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ABSTRACT Genetic algorithm (GA) has become very popular for tackling computationally expensive
numerical optimization problems. To optimize their performance and convergence rate, we propose and
demonstrate an embedded stage-specific gene expression framework (SGEF) with a two-tier coding scheme
and a filter operator based on variational auto-encoder. For the first time, the structure of variational auto-
encoder is used to map the parent population of a genetic algorithm from the uniformly distributed high
dimensions to the Gaussian distributed low dimensions. The design of the filter operator which can maintain
the trade-off balance between exploitation and exploration is also analyzed in detail. The experimental results
demonstrated the good performance of the proposed SGEF in promoting both single-objective optimization
genetic algorithms and multiple-objective optimization genetic algorithms.

INDEX TERMS Genetic algorithm, variational auto-encoder, neural networks, stage-specific gene expres-
sion theory, exploration and exploitation.

I. INTRODUCTION
Over the past few decades, metaheuristic algorithms are
used to solve the optimization problems in an effec-
tive manner. To name a few domains, polymer design in
materials [1], detection of Parkinson disease in Clinical
Medicine [2], mechanical design problems in engineering [3]
and Transportation energy demand forecasting in Operations
Research [4]. Among the metaheuristic algorithms, genetic
algorithm (GA) is an effective algorithm which is inspired
from Darwinian evolutionary theory. Genetic algorithm was
proposed by John Holland in the 1960s. GA has been used
to solve various NP-hard problems due to the advantages of
self-optimizing, self-adaptive and self-learning. For example,
GA shows the superior performance in various fields of
multimedia, such as image processing, video gaming, and
video processing. GA has been used to decomposing an
image due to their search capability [5]. Katoch et al. utilized
GA as image restoration technique [6]. In video processing,
GA hybridized with neural network (NN) and support vector
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machine (SVM) can be used to resolve video segmenta-
tion problems which means distinguishing objects from the
background. In video gaming, Shivgan and Dong formulate
the Unmanned Aerial Vehicles path planning problem as a
traveling salesman problem in order to optimize this problem
with GA [7]. GA also has been applied to solve operation
management (OM) problems [7], [8], [9]. Some of these well-
known OM fields are scheduling, inventory control and facil-
ity layout problem. Abualigah and Alkhrabsheh proposed a
multi-verse optimizer genetic algorithm (MVO-GA), which
could significantly optimize the tasks’ transfer time of a
virtual machines-based central cloud facilities [8]. Huo et al.
developed a nondominated sorting genetic algorithm with an
adaptive local search operator to search for Pareto optimal
solution of a multi-floor hospital facility layout problem [9].
Existing studies have shown that the modified genetic algo-
rithms are effective in solving various NP-hard problems, and
the metaheuristic strategy can generate acceptable solutions
in the search space. But the accuracy of these algorithms will
decrease and the speed will become slower when facing prob-
lems with muti-decision variables, which known as ‘‘curse of
dimension in high-dimensional data’’.
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FIGURE 1. Different acceleration strategies.

There are two major challenges faced by GA. The first
challenge is exploitation. GA is much more likely to gen-
erate ineffective chromosomes when generating populations
without using prior experience. The second challenge is
exploration, the process of generating offspring population
from parent population is stochastic due to the operation
flows of crossover operator, variation operator and selec-
tion operator. Exploitation and exploration are the key ele-
ments of GA. Trade-off balance between these two elements
is always critical for GA to maintain ease of implemen-
tation, simplicity and ability to avoid local optima. Thus,
this paper proposes a stage-specific gene expression frame-
work (SGEF) aiming at optimizing the speed, efficiency and
quality of the existing GA along with reducing the iteration
times.

In our SGEF, a two-tier coding scheme and a population
filter operator are combined to help existing GA achieve
superior approximation performance. In addition, a new strat-
egy for generating individual is presented based on variational
auto-encoder, which can generate individuals from latent
space. To summarize, the main contributions of this work are
summarized as follows:

1) A new stage-specific gene expression framework
(SGEF) is proposed for optimizing the speed, effi-
ciency and quality of the genetic algorithms. SGEF
introduces a two-tier coding scheme in which the orig-
inal variables are considered as DNA and the com-
pressed data are considered as massage RNA (mRNA).
A strategy for generating individual based on this two-
tier coding scheme named iterative variational auto-
encoder (IVAE) is introduced to mimic the transcribing
process in cells, which means copying a gene’s DNA
sequence to make an RNA molecule. This strategy can
generate high-quality individuals using prior informa-
tion learned from the parent population.

2) A population filter is proposed to simulate the selective
degradation of mRNA in cells. In each generation, the
individuals in parent population will be mapped into
to a latent space by a iterative variational auto-encoder.
The filter operator decides whether to filter the individ-
ual by measuring its fitness value and its distribution in
the latent space.

3) We can embed SGEF into any genetic algorithm.
To verify the effectiveness of SGEF, we embed SGEF
into six well-known genetic algorithms and use seven-
teen constrained optimization problems as benchmark.
The experiments show that the performance of these
embedded algorithms is significantly improved com-
pared to original algorithms.

The rest of this paper is organized as follows. Section II
introduces the motivations and the related techniques of this
paper. Section III details the proposed stage-specific gene
expression framework. Section IV presents the experimental
results of the SGEF with different genetic algorithm. Finally,
section V gives the conclusions.

II. RELATED WORK AND MOTIVATIONS
To facilitate the understanding of the proposed stage-specific
gene expression framework (SGEF), we first introduce a
general genetic algorithm and some acceleration strate-
gies, and then present some preliminaries of stage-specific
gene expression theory and mRNA degradation phenomena.
Finally, make a review of related work and give an motivation
for this paper.

A. GENETIC ALGORITHMS AND ACCELERATION
STRATEGIES
This subsection will give a brief overview on genetic algo-
rithm (GA) and mainly focus on their acceleration strategies.
GA is an algorithm inspired by the process of biological
evolution and inheritance in nature. It is suitable for solv-
ing complex optimization problems by treating the solutions
to the problem as a population of chromosomes (gens or
individuals). A genetic algorithm is an iterative process that
generally starts with a population of randomized individuals.
The iterative process of genetic algorithm is called genera-
tion. For each generation, the fitness of every individual in
the parent population is measured according to the objective
function. A child population will be generated by crossover
operators, mutaiton operators, and selection operators based
on the previous population. This genetic algorithm ends when
either a prescribed maximum number of generations has been
reached or a satisfactory solution is found.

Genetic algorithms have been successfully applied to
tackle problems involving a small number of decision vari-
ables. However, real-life optimization problems often have
a large number of decision variables or have more than one
objective function to be optimiazed simultaneously, which
are known as a ‘‘Large-Scale Global Optimization’’ (LSGO)
problem and multi-objective optimization. Genetic algo-
rithms need a highly time-consuming evaluation to find the
optimal solution in the large search space of these problems.
In other words, This is a high computational overhead task
for genetic algorithms to solve these problems. To overcome
these challenges, many genetic algorithms with acceleration
strategies have been proposed to speed up the optimization.
The summarized acceleration strategies are shown in Fig 1.
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From the perspective of algorithm design, we summarized
current acceleration strategies in initialization and evaluation
phases. In initialization phase, dividing the whole population
into several sub-population and designing a efficient search
apace can speed up computaion time significantly. Gu et al.
proposed a hybrid genetic grey wolf algorithm (HGGWA)
which embeds three genetic operators [10]. HGGWA can
divide the whole population into several sub-populations and
initialize them use an opposition-based learning strategy.
Jia et al. proposed a two-stage genetic algorithm with local
search (TSOL) [11]. In the first stage, TSOL can find a
promising region in the whole search space. In the second
stage, TSOL obtains the global optimal solution by searching
thoroughly in the promising region. Wu et al. proposed a
new genetic algorithm which can divide the initial large-
scale problem into several small-scale subproblems, then use
a hybrid search strategy to solve the subproblem respec-
tively [12]. Minh et al. proposed a strategy for optimizing
physical quantities based on exploring the latent space of a
variational autoencoder (VAE) [13]. This algorithm trains a
VAE using an existing dataset whose elements have good per-
formance for fitness functions. These algorithms solve com-
plex optimization problems by decomposing the search space
before population iteration. In evaluation phase, researchers
often use early stopping policy, population memory, and
outlier detector to accelerate the GA. Ahmed et al. proposed
methodology which can work on limited computing assets
and decrease the overhead on the computing resources [14].
Sun et al. designed a cache component which can store elite
individuals in each population during the optimization. to sig-
nificantly accelerate the fitness evaluation given a limited
computational resource [15]. Li et al. proposed a genetic algo-
rithm based on variational auto-encoder (VAGA) to detect
outliers in high-dimensional data [16]. VAGA constructs a
variational auto-encoder (VAE) to reduce dimension in the
first step, then searches the latent space of the trained VAE
using a genetic algorithm for detecting outliers of the VAE
layer.

These acceleration strategies in the perspective of algo-
rithm design improve the search efficiency at the expense
of sub-optimiality. For instance, dividing the initial large-
scale problem into several small-scale subproblems sacrifice
the ability to find the global optimal solution. Narrowing the
search space may lead to data loss. According to the no free
lunch theory, highly accurate algorithms are always time-
consuming. To accelerating convergence speed of GAs with-
out sacrificing accuracy, we can only deploy these algorithms
on a more advanced and powerful hardware plateform.

From the perspective of hardware implementaion, we con-
cluded that there are four acceleration strategies, including
exposing sufficient parallelism, optimizing memory access,
optimizing instruction execution and using GPU architec-
ture. There are three basic approaches to expose parallelism,
including master-slave model, island model, and cellular
model [17]. Liu et al. proposed a dynamic immigration

scheme and an interleaving emigration scheme which can
reduce the communication overhead ofmigration [18]. Cheng
and Gen discuss how to build up an efficient implementation
of accelerating GAs on GPU-CPU heterogeneous architec-
tures for hyper-scale computing [19]. These hardware plat-
forms proposed above can significantly speed up the genetic
algorithms’ search processes under a reasonable utilization of
computing resources.

B. STAGE-SPECIFIC GENE EXPRESSION THEORY
The existing genetic algorithms and their improvement are
inspired by the macroscopic species competition process.
If we observe gene expression from amicroscopic perspective
at the cellular level, genetic algorithms will be reconstructed
architecturally. In the contemporary view of gene expres-
sion, the process of gene expression is a complex system,
which includes two subsystems: transcription and translation.
In transcription process, an RNA will be synthesized by
information from aDNA. In the translation process, this RNA
can produce final products which can ultimately affect a phe-
notype. These final products are proteins or non-coding RNA.
Transcription and translation are functionally and physically
connected to each other. This collaboration ensures that the
massage can efficiently transfer from DNA to proteins with
no individual step being omitted [20].

In the process of gene expression, the message RNA
(mRNA) plays a role in connecting the transcription and
the translation. mRNA is a type of RNA that can copy a
segment of DNA and then use these messages to encode pro-
teins. Counterintuitively, although mRNA is crucial in gene
expression, the proportion of DNA sequences in the genome
which can be transcribed into mRNA and then translated into
proteins is very small [21]. Researchers found that about 50%
of the genes in the human genome are duplicates, and only 2%
are expressed as proteins.

C. MASSAGE RNA DEGRADATION PHENOMENON
The rapid changes in the pattern of gene expression depend
on the amount of corresponding message RNA which is
available for translation. The number of massage RNA is
affected by the mRNA synthesis rate and degradation rate.
Once the corresponding mRNA of a protein is degraded, the
protein cannot be synthesized. The rate of mRNA synthesis
depends on the transcription step which is explained in the
previous subsection. In this subsection we introduce several
unspecific mechanisms of degradation which can affect the
decay of all mRNA species.

The mRNA degradation is a mechanism to eliminate
mRNA. This mechanism works when mRNA either has aber-
rant features or is no longer required in its cells. In the
past few years, different mechanisms have been proposed
to explain the mRNA degradation phenomenon. Deutscher
established the initial model by observing the changes of
mRNA concentration in bacteria [22]. Apirion logically
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proposed a model based on the initiation and coalescence
of endonucleolytic [23]. Yokota claimed three subcategories
of enzymes named CCR4-NOT, 5’ exonucleases, 3’ exonu-
cleases can mediate mRNA degradation [24]. Deneke et al.
proposed a general theoretical massage RNA expression
model which focuses on the distributions of general mRNA
lifetime [25].

FIGURE 2. Information flow of gene expression.

D. REVIEW IN THIS SECTION
In this chapter, we first review the development of genetic
algorithms and list some acceleration strategies. GA is an
algorithm inspired by the process of biological evolution
and inheritance in nature. In genetic algorithm, the mutation
operator is inspired by genetic variations at the DNA level
and the crossover operator is inspired by the combination of
gametes in the fertilization process.

Next, we elaborate on gene expression process, which can
enlighten us to improve the genetic algorithm framework.
If we think of the process of gene expression as an informa-
tion flow (fig 2), the information inDNAcan flow intomRNA
by transcription. This information may be lost as a result
of RNA degradation, or it may flow into protein by transla-
tion [26]. During the expression of human genes, less than
2% of all DNA sequences can be expressed, which means
that during the transcription, the information contained in the
DNA is compressed and only the most valuable information
can flow to the mRNA. By adding mRNA coding layers to
genetic algorithm, we can use this theory to reduce the dimen-
sion of problem variables. Cells use mRNA degradation as
one of the methods to regulate which genes will be expressed.
The information contained in themRNAwill be losewhen the
mRNA either has aberrant features or is no longer required in
its cells. At each iteration of the genetic algorithm, we can
imitate this phenomenon to filter out useless individuals.

III. THE DETAILS OF SGEF
The proposed stage-specific gene expression framework
(SGEF) tries to modify the existing genetic algorithm frame-
work by mimicking gene expression in cells. It captures
the related stage-specific gene expression theory and mRNA
degradation phenomena which are described in section II.
According to stage-specific gene expression theory, less than
2% of human DNA can be transcribed into mRNA. By adding
mRNA coding layers to genetic algorithm, we can use this
theory to reduce the dimension of problem variables. The

translation and degradation of mRNA play an important role
in controlling gene expression. In each generation of a genetic
algorithm, we can design an improved select operator called
filter operator, which can filter out abnormal individuals, imi-
tate the mRNA degradation, and select potential individuals
in the population. Next, the implementation of these theories
and phenomena in terms of an accelerating framework is
explained.

A. TWO-TIER CODING SCHEME
When facing high-dimensional optimization problems,
a number of genetic algorithms first train an encoder and a
decoder based on the initial population. This encoder is
a dimensionality reduction method which can reduce the
dimensionality of the high-dimensional variables bymapping
the search space to a latent space. These genetic algorithms
then search the latent space. The optimal solution obtained
by these algorithms in the latent space will be mapped to the
original space by the trained decoder. However, due to the
different distribution of individuals in the initial population
and the evolved population, the decoder and encoder trained
by the initial population are no longer suitable for the new
population.

We proposed a two-tier coding scheme. In this scheme, the
original variables are treated as DNA using binary encoding
scheme, and the data after dimensionality reduction is treated
as massage RNA (mRNA) using value encoding scheme.
To connect these two encoding tiers and implement this
coding scheme, we proposed an iterative variational autoen-
coder (IVAE), which embeds variational autoencoders in each
generation of a genetic algorithm. A VAE is a probabilistic
autoencoder which takes high-dimensional input data and
compresses it into a smaller latent space. The points in this
latent space have a probability distribution, which are the
mean and variance of a Gaussian in general. This model can
map search space to a continuous, structured latent space,
which is useful for generating optimal solutions in genetic
algorithms. Data in latent space can be reconstructed by the
decoder of VAE. In each iteration process of the SGEF, firstly,
we use the well-adapted DNA codes in parent population
training IVAE. Secondly, we compress all high-dimensional
DNA codes from the parent population into mRNA code
in latent space by the encoder of IVAE. Thirdly, we use
traditional selection operator, crossover operator, mutation
operator, and generation operator to manipulate these mRNA
codes in latent space. Finally, the manipulated mRNA codes
will be decoded by decoder to generate offspring populations.
Algorithm 1 summarized the general procedure of a Two-tier
coding scheme.

1) CONNECTIONS BETWEEN DNA AND mRNA
In two-tier coding scheme, the original variables are treated
as DNA using binary encoding scheme, and the data after
dimensionality reduction is treated as massage RNA (mRNA)
using value encoding scheme. we use a variational autoen-
coder (VAE) to connect DNA codes and mRNA codes in
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Algorithm 1 Pseudo-Code of Two-Tier Coding Scheme
Input: Parent population, Pparent ; Fitness function, f ; Population size, N ; Mutation probability, Pm; Generation probability,
Pg; Crossover probability, Pc.

Output: the parents population.
Get the fitness of DNAs in parent population by the fitness function.
Get the median quantile fmedian of fitness in the parent population.
Train IVAE using the DNA whose fitness greater than fmedian.
Map the DNAs in parent population to mRNAs in latent space using IVAE encoder.
Apply the crossover operator with probability Pc.
Apply the mutation operator with probability Pm.
Apply the generation operator with probability Pg.
Map the mRNAs in latent space to DNA in initial space using IVAE decoder.
Store NDAs in the offspring population Pgen+1.
return the offspring population.

FIGURE 3. Iterative variation autoencoder.

each generation. The VAE is a generative model and is called
autoencoder only because the final training objective is train-
ing a encoder and a decoder, which is resembels a traditional
autoencoder. Let x denote the high-dimensional DNA code,
and z denote the mRNA code in the following descriptions.
The encoder neural network defines the approximate poste-
rior distribution q(z|x). This encoder network can mimic the
process of stage-specific gene expression, which means that
the information contained in the DNA is compressed and only
the most valuable information can flow to the mRNA. The
input layer size of the encoder neural network is the number
of DNA coding bits. The output layer size of this neural
network is the number of mRNA coding bits, which is the
dimensionality of the latent space. The decoder neural net-
work defines the conditional distribution of the observation
p(x̂|z), which can take a latent sample z as input and output
the parameters x̂ related to z, which means reverse transcript
mRNA to DNA. The input layer size of the decoder neural
network is equal to the number of mRNA coding bits. The
output layer size of this neural network is the number of DNA
coding bits.

loss = |x − x̂|2+KL[N (µx , σx),N (0, 1)]

= |x − d(z)|2+KL[N (µx , σx),N (0, 1)] (1)

The IVAE’s encoding distribution will be regularized dur-
ing each generation in the genetic algorithm. The loss func-
tion of VAE is shown in the equation 1. This loss function
consists of two parts. The first part is a reconstruction term,
measuring the degree of difference between the input data
and the output reconstructed data. By this term, the IVAE can
make the encoding network and decoding network as perfor-
mant as possible. The second part is a regularization term,
measuring the regularization of the latent space. By this term,
the IVAE can regularize the organization of the latent space
by making the distributions returned by the encoder close
to a standard normal distribution [27]. The individuals with
high fitness in each generation are selected as the training set
for the IVAE. The individuals generated with VAE are less
affected by individuals with poor fitness. This way ensure
that VAE’s latent space has good properties, which allow
us to generate some new individuals and increase potential
active transfer. It is worth noting that the IVAE in this two-tier
coding scheme does not just serve as a generative model, but
we can also compress the high-dimensional DNA informa-
tion into low-dimensional and distributed mRNA information
with the help of the IVAE encoder, and perform the traditional
genetic algorithm operators in this low-dimensional latent
space.

2) PROBABILISTIC FRAMEWORKS OF DNA AND mRNA
To describe our two-tier coding scheme, we define a prob-
abilistic model. We denote by x the variable that represents
DNA codes, denote by x̂ the generated DNA codes and
assume x̂ is decoded by VAE decoder from a latent variable
z which denote mRNA code. Thus, for each data point, the
following two steps generative process is assumed in Fig. 4.
Firstly, a latent representation z is generate by crossover
operator or mutation operator using z1 and z2 encoded by
DNA codes or sampled from the prior distribution p(z) in
latent space. Secondly, the generated DNA code x̂ is decoded
by the VAE decoder which can be expressed by a conditional
likelihood distribution q(x|z). In latent space, each variable zi
is considered to be seperable and independent on each other.
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As a result, the prior distribution p(z) can be computed as
follows:

P (z) =

D∏
i=1

1

σi
√
2π

e−
(zi−µi)

2

2σi (2)

where µi and σi are the mean value and the variance of the
ith latent variables trained by IVAE respectively.

FIGURE 4. Probabilistic model of the NDA generation process.

To visualize the role of the two-tier coding scheme, we use
an elite genetic algorithm coded by binary coding and an elite
genetic algorithm coded by the two-tier coding scheme to
find the minimum value of a six-hump camel function. The
formula of this function is as in (3), shown at the bottom of the
page. To be fair, the parent populations of both algorithms are
composed of individuals uniformly distributed in the search
space. The only difference of these two algorithms is the
encoding method. We compared the mean and minimum
fitness values and distribution of individuals in the offspring
populations of these two algorithms. For the sake of descrip-
tion, we call the elite genetic algorithm coded by binary
coding as algorithm 1, and call the elite genetic algorithm
coded by the two-tier coding scheme as algorithm 2. The
population size, crossover probability, mutation probability,
and generation probability are set as 100, 0.8, 0.2, and 0.3.
In order to visualize the distribution of individuals in the
latent space, the dimension of the latent space is set to 2 in
this section. The comparison results of Algorithm 1 and
Algorithm 2 are shown in Tbale 1 and Fig 5a, 5b, 5c, 5d,
5e, 5f.

TABLE 1. Statistic of individuals’ function value.

From Table 1 we can see that the mean and minimum
values of the objective function of individuals in the subpop-
ulation of Algorithm 2 are lower than those of Algorithm 1,
which indicates that the algorithm with the two-tier coding

FIGURE 5. Distribution of individuals.

scheme has a stronger optimization ability. The Fig 5a shows
the initial distribution of individuals in algorithm1’s parent
population, which is a uniform distribution. The Fig 5b and
Fig 5c show the distribution of individuals in offspring pop-
ulations. These offspring populations are after one iteration
of algorithm1 and algorithm2 respectively. The individuals in
these offspring populations exhibit aggregation toward points
with low function values. The Fig 5d, 5e, 5f show the his-
tograms of individuals’s function values in parent population
and offspring populations respectively. The shape of Fig 5d
has no clear pattern, so we can describe this distribution as
‘‘random’’. The shape of Fig 5e and Fig 5f have a ‘‘tail’’
on the right side of the distribution which is called right
skewed, and the offspring population of the algorithm with
the two-tier coding scheme has a heavier right skewed, which
indicates that the algorithm with the two-tier coding scheme
has a stronger optimization ability. With the two-tier coding
scheme, the genetic algorithm can find the optimal solution
faster.

B. FILTER OPERATOR
1) MECHANISM OF A FILTER OPERATOR
The select operator is an important operator in genetic
algorithms. The convergence rate of GA depends upon the
selecting pressure. Some well-known select operators like
tournament, roulette wheel, Boltzmann, use the objective
function as the fitness function, to measure of individuals’
quality, then determine whether an individual will participate
the process generating offspring population or not. These
select operators use the principle of natural selection from
biological evolution. Through this mechanism, individuals

f (x1, x2) =

(
4 − 2.1 x21 +

x41
3

)
x21 + x1x2 +

(
−4 + 4x22

)
x22 x1 ∈ [−2, 2], x2 ∈ [−1, 1] (3)
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with poor fitness have little chance to participate in the gen-
eration of the child population. But in the real world, poorly
behaved individuals like Down’s and autistic, can show tal-
ent in some areas [28]. This phenomenon indicates that in
the population of GA, although some individuals have low
fitness, they may have great potential to generate individuals
with high fitness in the next generation.

In this subsection, we introduce an improved select opera-
tor named filter operator. This operator measures the quality
of an individual in two dimensions. The first is traditional
fitness function, and the second is the degree of outliers of
the individual in the latent space.

Individual fitness can be obtained by calculating the objec-
tive function. Below, we will give the measure of individual
outlier degree. In the previous subsection, we use population
data to train IVAE in each generation. The encoder neural
network can return a multivariate gaussian distribution over
the latent space by a regularization term in loss function. The
covariance matrix of this distibution is a diagonal matrix.
After training IVAE, we put the DNA information into the
encoder to get the corresponding mRNA in latent space.
Every dimension i in the latent space following a Gaussian
distribution with mean µi and standard deviation σi. These
parameters can get by training IVAE. A simple statistical tool
for outlier detection is Z-score, which indicates how far the
sample is from the global mean. measure the outlier of mRNA
in latent space. We extend Z-score to higher dimensions,
compute the Z-score of each dimension separately, and sum
the squares of Z-score of each dimension. Outlier score is
expressed as (4):

d(z) =

n∑
i=1

(
zi − µi

σi
)2 (4)

where µ is the mean vector of the multivariate Gaussian
distributions and σ is the diagonal of the covariance matrix,
respectively, z is a mRNA, and zi is the value of z in ith
dimension.

As the output of our encoder is regularity, the outlier of
mRNA is an extreme value that does not follow the norm.
The outlier with high fitness can help us learn some unex-
pected knowledge, which means exploration. These good
outliers can point out the new search direction for our genetic
algorithm. But the outlier with low fitness is often seen as
a problem rather than a help. These bad outliers can affect
external validity and cause problems along with the process
of population evolution. So, our filter operator needs to select
two types of individuals from the parent population. The
first type is individuals with high fitness and low outliers
in the latent space, which is an exploitation process. The
second type is outlier individuals whose fitness are not too
bad, which is an exploration process. To maintain the size of
the population, the insufficient fraction is generated from the
latent space using IVAE. These generated offspring inherit the
characteristics of the parent population. Algorithm 2 summa-
rized the general procedure of a filter operator.

2) EXAMPLE OF A FILTER OPERATOR
In this section, we continue to use the optimization prob-
lem 3 and algorithm 2 from Section III-A2 as an example.
The algorithm 2 is an elite genetic algorithm coded by the
two-tier coding scheme. We embed the filter operator into
this algorithm. The advantage of this operator is illustrated
by comparing the distribution changes of individuals in the
original search space and the latent space shown in Fig 6.
In contrast to the case of the latent space without the filter-
ing operator, the distribution of population filtered by filter
operator is tighter in the latent space, this population consists
of exploration sub-populations, exploitation sub-populations,
and generation sub-populations respectively. The mean and
minimum objective functions values of the individuals in
the offspring populations of the algorithm with the filtering
operator is lower as recorded in Table 2.

TABLE 2. Statistic of individuals’ object function value.

C. THE STAGE-SPECIFIC GENE EXPRESSION FRAMEWORK
The stage-specific gene expression framework (SGEF) is
proposed for optimizing the speed, efficiency, and quality
of genetic algorithms. SGEF introduces a two-tier coding
scheme and a population filter operator. To clarify the running
of the SGEF, its complete flowchart is provided in Fig 7. The
pink frame stands for a general genetic algorithm. The violet
frame stands for the two-tier coding scheme. The blue frame
stands for the population filter operator. In each iteration
of a general genetic algorithm, the parent population will
train an IVAE, and then the trained IVAE will map the DNA
input to mRNA output. A filter operator will tradeoff the
fitness and potential of these mRNA. The filtered mRNAs
will mate and produce better offspring by the select operator,
crossover operator, and mutation operator. These offspring
which inherit the characteristics of the parent individuals
will be added to the child population. The child population
is the parent population in the next iteration of this genetic
algorithm. The red line indicates the interface of SGEF. Our
stage-specific gene expression framework can embed into any
genetic algorithm easily.

IV. EXPERIMENTAL RESULTS
In our experimental studys, we verify the performance of
SGEF using 17 well-known benchmark and two practi-
cal applications from three perspectives. The first is get-
ting parameter settings of SGEF using two single-objective
optimization problems; The second is numericla experi-
ment. 15 optimization problems including single-objective
optimization problems and multi-objective optimization
problems are employed to investigate the effectiveness and
generality of SGEF; The third is to verify the feasibility of

VOLUME 11, 2023 43811



P. Feng, H. Su: Stage-Specific Gene Expression Framework for Promoting GA

Algorithm 2 Pseudo-Code of Filter Operator
Input: Parent population, Pparent ; Objective function, f ; Population size, N ; Proportion of the exploitation individuals,
pexploitation; Proportion of the exploration individuals, pexploration; Proportion of the generated individuals, pgeneration.

Output: the filtered parents population.
Evaluate the solutions in parent population by calculate the objective function.
Train IVAE using parent population.
Map the solutions in parent population to latent space using IVAE encoder.
Evaluate the outlier of solutions in latent space.
counter = 0.
Exploitation population= {}.
while (counter ≤ integer(N × pexploitation) do

Select a high fitness and low outlier solution without replacement.
Put selected solution in exploitation population.
counter = counter + 1.

end while
counter = 0.
Exploration population= {}.
while (counter ≤ integer(N × pexploration) do

Select a high fitness and high outlier solution without replacement.
Put selected solution in exploration population.
counter = counter + 1.

end while
if pexploitation + pexploration ≤ 1 then

counter = 0.
generative population = {}.
while (counter ≤ integer(N × pgeneration) do

generate a solution from the latent space using IVAE.
put generated solution in generation population.
counter = counter + 1.

end while
end if
Merge exploration population, exploitation population and generative population.
return the merged population.

SGEF in practical applications. The algorithms were pro-
gramed in Python 3.7 version and executed on computa-
tion environment of Intel(R) Core(TM) i5-9400F CPU @
2.90GHz 2.90 GHz, NVIDIA GeForce RTX 2060, 16GB
RAM and 64-bit operating system.

A. INFLUENCE OF THE PARAMETER SETTINGS
Parameter settings can significantly influence the perfor-
mance of a genetic algorithm. In SGEF, the main parameters
include exploitation proportion (pexploitation), exploration pro-
portion (pexploration), and generation proportion (pgeneration).
The range of values for these parameters are as follwings:
pexploitation ∈ {0, 0.25, 0.5, 0.75, 1}, pexploration ∈ {0, 0.25,
0.5, 0.75, 1}, and pgeneration ∈ {0, 0.25, 0.5, 0.75, 1}. We use
limited full factorial design approach to analysis parame-
ters sensitivity. Besides the parameters of the selected algo-
rithms, different scenarios of parameter setting are presented
in Table 4. The test functions are 2 dimensional rosenbrock
function f1 [29] and michalewicz function f2 [30] selected in
appendix Table 16.

In this subsection, we embed SGEF into three single-
objective optimization genetic algorithms, namely, SGA,
EGA, and StudGA. These algorithms form three new algo-
rithms, namely, SGEF-SGA, SGEF-EGA, SGEF-StudGA.
The performance of the original algorithms are used as
the control group, and the reconstructed algorithms are
used as the experimental group. Thus, three comparisons
of SGEF-SGA versus SGA, SGEF-EGA versus EGA, and
SGEF-StudGA versus StudGAwere conducted. To help these
algorithms achieve the best results, some generic parameter
settings of selected algorithms are mentioned in Table 3,
which is the same as suggested in their original refer-
ences [31], [32], [33], [34], [35], [36]. When the population
size is set too large, all six algorithms converge quickly with
insignificant differences. To verify the acceleration effect of
SGEF on the algorithms, the population size is set as 100 in
this section.

Since a genetic algorithm is stochastic in nature, the run-
ning result of this algorithm is also not fixed. Therefore,
we executed it 10 times for each parameter setting scenario.
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FIGURE 6. Flowchart of the filter operator.

In each calculation, when the change of the fitness func-
tion value corresponding to the optimal solution does not
exceed 0.001 during three consecutive iterations, the itera-
tion will end. Their mean results are recorded in Table 5
and Table 6. The data in Table 5 and Table 6 have
two dependent variables, which are parameter setting sce-
narios and the type of algorithm. We use multivariate
analysis of variance (MANOVA) to compare multivariate
sample means. The MANOVA results are recorded
in Table 7.

In our preliminary testing, based on the p-values from
Tables 7, it is clear that there is an association between param-
eters’ scenarios and type of algorithm. By simply calculating
the average value of each dimension, we can also conclude
that the proposed framework in this paper can improve the
efficiency of the existing algorithms. It is clear that scenario
number 11 is the best value for these parameters.With param-
eter setting as pexploitation = 0.5, pexploration = 0.25, and
pgenerated = 0.25. The performance of algorithms based on
SGEF can achieve the best results.
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FIGURE 7. SGEF flowchart.

To examine SGEF’s ability to accelerate convergence
speed, we executed 10 times with each algorithm and each
test function using parameter settings based on scenario 11 in
table 4. Table 9 records the iteration numbers of each algo-
rithm. Table 8 records the mean time cost per iteration for
each algorithm. As can be seen from the table 8, the time
required for each iteration is reduced because the SGEF
embedded in these algorithms can accelerate the computation
with the help of GPU.

For further proof the accelerating ability of the SGEF,
we first create boxplots to visualize the distribution of
iteration numbers for each group. In Fig 8a and Fig 8b
we can intuitively see the distribution of iteration num-
bers of each algorithm on f1 and f2 based on five sum-
mary number (minimum, first quartile, median, third quartile

and maximum). By comparing the vertical lines in each
box, we can determine algorithms using SGEF have a lower
median value. By comparing the length of each box and the
interquartile range, we can also determine that the algorithms
using SGEF are less spread out and negatively skewed com-
pared to the initial algorithms.

To be more convincing, we analze the data recorded
in Table 9 using the Welch-Satterthwaite’s T-test. Welch-
Satterthwaite’s T-test is used to compare the means between
two independent groups when it is not assumed that the
two groups have equal variances. The t test statistics and
probability values (p-value) are recorded in Table 10.
As we can see from Table 10, five of six probability val-

ues of the Welch-Satterthwaite’s T-tests are less than 0.05.
We can reject the null hypothesis and conclude that there is a
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TABLE 3. Parameter setting of selected algorithms.

TABLE 4. Different parameters setting scenarios of SGEF.

TABLE 5. Experiment results of f1 for SGEF under different scenarios.

TABLE 6. Experiment results of f2 for SGEF under different scenarios.

statistically significant difference in mean iteration number
when SGEF-SGA versus SGA, SGEF- EGA versus EGA,
and SGEF-StudGA versus StudGA. The convergence speed
of the algorithms using SGEF is generally faster than original
algorithms. Therefore, it is reasonable to conclude that our
SGEF has good search performance and convergence.

TABLE 7. Multivariate analysis of variance results.

TABLE 8. Mean time required per iteration for each algorithm.

TABLE 9. Iteration numbers to optimize f1 and f2.

TABLE 10. Results of the Welch-Satterthwaite’s T-test.

FIGURE 8. Box plot of iteration number on f1 and f2.

B. NUMERICAL EXPERIMENT
1) TEST PROBLEMS AND TEST ALGORITHMS
To verify the effectiveness and generality of SGEF, fiften
well-known benchmark constrained functions are selected,
including eight single-objective optimization problems and
seven multi-objective optimization problems. The details of
eight single-objective optimization problems are f3, f4, f5,
f6, f7, f8, f9, and f10 recorded in appendix Table 16. The
seven multi-objective optimization problems are selected
from DTLZ test suite [37], which have 20 decision variables
and 3 objective functions.

We embed SGEF into six genetic algorithms, includ-
ing three traditional single-objective optimization genetic
algorithms named simple genetic algorithm(SGA) [32],
elite genetic algorithm(EGA) [36], stud genetic algo-
rithm (StudGA) [31] and three state-of-the-art multiple-
objective optimization genetic algorithms named reference
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vector-guided evolutionary algorithm (RVEA) [33], non-
dominated sorting genetic algorithm III (NSGA-III) [34],
multi-objective evolutionary algorithm based on decom-
position(MOEA/D) [35]. The reconstructed algorithms are
SGEF-SGA, SGEF-EGA, SGEF-StudGA, SGEF-RVEA,
SGEF-NSGA-III, SGEF- MOEA/D.

2) EFFECTIVENESS OF SGEF ON SINGLE-OBJECTIVE
OPTIMIZATION PROBLEMS
In this subsection, we verify the robustness and portabil-
ity of SGEF on ten single-objective optimization problems.
These test problems have different test function (e.g., lin-
ear, cubic, quadradic, and nonlinear), which are discribed
in appendix Table 16. we embed SGEF into three single-
objective optimization genetic algorithms, namely, SGA,
EGA, and StudGA. These algorithms form three new algo-
rithms, namely, SGEF-SGA, SGEF-EGA, SGEF-StudGA.
The performance of the original algorithms are used as the
control group, and the reconstructed algorithms are used as
the experimental group. Thus, three comparisons of SGEF-
SGA versus SGA, SGEF- EGA versus EGA, and SGEF-
StudGA versus StudGA were conducted. Since a genetic
algorithm is stochastic in nature, the running result of this
algorithm is also not fixed. Therefore, we executed it 10 times
for each algorithm and optimization problem. The population
size is set at 200, and the maximum iterations is set at 300.
Other parameters are set as Table 3. In each optimization,
when the change of the fitness function value corresponding
to the optimal solution does not exceed 0.0001 during three
consecutive iterations, the iteration will end. Their mean
optimal values are recorded in Table 11 and their mean con-
vergence time are recorded in Table 12.

TABLE 11. Mean optimal value of 8 test functions for different
algorithms.

The results show that SGEF can accelerate the calcula-
tion speed and enhance the search ability of single-objective
optimization genetic algorithms significantly. In addition,
we calculate the absolute value of the difference between the
optimal values in the table 11 and the ture optimal values
recorded in appendix Table 16. The precision of algorithms
using SGEF is 32.60%, 17.61%, and 37.76% higher than
that of original algorithms, respectively, and the average run-
ning time of algorithms using SGEF is 14.20%, 24.96% and
15.03% faster than that of original algorithms, respectively.
Therefore, the SGEF can improve the convergence speed
and search ability of single-objective optimization genetic
algorithms, which verifies the effectiveness of the SGEF.

TABLE 12. Mean time costing of 8 test functions for different algorithms.

3) EFFECTIVENESS OF SGEF ON MULTIPLE-OBJECTIVE
OPTIMIZATION PROBLEMS
We further verify the robustness and portability of SGEF
on seven well-studied test problems, namely DTLZ1 to
DTLZ7 [37], which are three-objective problems. Three
multiple-objective optimization genetic algorithms, namely,
RVEA, NSGA-III, and MOEA/D, are embeded in SGEF
and form three new algorithms, namely, SGEF-RVEA,
SGEF-NSGA-III, and SGEF-MOEA/D. In this subsection,
the original algorithms are used as the control group, and
the algorithms using SGEF are used as the experimen-
tal group. Thus, three comparisons of SGEF-RVEA ver-
sus RVEA, SGEF-NSGA-III versus NSGA-III, and SGEF-
MOEA/D versus MOEA/D were conducted. The population
size is set at 400, and the maximum iterations is set at 300.
Other parameters are set as Table 3.

We use DTLZ problems which have 20 decision variables
and 3 objective functions as representative cases, and use
inverted generational distance (IGD) [38] to measure the
performance of these algorithms. IGD is a metric which can
reflect the convergence and diversity of algorithms’ results.
A smaller IGD represents the obtained solution set has better
performance on both diversity and convergence. Let PFture be
a set of evenly distributed point sampled from pareto frontier.
Let PFknown be an approximate set obtained by algorithms.
Then, the IDG(PFture,PFknown) are defined as (5).

IDG(PFture,PFknown) =

∑n
i=1|di|
n

(5)

Here di represents Euclidean distance from on point of
PFture to its nearest points of PFknown. The performances of
all algorithms are compared on all the DTLZ test problems.
To obtain relatively stable results, we executed it 10 times for
each algorithm and optimization problem.

The performance of all the multi-objective genetic algo-
rithms are compared on the DTLZ test problems which have
20 dimensions. Their IGD values under 10 independent runs
on the DTLZ test problems are given in Table 13. Algorithms’
mean IGD values versus the iteration number are plotted
in Fig 9. Algorithms’ mean convergence time are recorded
in Table 14.
As observed from Fig 9, the vertical coordinates repre-

sent the average distance from the solution set to the pareto
frontier, while the red lines with circle markers representing
Algorithms using SGEF, the blue lines with star markers
representing original algorithms. In terms of the number of
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FIGURE 9. Convergence curves of competitor algorithms on DTLZ with 20 dimensions.

iterations required to reach convergence, algorithms usign
SGEF can converge faster than original algorithms. The data
recorded in the table 13 also shows that the IGD values of

Algorithms using SGEF are also generally lower than those of
original algorithms. This implies that algorithms using SGEF
have a better search capability.
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TABLE 13. Mean IGD of DTLZ test suite for different algorithms.

TABLE 14. Mean time costing of DTLZ test suite for different algorithms.

TABLE 15. Wilcoxon test results for time costing.

To statistically validate the time costing results achieved
by SGEF, we performe nonparametric Wilcoxon Ranksum
test, as it serves to produce meaningful comparison between
SGEF-RVEA and RVEA, SGEF-NSGA-III and NSGA-III,
SGEF-MOEA/D and MOEA/D. The alternative hypothesis
of this test is the time costing of algorithms using SGEF is
shorter than that of original algorithms. The p-values for the
nonparametric Wilcoxon Ranksum test are given in Table 15.
According to Table 15, the time costings of algorithms
using SGEF remained significantly shorter than the original
algorithms for DTLZ test problems. The average running
times of algorithms using SGEF are 10.09%, 24.22% and
8.64% faster than that of original algorithms, respectively.
It is reasonable to conclude that our SGEF can accelerate the
calculation speed and enhance the search ability of multiple-
objective optimization genetic algorithms significantly.

C. FEASIBILITY OF SGEF IN PRACTICAL APPLICATIONS
Genetic algorithms have been used to solve optimization
problems in an effective manner. To name a few domains,
Polymer design in materials [1], detection of Parkinson dis-
ease in Clinical Medicine [2], mechanical design problems in
engineering [3] and Transportation energy demand forecast-
ing in Operations Research [4]. Since we do not know the
optimal Pareto front of the multi-objective optimization prob-
lems in real life, it is not possible to visually compare SGEF’s
promotion on practical multi-objective genetic algorithms.
To verify the overall feasibility of SGEF, we test SGEF for
solving two constrained single-objective engineering design
problems found in appendix B and appendix C, and the
descriptions of the problems are as follows.

FIGURE 10. Pressure vessel design problem.

FIGURE 11. Tension-compression spring design problem.

1) PRESSURE VESSEL DESIGN PROBLEM
Hashim et al. proposed a new metaheuristic algorithm called
Archimedes optimization algorithm (AOA) inspired by the
physics Archimedes Principle, and use AOA to solve a hybrid
constrained optimization problem [39]. The purpose of the
optimization is to mimimize the cost of pressure vessel
design (Figure 10a). The mathematical model is described in
appendix B. The cost is optimized with the help of four design
variables: the shell thickness(x1), the head thickness(x2), the
inner radius(x3), and the cylinder length(x4). In this paper,
we embed SGEF into AOA, and the objective function value
achieved by SGEF-AOA is 5.892E+03 which is better than
5.9092E+03 acheved by original AOA. Figure 10b also sug-
gests that SGEF-AOA have a faster convergence ability than
original AOA.

2) TENSION-COMPRESSION SPRING DESIGN PROBLEM
Song et al. proposed an improved real-coded genetic algo-
rithm (RCGA-rdn) integrating three specially designed oper-
ators, and use RCGA-rdn to solve a inequality constrained
optimization problem (Figure 11a) [40]. The purpose of the
optimization is to mimimize mass of a spring under the con-
ditions of mimimum deflection, shear stress, and vibration
frequency in tension-compression spring design. The desing
variables are wire diameter(x1), coil diameter(x2), and num-
ber of active coils(x3). The mathematical model is described
in appendix C. In this paper, we embed SGEF into RCGA-
rdn, although the objective function value achieved by SGEF-
RCGA-rdn is 1.2612E-02 which is not significantly better
than 1.2618E-02 acheved by original AOA. Figure 11b sug-
gests that SGEF-RCGA-rdn have a faster convergence ability
than original RCGA-rdn.

43818 VOLUME 11, 2023



P. Feng, H. Su: Stage-Specific Gene Expression Framework for Promoting GA

TA
B

LE
16

.
B

as
ic

in
fo

rm
at

io
n

ab
ou

t
si

ng
le

-o
bj

ec
t

te
st

fu
nc

ti
on

.

VOLUME 11, 2023 43819



P. Feng, H. Su: Stage-Specific Gene Expression Framework for Promoting GA

V. CONCLUSION
In this paper, we propose a stage-specific gene expression
framework (SGEF). The SGEF can embed into both single-
objective optimization genetic algorithms and multiple-
objective optimization genetic algorithms. Using multivariate
analysis of variance, Welch-Satterthwaite’s T-test, and non-
parametric Wilcoxon Ranksum test, based on the experimen-
tal results of 17 benchmark and two practical optimization
problems, we verified that the SGEF produces statistical sig-
nificance improvements in the speed, efficiency, and quality
of genetic algorithms. The leading cause of the outperfor-
mance of the SGEF can be stated as follows. Firstly, the
combination of a two-tier coding scheme and a variational
auto encoder could reduce the dimension of the search vector,
and regularize the organization of the latent space. Secondly,
a filter operator is designed according to the structure of the
latent space, which maintains a trade-off balance between
exploitation and exploration abilities. Thirdly, to speed up the
calculation, operators can search for the optimal solution in a
regularized latent spacewith aGaussian distribution. Besides,
this program is deployed in Python using the PyTorch library.
The encoded mRNAs are stored as a tensor type, which can
be processed using a GPU. Through this mechanism, we can
reduce the waiting time between the IVAE training process
and the genetic algorithm iteration process.

APPENDIX A
BASIC INFORMATION ABOUT SINGLE-OBJECT
TEST FUNCTION
Basic information about single-object test function can be
seen in Table 16.

APPENDIX B
PRESSURE VESSEL DESIGN PROBLEM

min f (x) = 0.6224 x1x3x4 + 1.7781 x2x23
+ 3.1661 x21x4 + 19.84 x21x3

Subject to: g1(x) = −x1 + 0.0193 x

g2(x) = −x2 + 0.00954 x3 ≤ 0

g3(x) = −πx23x4 − (4/3)πx33 + 1, 296, 000 ≤ 0

g4(x) = x4 − 240 ≤ 0

0 ≤ xi ≤ 100, i = 1, 2

10 ≤ xi ≤ 200, i = 3, 4

APPENDIX C
TENSION-COMPRESSION SPRING DESIGN PROBLEM

min f (x) = (x3 + 2) x2x21

Subject to: g1(x1, x2, x3) = 1 −
x32x3

71785x41
≤ 0

g2(x1, x2, x3) =
4x22 − x1x2

12566
(
x2x31 − x41

)
+

1

5108x21
− 1 ≤ 0

g3(x1, x2, x3) = 1 −
140.45 x1
x22x3

≤ 0

g4(x1, x2, x3) =
x1 + x2
1.5

− 1 ≤ 0

0.05 ≤ x1 ≤ 2.0

0.25 ≤ x2 ≤ 1.3

2.0 ≤ x3 ≤ 15.0
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