minimise the possibility of
overfitting, we implement the two most widely used model-
selection tools: the Akaike Information Criterion (AIC) [2]
and the Bayesian Information Criterion (BIC) [57] given by

x e R.

fx:;9,¢6) =

AIC = 2 x number of parameters — 2log L,
BIC = number of parameters
x log (number of data) — 2log L,

where L is the maximum value of the likelihood function
for a model under consideration. Notice that the effect of
the penalty terms is substantially influenced by the num-
ber of data. In our case, the respective number of X%’s are
139,249, 273,610 and 486,955 for the 3, 6 and 12-month
terms. Our target is to determine the proper ¢ value ranging
from 0.1 to 2. The upper limit of ¢ is selected by calculating
approximately the standard deviations of the data spanning
the two bumps in the three histograms of X%’s. If the AIC
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X
(e) Histogram of X';Twith 6-month term

-5 9 5

X
(f) Histogram of X';'with 1-year term

and BIC are calculated using the full data sets, we only
observe a monotonic trend over the range of ¢, which is
not useful to determine the ¢. Therefore, we compute the
AICs and BICs for 500 subgroups, each with 2,000 scenarios,
regrouped from the data simulated in Subsection IV-C. We do
not directly use the same 200 subgroups as we aim to control
the size of the subgroups to better perform the AIC/BIC
analysis and conduct statistical tests. After truncation and
taking the logarithm, the numbers of data points of X%’s in
each subgroup are roughly 278, 547 and 974 for the 3-, 6- and
12-month terms, respectively. In addition, we also conduct
the Kolmogorov-Smirnov (KS) [17] and Anderson-Darling
(AD) [59] goodness-of-fit tests for each subgroup of X%’s
for a fixed ¢. The null hypothesis of both tests is that the
data follow a specified distribution, which is a normal mixture
in our case. The KS test tends to be more sensitive near the
centre of the distribution than at the tails whilst the AD test is
amodification of the KS test and puts more weight to the tails.
Additionally, the critical values of the KS test do not depend
on the specific distribution being tested whilst the AD test
relies on the specific distribution in calculating the critical
values.

Next, we discuss how to choose ¢ for different terms of
the insurance policy. For the 3-month X%’s, refer to Fig. 8.
The medians of AICs are minimised at ¢ = 0.9 and 1 whilst
the medians of BICs decrease to the minimum at ¢ = 1.5,
which are indicated by the red dashed lines. However, we do
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not observe significant differences in the BICs when ¢ > 0.9.
The p-values of the KS tests are greater than 5% when ¢ is
equal to 1 or below 0.6 whilst the p-values of the AD tests
remain above 5% when ¢ is below 1.2. Therefore, we let
¢ = 1 when the policy term is 3 months. Inspecting Fig. 9,
we take ¢ = 0.4 for the 6-month X% ’s. We find that the AICs
and BICs are larger and the p-values are generally smaller
than the quantities displayed in Fig. 8. This is mainly caused
by the increase in the number of data points in each subgroup,
from 278 to 547. There is no choice of ¢ that satisfies every
criterion and retains the null hypothesis in every