IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received 27 March 2023, accepted 30 April 2023, date of publication 2 May 2023, date of current version 10 May 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3272619

== RESEARCH ARTICLE

CWL-PLAS: Task Workflows Assisted by Data
Science Cloud Platforms

ANDREA DETTI”'2, (Member, IEEE), LUDOVICO FUNARI*', LUCA PETRUCCI',
MICHELE DORAZIO -3, ARIANNA MENCATTINI“!3, AND EUGENIO MARTINELLI":3

! Department of Electronic Engineering, University of Rome Tor Vergata, 00133 Rome, Italy
2National Inter-University Consortium for Telecommunications (CNIT), 43124 Parma, Italy
3Interdisciplinary Center of Advanced Study of Organ-on-Chip and Lab-on-Chip Applications (IC-LOC), 00133 Rome, Italy

Corresponding author: Andrea Detti (andrea.detti @uniroma?2.it)

This work was supported in part by GEANT Innovation Programme 2021 under the framework of the Platformed
Workflow (PLAS) project.

ABSTRACT The Common Workflow Language (CWL) is a platform-independent description language
for the representation of data science workflows consisting of a set of tasks that interact with each other to
perform scientific analysis. The tasks can be packaged as Linux containers. On the one hand, using containers
ensures the reproducibility and portability of workflows. Still, on the other hand, it limits each task to
exploiting, at most, the resources of the host where its container runs. In this paper, we propose CWL-PLAS,
an extension of CWL that allows a task to instantiate and temporarily use a supporting cloud platform for
parallel computing, which is specialized for the task’s activity. In this way, tasks can leverage the resources of
multiple hosts in parallel, reducing the duration of the workflow. We implemented an open-source workflow
manager that supports CWL-PLAS workflows and exploits a Kubernetes back-end. We used this workflow
manager to evaluate the performance of CWL-PLAS in a couple of machine learning workflows.

INDEX TERMS Common workflow language, workflow management software, distributed computing,

cloud.

I. INTRODUCTION

Big data analysis processes usually consist of a set of
tasks, written in different languages, that interact with each
other to extract insights and patterns from the data. Tasks
take in external data or data produced by upstream tasks
and provide their outputs to downstream tasks or ulti-
mately to the user. The set of tasks along with their depen-
dencies is called workflow, and there are many workflow
managers [1].

Users describe their tasks and related data dependencies
through configuration files, which use a workflow description
language specific to the workflow manager in use. Conse-
quently, the workflow manager uses these files to automate
task execution through an underlying computing infrastruc-
ture [2], [3]. One of the main decision-making processes of
workflow managers is the scheduling of when a task should
start and how many resources to reserve for it. The scheduling

The associate editor coordinating the review of this manuscript and

approving it for publication was Massimo Cafaro

decision takes into account that a task cannot start before
all its inputs are available. Moreover, other constraints can
be included in the problem, such as the availability of lim-
ited resources or the need to respect a completion deadline.
In addition, a specific objective function is pursued, such as
minimizing the time needed to complete the workflow, aka
makespan, or monetary cost given a completion deadline,
etc. Consequently, many scheduling algorithms have been
proposed [4].

Managing data analysis activities through a workflow man-
ager makes them reproducible, portable, maintainable, and
shareable, as it allows complex processes consisting of mul-
tiple steps to be formalized [5]. Indeed, the use of work-
flow management systems is increasingly popular for data-
intensive analyzes, such as those in bioinformatics, astron-
omy, and medical imaging processing [6], [7], [8].

The presence of many workflow managers using propri-
etary description languages results in the difficulty of bring-
ing workflows into different environments, creating a kind
of platform lock-in. For this reason, the Common Workflow

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

44092

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

VOLUME 11, 2023

https://orcid.org/0000-0002-0803-1392
https://orcid.org/0000-0002-2225-2124
https://orcid.org/0000-0003-3719-9976
https://orcid.org/0000-0002-3753-0457
https://orcid.org/0000-0002-6673-2066
https://orcid.org/0000-0003-1118-7109

A. Detti et al.: CWL-PLAS: Task Workflows Assisted by Data Science Cloud Platforms

IEEE Access

Language (CWL), a platform-independent workflow descrip-
tion specification, was introduced in 2016 [9], [10].

CWL relies heavily on Linux containers, which are
lightweight isolated software packages that contain an
application with all its dependencies, such as Docker and
Singularity [11], [12]. Each task consists of the execution
of a CommandLineTool (e.g. Python software) running in a
container that includes all necessary binaries and libraries.
In this way, the task takes its specific runtime environment
with it and can be executed in any Linux-based host, thus
ensuring portable and reproducible executions.

The use of CWL requires the user to prepare container
images of his tasks and upload them to an accessible reposi-
tory. Next, the user should describe: i) each task witha . cwl
file, according to the “CWL CommandLineTool Descrip-
tion” standard; ii) the relationships the tasks have in the work-
flow in another . cwl file, according to the “CWL Workflow
Description” standard. The . cw1l files use the YAML format,
and the CWL standards specify the schema and semantics
of their contents. Finally, these .cwl files are passed to a
CWL workflow manager that executes the workflow using a
back-end computer system.

The CWL standard is gaining attention from the scientific
community, and several free/open source workflow managers
are available that support different backends,! including local
hosts, public/private clouds offering virtual machines (e.g.,
AWS, Azure, Openstack, GCP), High-Performance Comput-
ing (HPC) systems (e.g., Slurm, PBS), and clusters based on
Kubernetes [13], which is the most widely used container
orchestration platform today to manage and automate the
deployment, scaling, and management of containerized appli-
cations across clusters of real or virtual hosts.

In addition, cloud providers have also begun offering
the CWL workflow manager as a service (e.g., Amazon
Genomics), which is another sign of the growing interest in
this technology.

This paper is motivated by the fact that we found that CWL
runs the risk of not taking full advantage of the computational
resources offered by a cluster of computing resources, such
as a Kubernetes cluster. This prompted us to devise an exten-
sion of the CWL model, called PLAS (PLAtformed-taskS),
which we present in this paper. The overall solution, called
CWL-PLAS, aims to reduce the time to complete a work-
flow, known as makespan, by allowing every task to lever-
age on-demand parallel computing platforms to distribute its
workload over many nodes.

Let us now briefly describe our intuition. A CWL workflow
has the shape of a directed acyclic graph (DAG). Tasks that
do not have data dependency on each other can be run in par-
allel by the scheduler, and thus take advantage of distributed
computing resources. For example, Fig. 1a shows an example
of a workflow consisting of 5 tasks (T1...T5), packaged
as Linux containers and whose back-end Kubernetes cluster
has 5 nodes where tasks’ containers can be executed. Task

1 https://www.commonw].org/implementations/ (Accessed 2023-03-21)

VOLUME 11, 2023

T1 receives the input data from an external source and is
executed by the scheduler on node 1. When the processing
of T1 is finished, T2 and T4 use the output data of T1 and the
scheduler decides to run them in parallel on nodes 2 and 3. T3
is then executed on node 2 after T2, taking the output of T2
as input. Finally, T5 is executed on node 5, taking the output
data of T3 and T4 as input. In this workflow, only T4 can
run in parallel with T2 and T3, so the maximum concurrency
achieved consists of the parallel exploitation of only two out
of five nodes.

The problem with this limited concurrency is based on the
fact that packaging a task as a Container limits its execution
in a single host, and this limitation is independent of the
workflow scheduling strategy, since it considers tasks as a
single scheduling unit. Consequently, to allow a single task
to take advantage of more than one host, the innovation
introduced by CWL-PLAS is to create a new task type, named
platformed-task, which concurrenlty uses multiple contain-
ers to perform its job. From the scheduler’s point of view,
a platformed-task is seen as a single task, so the proposed
scheduling strategies can be easily reused.

The set of containers used by a platformed-task can be
crafted by the user, or the user can use existing parallel
computing platforms. Fig. 1b shows how the PLAS extension
modifies the workflow in Fig. 1a. Without lacking generality,
we assumed that T4 is a Machine Learning training task
whose trained neural network is passed to TS. For train-
ing neural networks, there are several distributed comput-
ing frameworks” that accelerate the training phase by using
different hosts in parallel, such as Apache Spark [14] or
Horovod [15]. With CWL-PLAS, the legacy> task T4 can be
implemented as a platformed-task pT4, which temporarily
installs an Apache Spark or Horovod ‘‘sidecar” platform
on 4 cluster nodes and uses it to train the neural network
in parallel and faster. When the platformed-task ends, the
sidecar platform is removed.* In this case, the maximum
concurrency consists of parallel exploitation of the entire set
of five nodes.

Prior to this work, to the best of our knowledge, CWL did
not include the use of sidecar platforms that would allow a
single task to distribute its workload across multiple nodes.
In this work, we propose this extension to CWL with the
goal of reducing the makespan of workflows by enabling
the exploitation of the horizontal scalability feature offered
by existing cloud technologies. With a couple of lab experi-
ments, we demonstrate that our proposal goes in this direction
and finally provide the CWL community with a way to use it
immediately through an open-source implementation [16].

Accordingly, the main contributions of this paper are as
follows.

2We use the terms platform and framework interchangeably.

3We use the term legacy to refer to the type of tasks currently included in
the CWL standard.

4A platform used by a platformed-task is called “sidecar” because it
resembles a sidecar attached to a motorcycle.

44093

IEEE Access

A. Detti et al.: CWL-PLAS: Task Workflows Assisted by Data Science Cloud Platforms

INPUT
node 1 .
Sidecar

B -
node 2 i
B~
node 2
5]

node 5!

(b) Example of a CWL workflow
with platformed-tasks

node 5!
OUTPUT

(a) Example of a CWL workflow
with legacy tasks

FIGURE 1. Comparison of CWL workflow with legacy tasks and
platformed-tasks. A single task is represented with a circle, and arrows
represent dependencies between tasks.

o The proposal for an extension of CWL that reduces the
time needed to complete single tasks that can leverage
parallel computing frameworks and, consequently, the
makespan of related workflows (Sec. III-A).

o The design of an architecture that implements this exten-
sion and uses a Kubernetes backend (Sec. I1I-B)

« An open-source implementation of this architecture for
Kubernetes cluster [16]

o A performance assessment based on Machine Learning
workflows (Sec. IV)

Il. RELATED WORK

A. WORKFLOW MANAGEMENT SYSTEMS

Scientific workflows prove effective for programming com-
plex data analysis processes at a high level and executing
them on heterogeneous platforms, including supercomputers,
or on distributed computing systems such as those offered by
Grids and Clouds infrastructures. As a result, many workflow
management systems (WMSs) have been developed to define
and automate workflow execution.

We have broadly classified WMSs into two groups. The
first group consists of WMSs that offer a graphical interface
to users to edit and execute workflows. Workflows are made
up of sequences of tasks, where each task is an analysis
tool available in an internal portfolio of the WMS [19],
[20], [26], [28]. Usually, introducing a new tool into the
portfolio requires interaction between the user and the WMS
administrator, because the tool is command-line software
running on the host operating system that must have the
necessary execution environment. However, some managers
The majority of the listed WMS supports Docker containers
as dependency resolver, while some are also compatible with
Singularity.

Moreover, Pegasus [18] also provides more tailored and
sophisticated scheduling capabilities to reduce data move-
ments and start-up overhead between tasks with small exe-

44094

cution time compared to their start-up times merging them
into a single higher granularity task.

While the constraint of using analysis tools available in
a portfolio is a limitation, it can also allow for an abstract,
or semantic, representation of workflow tasks, i.e., the user
specifies what is to be done on a dataset without specifying
the software that implements this task. This abstract repre-
sentation makes the workflow capable of being executed on
a variety of platforms, which implement the abstract task
portfolio with different software and optimized with respect
to the computing infrastructure used. This abstraction feature
is either native to the WMS or can be added by an overlay
layer that maps the abstract tasks to specific implementations,
the updating of which (e.g., due to software obsolescence)
has no impact on the workflow description making it future-
proof [31], [32].

A second group of WMSs is made of systems that enable
the implementation of workflows through specific program-
ming languages, e.g., Python, Go, C-like [17], [18], [21],
[22], [23], [24], [25], [27], [29], [30] by providing users with
classes and function libraries through which WMS services
can be accessed, such as input/output data storage or special-
ized computing functions. Some of these handlers can use
Linux containers to package task software, thus not imposing
the use of a specific language for task implementation.

Unlike CWL, for both groups, there is no decoupling
between the workflow description and the WMS, thus risking
platform lock-in, and unlike CWL-PLAS in this paper, con-
tainerized tasks, where allowed, can leverage the resources of
only one host. In addition, for the second group, the absence
of the GUI requires the researcher to know the programming
language used by the WMS to define the workflow, even if it
uses built-in tasks.

Workflow Description Language (WDL) and Common
Workflow Language (CWL) are two vendor-neutral work-
flow specification languages that aim to make workflows
independent of the management systems that run them.
CWL emphasizes a bit more reproducibility and portability
of workflows, thus requiring more verbosity in workflow
description. On the contrary, WDL emphasizes human read-
ability of the workflow and an easy learning curve, but pro-
vides users with reduced expressiveness [33]. Both do not
provide a semantic abstraction of workflow activities; in fact,
the software that performs the task must be specified by the
user.

From a conceptual point of view, both languages allow
the underlying schedulers to implement parallel execution
of different tasks, i.e., tasks that have no data dependency
can be executed in parallel on different hosts. In addition
to this type of inter-task parallelism offered by workflow
schedulers, with CWL-PLAS, we promote the concept of
intra-task parallelism, i.e., a single task can distribute its
workload over several hosts in parallel.

Most workflow management systems and specification
languages assume that the workflow is run on one site at a
time, which can be a local computer as much as a remote HPC

VOLUME 11, 2023

A. Detti et al.: CWL-PLAS: Task Workflows Assisted by Data Science Cloud Platforms

IEEE Access

TABLE 1. Comparison with the most popular Workflow Manager System.

CWL Execution Ul Container Workflow as a | Intra-task
Envs Support Service Parallelism
CWL-PLAS Yes Cloud, Local CLI Docker Yes Yes
StreamFlow Partially Cloud, HPC, | CLI Docker, Singular- | Partially (not in | Yes
[17] (need Local ity case of intra-task
additional parallelism)
conf. file)
Pegasus [18] No Grid, Cloud, | CLI Docker, Singular- | Yes No
HPC ity, Shifter
Galaxy [19] Yes Cloud, HPC, | Web, CLI No Yes No
Local
Kepler [20] No HPC, Local Desktop No Yes No
AiiDA [21] No HPC, Local CLI Docker, Singular- | Yes No
ity
doit [22] No Local CLI No No No
SciPipe [23] No Local CLI Singularity Yes No
Swift [24] No Cloud, HPC CLI No No No
BEE [25] Yes Local, Cloud, | CLI Docker, Singular- | Yes No
HPC ity
Arvados [26] Yes Local, Cloud, | CLI, Web Docker, Singular- | Yes No
HPC ity
Toil [27] Yes Local, Cloud, | CLI Docker, Singular- | No No
HPC ity
CWL-Airflow Yes Local, Cloud, | Web, CLI Docker, Singular- | Yes No
[28] HPC ity
Calrissian Yes Local, Cloud CLI Docker No No
[29]
Cromwell No Local, Cloud, | CLI Docker Yes No
[30] HPC

or cloud cluster. Some recent work advocates the concept
of multi-site workflow management. For instance, Stream-
Flow [17], [34] is a multi-site workflow management system
that can distribute the tasks of a single workflow across mul-
tiple runtime environments, ranging from bare-metal hosts
to multi-container Kubernetes environments, possibly geo-
graphically distributed. StreamFlow supports CWL for work-
flow description, but.cwl YAML files must be complemented
by StreamFlow-specific configuration files to bind each CWL
task to StreamFlow runtime environments. StreamFlow con-
figures and uses these runtime environments through specific
Connectors that have control rights to the back-end comput-
ing platform.

CWL-PLAS can be placed at a lower service level than
StreamFlow or other similar multi-site WMSs [25] because it
integrates the execution of multi-container tasks directly into
the CWL framework without using other overarching solu-
tions. This integration allows cloud service providers to offer
““as-a-service” execution of CWL workflows, preventing
users from interacting with the underlying computing infras-
tructure. In addition, the approach of using on-demand side-
car platforms whose lifecycle is tied to that of the task using
them is another feature of CWL-PLAS toward ‘““as-a-service”
provisioning, as it supports multi-tenancy more efficiently.
In fact, a sidecar platform occupies computing, memory, and
storage resources, only for as long as it takes to execute

VOLUME 11, 2023

the associated task.’> For example, this type of workflow-as-
a-service model is currently offered by the GEANT Cloud
Flow (GCF) platform [35], which exposes a Workflow Exe-
cution Services (WES) compliant with the Global Alliance
for Genomics and Health (GA4GH) API [36]. To take advan-
tage of the attractive cross-site services offered by Stream-
Flow, Task Execution Service supporting CWL-PLAS (e.g.,
our modified TESK) can be integrated into the StreamFlow
framework through a specific Connector.

Tab. 1 compares the main characteristics of the aforemen-
tioned most popular workflow management systems with
CWL-PLAS. The table shows one of the main strengths of
CWL-PLAS, namely the ability to exploit a sidecar platform
to enable intra-task parallelism. Another feature we value in
the table is the ability of a cloud provider to implement a
workflow-as-a-service model with the related WMS, as pre-
viously discussed. We highlight [17] is partially capable of
executing workflow-as-a-service, because if a user wants
to execute tasks that use intra-task parallelism, must have
access to the back-end Kubernetes cluster. Furthermore, [19],
[25], [26], [27], [29], [37] support the ability to define the

SFor instance, with StreamFlow those who want to run workflow must
have access to the Kubernetes cluster to preventively deploy static Helm
platforms in case he wants to use multi-container tasks. This is not a problem
in private scenarios, but could be limiting in the case of cloud providers who
wish to offer workflow execution as-a-service.

44095

IEEE Access

A. Detti et al.: CWL-PLAS: Task Workflows Assisted by Data Science Cloud Platforms

workflow via CWL while [17] supports it partially as it
requires additionally configuration file to execute the work-
flow. It’s important to note that CWL-PLAS, at least in our
current implementation, has some limitations when consid-
ering its features and capabilities. One such limitation is
the current lack of HPC support and Singularity containers.
In addition, CWL-PLAS does not provide a graphical user
interface, but rather a command line interface for interacting
with workflows. However, the design of CWL-PLAS doesn’t
prevent future extensions or software add-ons to include miss-
ing features.

B. WORKFLOW SCHEDULING

Workflow scheduling is a decision-making process of a WMS
that manages the execution of tasks in a workflow, ensuring
that each task is executed in the correct order and at the right
time. There are many different types of workflow schedulers
available, ranging from simple task scheduling tools to more
complex platforms that support parallel execution, resource
management, and other advanced features to optimize one or
more objectives.

A baseline scheduling strategy, which we can call best-
effort as it ensures no guarantee, provides that the scheduler
does not control any resource quota for the tasks, but merely
asks the underlying computing platform (e.g., a single host or
Kubernetes cluster) to execute a task when all its input data
are ready.

There are many research papers on the topic of workflow
scheduling that differ in the objective functions and/or the
proposed strategy to pursue the objective efficiently, keep-
ing in mind that, usually, the resulting scheduling problem
is NP-complete [4], [38]. Some schedulers aim to mini-
mize the workflow makespan given a resource or monetary
budget [39], others to minimize the monetary cost given a
completion deadline to respect [40], [41]. To pursue their
objective function different schedulers use different strate-
gies. For instance, [40], [41] partition the workflow into paths
of dependency tasks based on specific criteria and then a
scheduling decision is made for each path. The schedulers
proposed in [39] and [42] create groups of tasks (akin super-
task), rank them and perform the scheduling decision. Simi-
larly, [18], [19], [20], [24] can cluster small tasks into larger,
more compute-intensive ones and this is especially helpful
when executing workflows with thousands of tasks, where the
start-up time overwhelms the overall computation.

For any scheduler we know, the smallest unit of scheduling
is the task. Thus, a scheduling strategy can improve the
utilization of a cluster of resources by running tasks in paral-
lel, i.e. addressing an inter-task parallelism problem. CWL-
PLAS enables intra-task parallelisms, i.e., it tries to reduce
the completion time of a single task by allowing its work-
load to be distributed over several nodes of a cloud cluster.
Consequently, a scheduler is not intended to pursue the goals
of CWL-PLAS, and vice versa, because they address two
complementary domains: intra-task (CWL-PLAS) and inter-
task (scheduler).

44096

A platformed-task is seen by a scheduler as a single task,
so scheduling strategies and platformed-tasks can work per-
fectly well together. In fact, in our implementation of CWL-
PLAS [16], based on cwl-TES [43], we did not even have to
extend the scheduling algorithm. The use of platformed-tasks
can improve the resource utilization of a cluster when the
problem is related to the fact that inter-task dependencies
impose that only a few tasks can be executed in parallel by a
scheduler, thereby not allowing full exploitation of the cluster
nodes. In fact, in these cases, resource utilization efficiency
can be recovered with platformed-tasks by distributing the
workload of the single task over multiple nodes.

C. CLOUD TECHNOLOGIES

Workflow management systems (WMS) are increasingly
embracing cloud technologies to make workflow execution
fast and cost-effective. In addition to plain virtual machines,
cloud providers offer as-a-service thousands of software and
platforms that simplify the deployment of different categories
of applications. Regarding the WMS category, databases
and file/object repositories are undeniably useful for mov-
ing data from one task to another and for storing inputs
and outputs. Moreover, two computing paradigms offered by
the cloud are well suited to WMSs, namely: container and
High-Performance Computing (HPC).

Containers are an exceptionally convenient tool for mak-
ing software autonomous from the system on which it runs.
A Container is a runtime environment, decoupled from the
host operating system, in which the user runs his or her
software along with all the necessary libraries. This environ-
ment is prepared independently by the user in the form of a
container image and then run on a host. Several containerized
software can run on the same host without the risk of any
conflicts and without the system administrator having to
install any files in the host operating system.

Unlike virtual machines, containers provide a system iso-
lation rather than virtualization, and this allows them to have
two outstanding features. First, a negligible overhead on host
resource consumption compared to the case of native exe-
cution, i.e., running container software directly in the host
operating system. Second, the performance is almost equal
to that of native execution.

Containers can be executed in a single host or in a cluster
of nodes. In the latter case, the complexity of dealing with
a distributed system is alleviated by container orchestration
systems, and Kubernetes is the most widely used [44]. Users
request Kubernetes to run a Container and Kubernetes pack-
ages it into a resource unit named Pod, and then runs it
on a cluster node. To support multi-container applications,
Kubernetes provides Pod-to-Pod networking and DNS ser-
vices. The number of Pods executing the same software can
be replicated, even automatically. Replicated Pods are used
in parallel to serve “different” requests, making better use of
cluster resources.

VOLUME 11, 2023

A. Detti et al.: CWL-PLAS: Task Workflows Assisted by Data Science Cloud Platforms

IEEE Access

Many complex applications are developed as multi-
container applications, where each container performs a spe-
cific job, and containers interact with each other through the
network to serve a user request. This is the case of microser-
vices applications [45] or distributed frameworks for parallel
computing, such as Apache Spark [14] or Horovod [15]
for machine learning. Since these applications require the
presence of many Pods and other Kubernetes resources, their
all-at-once deployment is usually supported by another tool
called Helm [46]. Helm is a package manager that uses
specific files called charts to describe the set of Kubernetes
resources needed to run a multi-container application. A user
uses Helm by passing it the chart of the application he
wishes to execute. Consequently, Helm interacts with the
Kubernetes control plane to deploy the application resources
in the cluster nodes. Helm charts can be made by hand or
downloaded from public Helm repositories maintained by
software developers/companies that provide charts for their
distributed applications. There are about 10,000 public charts
today, demonstrating the popularity of Helm.®

High-Performance Computing (HPC) platforms are used
to run computationally demanding processes in a distributed
cluster of nodes [47]. These processes are implemented by
programs using parallel computing libraries that run directly
in the host OS. The level of parallelism achieved is generally
finer than that achievable using Kubernetes Pod replication.
In fact, the set of instructions used to serve a ‘‘single”
request can be executed by CPUs from different nodes, while
using a memory space made common by a very fast net-
work message-passing system. This extremely fine level of
parallelism allows very high performance to be achieved but
requires, on the one hand, advanced programming skills and,
on the other hand, an underlying HPC platform that allows the
execution of distributed instructions in near real-time to avoid
bottleneck. For these reasons, HPC platforms usually provide
the means to allocate exclusive access to compute resources
of nodes and use ultra-low latency network solutions, such as
InfiniBand. Note that recently, cloud providers have begun
offering HPC as-a-service infrastructure [48].

The HPC and Kubernetes worlds are still some distance
apart, partly because they start from a different model of
resource sharing. HPC wants performance guarantees and
tends to strictly control access to resources (CPU, mem,
network) to avoid “‘interference” between processes. Kuber-
netes is more tolerant and allows concurrent use of hardware
resources from containerized software, which inevitably cre-
ates uncertainties about execution time. When data transfers
are limited and occur after large amounts of computation
done by parallel workers (coarse-grained parallelism), these
uncertainties/differences in execution time between workers
do not slow down the workflow significantly, while they can
be dramatic in the case of instruction-level, fine-grained par-
allelism [49]. In summary, the choice of technology, HPC or
Kubernetes, depends on the parallel model of the application.

6https:// artifacthub.io/stats (Accessed 2023-03-21)

VOLUME 11, 2023

If coarse-grained parallelism is sufficient, Kubernetes has
the advantage of making users more autonomous through
containers, and infrastructure hardware is usually cheaper.
For fine-grained parallelism, HPC systems are mandatory
unless massive resource overprovisioning is adopted.

Both HPC and Kubernetes environments can be used as
computing backends of CWL workflow managers, and there
are implementations that use either or both. In this paper,
we focus on Kubernetes and propose an evolution of CWL
that speeds up tasks that can be implemented with coarse-
grained parallelism.

Ill. CWL-PLAS

A. EXTENSION OF THE COMMON WORKFLOW LANGUAGE
A CWL task consists of executing a command line tool, such
as a Python program, whose input arguments are taken from a
variety of sources, including local or remote file repositories.
The tool may be present in the host operating system or
within a Linux container, temporarily instantiated to execute
the command, and later removed. When the execution is
complete, one or more output files are produced. When a task
belongs to a workflow, its output files can be input arguments
for downstream tasks.

Fig. 2 shows an example of a CWL workflow consisting
of two tasks. The figure also includes the .cwl files that
describe the workflow and the tasks.

The workflow. cwl file describes a workflow that takes
an input file (input-wf) from a remote repository and
uploads a output file (output-wf) to the same repository.
The workflow involves the execution of two steps during
which tasks 1 and 2 are executed, respectively. The inputl of
taskl corresponds to the input file of the workflow, and the
outputl of task2 corresponds to the output of the workflow.

The file taskl.cwl describes a taskl that belongs to
the CommandLineTool class.” Task execution requires the
initialization of a Docker container based on the my ImageA
image. This container provides the execution environment
for the command 'python3 myProgA.py’ that is the
taskl job. Taskl has two output files: outputl and
output2; the former is passed to task2, while the latter is
not used downstream. For example, output2 can be a log
file for debugging purposes. We have not reported the file
task?2.cwl, as it has the same content as task1l.cwl, but
it uses my ImageB and myProgB.py.

The CWL-PLAS system extends the CWL task model by
introducing the concept of platformed-task. Fig. 3 shows
an example of a platformed-task with the corresponding
.cwl file. A platformed-task consists of a container, called
Executor, and another set of containers that form the side-
car platform. The Executor runs a software tool (e.g.,
myParProg.py) that implements the task job, which inter-
acts with the sidecar platform to parallelize the computation
using the different workers of the platform.

7Other classes exist, but we have limited the description of CWL to what
is necessary to present the paper’s contribution.

44097

IEEE Access

A. Detti et al.: CWL-PLAS: Task Workflows Assisted by Data Science Cloud Platforms

Workflow
Task1 Task2

. y ’ output-wf
mputAWf mw/\ output! o inputt myContainerB output1 p

E myProgA > myProgB E

' % \é\‘\e(output2 % \'a\“e‘ output2 !

' o > o '

e e o e e o e e e e e e e e mmmmmmmm—aaa e

workflow.cwl

cwlVersion: v1.0
class: Workflow
inputs:
input-wf:
type: File

outputs:
output-wf:
type: File
outputSource: task2/output1

steps:
task1:

Remote/Local Repository
(FTP, HTTP, S83,...)

task1.cwl

cwlVersion: v1.0
class: CommandLineTool
baseCommand: ["python3", "myProgA.py"]
requirements:
DockerRequirement:
dockerPull: mylmageA
inputs:
inputt:
type: File
inputBinding:

run: task1.cwl
in:

inputl1: input-wf
out: [output1]

task2:
run: task2.cwl
in:
input1: task1/output1
out: [output]

FIGURE 2. CWL workflow with two legacy tasks.

CWL-PLAS uses Helm to control the lifecycle of side-
car platforms. As can be seen in the file ptaskl.cwl of
Fig. 3, CWL-PLAS extends the “CWL Command Line Tool
Description” specification by introducing a new requirement
class called HelmRequirement, whose properties specify
repository, name, and version of the Helm chart of the sidecar
platform. Moreover, the Docker image of the Executor con-
tainer is provided with the legacy DockerRequirement
key. This schema is the result of a compromise between
(i) limiting the impact on the existing CWL schema, so that
current implementations do not have to be significantly mod-
ified to support our extension, and (ii) being flexible to intro-
duce support for other sidecar platforms into the CWL, for
example, by simply adding a DockerCompose requirement
in a future implementation that aims to support also Docker-
based multi-container sidecar platforms [50].

B. THE CWL-PLASK WORKFLOW MANAGER

We have devised an open-source CWL-PLAS workflow man-
ager that uses a Kubernetes back-end [16]. We named this
workflow manager CWL-PLASK, where the suffix K is a
reference to Kubernetes.

44098

position: 1
outputs:
outputi:
type: File
outputBinding:
glob: out1.txt
output2:
type: stdout
stdout: out2.txt

\4

Fig. 4 shows the architecture of the CWL-PLASK work-
flow manager. The architecture is an extension of that used
by the Global Alliance for Genomics and Health (GA4GH),
and the extension consists of:

« extension of the Task Execution Service (TES) APIs

o software update for handling sidecar platforms
within the cwl-TES workflow manager and within
a Kubernetes-based TES implementation named
TESK [51].

Users access workflow services through a REST API
exposed by a server, named cwl-WES, that implements the
GA4GH WES-API [36]. The internal engine of cwl-WES
is cwl-TES [43], a command-line workflow manager that
receives as input a . cw1 workflow file and requests the exe-
cution of embedded tasks to a back-end Task Execution Ser-
vice (TES) that exposes the GA4GH TES API [52]. In fact,
a TES is meant for the execution of single tasks, whereas
workflow orchestration is a cwl-TES job. The cwl-TES work-
load manager uses a file repository for storing input and
output files of tasks, and the repository can be an FTP
server, an AWS S3 storage, etc. The scheduling strategy used
by cwl-TES resembles the best-effort one we mentioned in
Sec. II-B: when a task has all its input files ready, it is

VOLUME 11, 2023

A. Detti et al.: CWL-PLAS: Task Workflows Assisted by Data Science Cloud Platforms

IEEE Access

pTaski

inputt myExecutorContainer M}
myParProg > >
- ; output2
G JG"X%@ L e
l ot my z @@ et
gy O . Ny Qe
& Sidecar <
worker 1 Platform worker M
ptaski.cwli
cwlVersion: v1.0 i
class: CommandLineTool

baseCommand: ["python3", "myParProg.py"]
requirements:
DockerRequirement:
dockerPull: myExecutorlmage
HelmRequirement:
chartRepo: "https://myChartRepo"
chartName: "mySidecarPlatform"
chartVersion: "1.0.0"
inputs:
inputi:
type: File
inputBinding:
position: 1
outputs:
outputi:
type: File
outputBinding:
glob: out1.txt
output2:
type: stdout
stdout: out2.txt

FIGURE 3. Platformed-task.

executed by contacting a back-end TES and passing it infor-
mation about the task to be executed, the URI where to find
the input files, and the URI where to put the output files at
the end of the task. When the task is completed, the control
returns to the cwl-TES, which eventually executes other tasks
waiting the output of the task that just finished. We note that
this scheduler is agnostic with respect to which server (or
servers in the case of platformed-task) the task is executed
on, and this lower-level scheduling decision is made by the
specific implementation of the Task Execution Service.

A Task Execution Service (TES) can have different imple-
mentations depending on the underlying computing resources
it uses. To implement CWL-PLASK, we chose and extended
TESK [51], an implementation of a TES that uses a Kuber-
netes cluster for task execution. The TES API is managed
by a persistent server, called TESK-API, which runs in a
Kubernetes Pod and orchestrates the execution of tasks as
required by the upstream cwl-TES. These tasks can be legacy
tasks or new platformed-tasks, as in the case of Fig. 4.

VOLUME 11, 2023

When the TESK-API receives a request to execute a task,
it starts a Kubernetes Job called Taskmaster.® The Taskmaster
is a kind of orchestrator dedicated for a single task that
allocates and deallocates over time the Kubernetes resources
needed to execute the task. The life-cycle of these resources
is as follows:

1) a Task Volume is created for use as a shared file repos-
itory among the Pods/Jobs of the task;

2) an Input Job is deployed. The Job software retrieves
input data from an INPUT repository, copies them to
the Task Volume, and then the Job finishes;

3) the sidecar platform for parallel computing is deployed
by using a Helm chart;

4) an Executor Job is created. The Job executes the
command-line tool that implements the task logic
within an Executor Container. To speed up/parallelize
the computation, the command-line tool interacts with
the sidecar platform. The Executor and sidecar plat-
form use Task Volume to read input files and write
output files. When the execution of the command-line
tool is completed, the Executor Job terminates, and the
Taskmaster removes the sidecar platform;

5) an Output Job is deployed. The Job takes the output
files from the Task Volume and uploads them to an
OUTPUT repository. When the uploading is complete,
the Output Job ends;

6) finally, the Task Volume is removed, and the Taskmas-
ter Job terminates, thereby deallocating all Kubernetes
resources used for the task.

Next, TESK-API notifies the upstream cwl-TES work-
flow manager that the task has ended, and the workflow man-
ager will continue the workflow management by requesting
the execution of subsequent tasks. When all the tasks have
been executed, the workflow manager notifies the user, who
will access the output files through an OUTPUT repository.

We conclude the section by commenting on our choice to
bind the life-cycle of the sidecar platform with that of the
related task. This may seem a sub-optimal choice, consider-
ing that the sidecar platform might be reused later by sub-
sequent tasks. In such cases, it might be convenient to leave
the platform active, thus saving the delay of instantiating it
at task startup (aka cold-start delay). Apart from the fact
that this persistency feature can be added in future imple-
mentations of the workflow manager, we have found that,
in the long term, all the Kubernetes nodes contain the image
of the platform containers, so starting them is very fast and
related delay results negligible compared to the task duration,
considering also that we are focusing on applications that use
coarse-grained parallelism. In addition, removing the sidecar
platform at the end of the task fits well with the workflow-
as-a-service model that a cloud provider can offer, avoiding

8Differently from a Kubernetes Pod that is intended to execute a long-term
service, a Job is designed to reliably execute a short-term software program
within a Container. When the program is completed, the Job is terminated
and Kubernetes keeps track of successful completions.

44099

IEEE Access

A. Detti et al.: CWL-PLAS: Task Workflows Assisted by Data Science Cloud Platforms

INPUT Repositories
(FTP, HTTP, S3,...)

Task Execution
Service (TES)

GA4GH WES
REST API

GA4GH TES
REST API

cwl-WES

platformed-task

Input
il_‘ l

Sidecar

> TESK-API

g owl] cwl-TES

workflow manager

Taskmaster — —

Workflow Execution
Service (WES)

Kubernetes cluster K

“ Platform Task Volume
Executor

Output

/

OUTPUT Repositories
(FTP, HTTP, S83,...)

FIGURE 4. CWL-PLASK workflow manager.

0

10

20
0 20 0 20 0 20

FIGURE 5. Example of data in the MNIST dataset.

1 import tensorflow as tf
; mnist_model = tf.keras.Sequential([

+ tf.keras.Input(shape=(28, 28, 1)),

5 tf.keras.layers.Conv2D(32,[3, 3],activation="relu’),
s tf.keras.layers.Conv2D(64,[3, 3],activation="relu’),
7 tf.keras.layers.MaxPooling2D(pool_size=(2, 2)),

s tf.keras.layers.Dropout(0.25),

» tf.keras.layers.Flatten(),
10 tf.keras.layers.Dense(128, activation='relu’),
11 tf.keras.layers.Dropout(0.5),
12 tf.keras.layers.Dense(10, activation='softmax’)
13 1)

FIGURE 6. Python snippet of MNIST neural network.

leaving unused platform containers running and thus allowing
accurate accounting of resources consumed by the user.

IV. PERFORMANCE EVALUATION

We verified the effectiveness of CWL-PLAS by measur-
ing the makespan reduction it provides in a couple of
machine learning workflows, named: MNIST and LIVECell.

44100

20 0 20

The MNIST workflow shows how CWL-PLAS reduces the
time required to complete a single training task when imple-
mented as a platformed-task. The LIVECell workfolw shows
how CWL-PLAS reduces the time required to complete a
workflow consisting of platformed and legacy tasks.

The execution of workflows is handled by a CWL-PLASK
workflow manager (Fig. 4) that runs on a Kubernetes cluster
made up of a control-plane node and 4 worker nodes. These
nodes are virtual machines, and those that implement the 4
worker nodes have an NVIDIA Tesla M10 GPU.

For comparison purposes, we implemented each workflow
using both legacy CWL and CWL-PLAS. For legacy CWL
workflows, each task executes a Python script and runs in an
official TensorFlow Docker Container. Instead, CWL-PLAS
workflows include platformed-tasks, whose Executor runs a
Python script and uses a Horovod sidecar platform [15].

Horovod is a deep learning framework to distribute the
training process across multiple workers using different
GPUs/CPUs. Each worker trains the same neural network, but
with different training and validation sets. After each training
batch, the workers share the computed gradients, average

0 20 0

VOLUME 11, 2023

A. Detti et al.: CWL-PLAS: Task Workflows Assisted by Data Science Cloud Platforms

IEEE Access

(o2}

o
o

Legacy CWL

o
IS
o

CWL-PLAS

/\\

IS
w
o

N
o

Training time (min)
N w

Distribution overhead (%)

-
o

o
o
=

BN | |

12 3 4 1.2 3 4
N. of workers N. of workers

o

Training loss
o
o
N
Training accuracy
o
©
(9]

o
©

0.04

0.02

Validation loss

N. of workers

(@)

2

N. of workers

o
©

1.2 3 4
N. of workers

Validation accuracy
o
©
(9]

0
3 4 1.2 3 4

N. of workers

(b) (c)

FIGURE 7. Training performance of MNIST workflow in case of legacy CWL (N. of workers=1) and CWL-PLAS workflows with Horovod sidecar
platform with 2,3 and 4 parallel workers. Fig. 7a shows the training time, i.e., the time needed to complete the workflow. Fig. 7b shows the learning
distribution overhead in Equation 1. Fig. 7c shows the loss and accuracy of the training and validation set computed during the training task.

3000

A
4 workers/ |
[\

2500 3 workers

| |
2000 1 2 workers | ‘

1000 | | \

Network traffic (Mbit/s)
@
o
o

o
(=}
o

0 200 400 600

Time (s)

800 1000

FIGURE 8. Network traffic exchanged by workers during three training
sessions of MNIST neural network.

them, and update the weights of the neural network consis-
tently. The number of batches per epoch is scaled by a factor
equal to the number of workers. In this way, the duration of
an epoch and consequently the duration of training is reduced,
although the overall number of batches used per epoch by the
entire set of workers remains constant and independent of the
number of workers. A distinctive feature of Horovod is the use
of a technique called Ring-All-Reduce, which greatly reduces
the amount of network communication to share gradients
among workers.

A. MNIST WORKFLOW

1) DESCRIPTION

The MNIST workflow is made up of a single task and
trains a neural network to classify handwritten digits (O-
9) belonging to the popular public MNIST image dataset,
a collection of handwritten digits [53]. Fig. 5 shows the
raw data in the MNIST dataset. We used the Keras modules
of TensorFlow 2.0 to implement the neural network and a
Horovod sidecar platform to distribute the computation on
different nodes. The Python code in Fig. 6 shows the neu-
ral network model consisting of 2 convolutional layers, a
MaxPool layer, and two final Dense layers with interme-
diate Dropouts. The activation function of the intermedi-
ate layers is relu, while the final activation is softmax.

VOLUME 11, 2023

We used the Adam stochastic gradient descent algorithm and
the SparseCategoricalCrossentropy as the loss
function. The batch size is 128 images, the total number of
batches per epoch is 500, and the training lasts 24 epochs.

2) RESULTS

Fig. 7 shows the training metrics of the MNIST workflow
versus the number of Horovod workers. For the single-worker
case, we used a legacy CWL workflow in which a single con-
tainer is used to train the neural network. For the cases of 2,
3 and 4 workers, we used CWL-PLAS workflows supported
by a Horovod sidecar platform.

Fig. 7a shows the time reduction provided by CWL-PLAS.
The legacy CWL workflow took about 5.3 minutes to train the
network. Using CWL-PLAS, the training period decreases as
the number of parallel workers involved increases. Fig. 7c
shows that the loss and accuracy obtained for the training and
validation set are practically the same in the different cases,
demonstrating the effectiveness of the distributed computa-
tion.

One result that may be puzzling is the sub-linear reduction
in training time as the number of workers increases, a sign
of an inefficiency of the distributed computation. Ideally,
we would expect the training time with N workers to be N
times smaller than that with only one worker. But we are
quite far from this ideal behavior. For instance, the training
time with four workers is only 2.7 times shorter than with one
single worker. Accordingly, in Fig. 7b we measured the learn-
ing “distribution overhead” that is, the increase in the actual
training duration compared to the ideal case. In formula:

DoN) = T™
Tr(1)/N
where Do(N) and Tr(N) are the learning distribution over-
head and the actual training time for N workers, respectively.

We note that the overhead increases with the number of
workers. This inefficiency is mainly due to the fact that,
after each training batch, workers share gradients with each
other before starting the next batch. This periodic exchange
of network traffic creates interruptions in the training process

ey

44101

IEEE Access

A. Detti et al.: CWL-PLAS: Task Workflows Assisted by Data Science Cloud Platforms

200 0

T
200 0 200 0 200

FIGURE 9. Some examples of LIVECell BT-474 cells acquired at hour 0, first three pictures, and after 4 hours, last tree

0
100
200
0 200 0O 200 O
pictures.
preprocessing node1
(platformed-task) |
b .nodeZ
o
LIVECell 3
dataset it S
T node3
i node4
training, p
validation| .../ !
datasets
test
dataset training

(platformed-task)

.node1

A &Y node2

network

wel_gt_hs, <1 pT§
training \

metrics p

network
model

node3

Horovod
‘IO I 01

Y

T3 .node4

evaluation
(task)

test metrics

!

FIGURE 10. LIVECell workflow shows the integration of both legacy CWL
and PLAS-CWL tasks. pT1 and pT2 leverage the parallel distributed
computation of CWL-PLAS, while T3 is a legacy CWL task.

that slow it down. The greater the amount of network traffic,
the longer the interruptions and the greater the inefficiency.

Fig. 8 shows the network traffic exchanged among workers
during the MNIST neural network training. We first trained
by using 2 workers, then three workers, and finally 4 workers.
The plot is the result of a moving average operation with a
2-minute window. It shows a high level of network involve-
ment, on the order of Gbit/s, which increases as the number of
workers increases, and thus the learning distribution overhead
also increases accordingly (Fig. 7b).

Obviously, the overhead would decrease if we improved
the capacity of the network. In our case, we measured a
throughput of 10 Gbit/s between workers; but even with
such “good” network throughput, we had non-negligible
inefficiency (e.g., 47% overhead) that is indicative of the need
to have a very high-speed network to take full advantage of
distributed training. Furthermore, in a virtualized environ-
ment such as Kubernetes, not only the speed of the network

44102

1 import tensorflow as tf

s model® = tf.keras.applications.DenseNet201(
4 include_top=True,weights='imagenet’,pooling=True)
model0@.trainable=False

7 input_layer = model®.layers[0].input
s output_layer = modelO.layers[-2].output

tf.keras.initializers.GlorotUniform(seed=73)
tf.keras.regularizers.L1(l1l=1e-6)

12 new_out = tf.keras.layers.Dense(

13 2,

12 activation="softmax",

15 kernel_initializer=ki,

16 kernel_regularizer=br,

17 bias_regularizer=br

15) (output_layer)

10 ki
br

20 LIVECell_model=tf.keras.models.Model(
21 inputs = input_layer,
22 outputs = new_out)

FIGURE 11. Python snippet of LIVECell neural network.

cards plays a determining role, but also the technology used to
virtualize the network, which should limit packet processing
as much as possible. For example, in our testbed we used
the Kubernetes Calico network plugin configured so as not
to use VXLAN tunnels. In an initial configuration in which
we used VXLAN tunnels, the throughput among workers
dropped by a surprising factor of 10, creating an overhead so
high that distributed training sometimes looked worse than
non-distributed one.

B. LIVECell WORKFLOW

1) DESCRIPTION

The LIVECell workflow aims to train a neural network to
extract meaningful information from cell morphology during
a biological experiment in a low-cost and non-destructive
way [54], [55]. The case study is chosen from the recently
published LIVECell dataset [56]. In particular, we selected
a subset of images related to a breast cancer cell line, BT-
474. These cells are well known in the literature to usually
grow in rafts. The task of the neural network is to uncover
morphological changes, including cell volume growth, that
occur in four hours. For this purpose, we organized the dataset
as consisting of two classes and used the neural network for
binary classification. Samples from the first class include
cells at time zero, whereas samples from the second class

VOLUME 11, 2023

A. Detti et al.: CWL-PLAS: Task Workflows Assisted by Data Science Cloud Platforms

IEEE Access

<—1egacy CWL

CWL-PLAS

w
o

Test loss

N
o

Workflow makespan (min)

-
o

N. of workers

(@)

Test accuracy
ey
o

N. of workers

(b)

N. of workers

(c)

FIGURE 12. Performance of LIVECell workflow in case of legacy CWL (N. of workers=1) and CWL-PLAS workflows with Horovod sidecar platform with
2,3 and 4 parallel workers. Fig. 12a shows the time needed to complete the workflow. Fig. 12b and Fig. 12c show the model loss and accuracy

measured on the test set by the last task of the workflow.

50 T T 25 0.6 — % —
Legacy CWL @ s
S04 3 06
L —~20 = ©
40 g\c,/20 ZE 8’0'4
T = 502 €02
E CWL-PLAS 3 . = [
2 30F . £15F 0] = 0 -
(o)
£ rd \ g 1 3 4 1 3 4
.E’ | 5. 06 N. of workers > N. of workers
c 20 =10 " —_ S _
£ 3 8 306
= = 0.4 b
k) s ®
10+ a 5t 2 c 04
© o
©0.2 =
= 502
> i
0 - 0 - 0 — > 0 —
1 2 3 1 2 3 4 1.2 3 4 1.2 3 4
N. of workers N. of workers N. of workers N. of workers
(a) (b) (c)

FIGURE 13. Performance of LIVECell training task (pT2) in case of legacy CWL (N. of workers=1) and CWL-PLAS workflows with Horovod sidecar
platform with 2,3 and 4 parallel workers. Fig. 13a shows the training time, i.e., the time needed to complete the task. Fig. 13b shows the learning
distribution overhead in Equation 1. Fig. 13c shows the loss and accuracy of the training and validation set computed during the training task.

contain cells after four hours. If the network can distinguish
between these two classes of cells, it means that it can detect
morphological changes. The dataset comprises 8640 and
8022 images for the first and second class, respectively. 70%
of the dataset has been used as training set, 20% as validation
set, and 10% as test set.

Fig. 10 describes the LIVECell workflow. It consists of
three tasks: two CWL-PLAS platformed-tasks (pT1, pT2)
and a legacy CWL task (T3). The first two platformed-
tasks, pT1 and pT2, leverage the parallel computing
capabilities enabled by CWL-PLAS to perform the data
preprocessing and training of the neural network model
based on the LIVECell dataset, while the third task, T3,
is performed by a legacy CWL and evaluates the trained
model.

The data preprocessing task takes as input the raw LIVE-
Cell images and creates dataset files used to train and validate
the model in the second task, and to evaluate it in the final
task. To implement this task as a platformed one, we paral-
lelized the data preprocessing operation in many processes so
that each process analyzes a subset of the raw data. Instead of
developing an ad hoc sidecar platform, we reused a Horovod
one, since it already contains the libraries needed for software
parallelization, and we embedded the data preprocessing pro-

VOLUME 11, 2023

cesses in the different Horovod workers running on separate
nodes.

The training task is carried out by the neural network
model shown in Fig. 11 whose computation is distributed
over the workers of a Horovod sidecar platform. We used
a transfer-learning approach based on Densenet 201 [57]
that is a pre-trained Densely Connected Convolutional Neu-
ral Network, already tested over various datasets of cell
images [58]. This dense network structure allows the layers
of the network to be grouped into blocks (Dense blocks).
Within the single block, each layer receives additional inputs
from all the preceding layers, thereby allowing to maintain
low and high abstraction features even in deeper layers.
To adapt the network to our specific binary classification
task, we replaced the last fully connected layer with a new
classification Dense layer composed of two neurons (one
for each class). These neurons use the softmax activa-
tion function, L1 regularization penalty for the weights of
bias and kernel neurons, and the GlorotUniform initial-
izer. We used the Adam stochastic gradient descent algo-
rithm and CategoricalCrossentropy as loss func-
tion. We trained only the last layer. The batch size is
32 images, the total number of batches per epoch spans the
entire training set, and the training lasts for 10 epochs.

44103

IEEE Access

A. Detti et al.: CWL-PLAS: Task Workflows Assisted by Data Science Cloud Platforms

w
o

N
[&)]

N
(=}

4 workers
3 workers

o

2 workers

Network traffic (Mbit/s)
B

(&

2000 3000 4000
Time (s)

0 .
0 1000

FIGURE 14. Network traffic exchanged by workers during three training
sessions of LIVECell neural network.

Finally, the evaluation task takes as input the test dataset
from pT1 and the neural network model computed from pT2
and evaluates the performance of the neural network. This
software runs in a single container and it is a legacy CWL
task.

2) RESULTS

Fig. 12 shows the performance of the workflow, while Fig. 13
focuses on the performance of the training task. As previously
done, we used legacy CWL tasks for the case of only one
worker, while CWL-PLAS platformed-tasks with Horovod
sidecar platform for the cases of 2, 3, and 4 workers.

Fig. 12a shows how the use of CWL-PLAS makes the
makespan shorter as the number of workers used by pT1 and
pT2 increases. Again, from Fig. 13a, we observe a signifi-
cant reduction in training time due to the parallel computing
capabilities enabled by CWL-PLAS for pT2. For example,
the training time with legacy CWL is 45 minutes, compared
to the 13 minutes required by CWL-PLAS with 4 workers.

Unlike the MNIST workflow, the learning distribution
overhead shown in Fig. 13b is significantly lower for two
reasons. First, the neural network is much more complex,
so the computation time of training batches is much longer;
consequently, the network is involved less frequently. Second,
the amount of data shared at the end of a training batch is
smaller because workers share only the gradients of the last
layer, which is the only one trained. As shown in Fig. 14,
this less frequent exchange of gradients with fewer bytes
results in lower network traffic, on the order of tens of Mbit/s
compared to the Gbit/s of MNIST. This lower network traffic
consequently reduces the learning distribution overhead.

We notice intriguing spikes in traffic at the beginning of
a training process. These are due to the initial exchange of
the entire set of network weights from worker No. O to the
other workers to synchronize their neural networks. After this
initial phase, only the gradients of the last layer are shared
for each batch, and the traffic decreases. These spikes are not
evident in MNIST cases because the entire set of gradients is
exchanged for each batch, making traffic high at each stage
of the training process.

44104

From Fig. 13c we note that the training/validation accuracy
obtained is approximately 70 percent, with an even distribu-
tion of errors among the classes. This result also holds for the
test dataset, as shown in Fig. 12b. The main morphological
differences, detectable by the network, among the classes are
related to the progression of the cell cycle in four hours. Cell
populations show wide distributions in cell cycle status, and
this heterogeneity acts as a confounding factor motivating
the classification performance achieved. However, achieving
binary classification accuracy greater than 50 percent high-
lights how a properly trained deep neural network may be
able to identify variations in cell shape related to the cell
cycle. Such variations may represent strategic information
for understanding many biological processes, such as the
evaluation of therapeutic treatment.

V. CONCLUSION

In this paper, we briefly presented the Common Workflow
Language (CWL), a description language for workflows com-
posed of tasks that allows portability and reproducibility,
in part due to the adoption of Linux container technology for
the packaging of task software.

Being “confined” in a container, a task can exploit only
the resources of the host where the container is running.
This paper proposes CWL-PLAS, an extension of CWL that
allows a single task to exploit the resources of multiple nodes
in a cluster. We have named this type of task as platformed-
task, because its execution is supported by a parallel comput-
ing platform instantiated along with the task and specialized
for the task activity. Technically, a platformed-task is a legacy
CWL task deployed together with a sidecar platform, e.g., for
distributed machine-learning, data analysis, etc.

CWL-PLAS allows users to request sidecar platforms
that are packaged as Helm chart. However, the concept of
platformed-task is more generic. For instance, the CWL spec-
ification can be further extended to support platformed-task
based on other package managers such as Docker Com-
pose [50].

We expect that in most cases the user will use the publicly
available Helm charts to deploy the sidecar platforms needed
for his tasks. Consequently, the user only needs to prepare the
.cwl file of the platformed-task, develop the software that
executes the task, and build the Docker image that contains
it. This process is similar to that performed by the user in the
case of legacy CWL. However, the implementation of the task
software might be easier in the case of CWL-PLAS because
the user can take advantage of the high-level programming
libraries provided by the sidecar platforms. Therefore, CWL-
PLAS not only provides performance improvement by lever-
aging parallel computing frameworks, but also has the poten-
tial to simplify the development of task software.

We have implemented a workflow manager that runs
CWL-PLAS workflows, called CWL-PLASK. It is based on
Kubernetes and is open-source [16].

VOLUME 11, 2023

A. Detti et al.: CWL-PLAS: Task Workflows Assisted by Data Science Cloud Platforms

IEEE Access

REFERENCES

[1]

[2]

[3]

[4]

[5]

[6]

[71

[8]

[9]

[10]

[11]

[12]

[13]
[14]
[15]
[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

Existing Workflow Systems. Accessed: Mar. 21, 2023. [Online]. Available:
https://s.apache.org/existing-workflow-systems

E. Deelman, D. Gannon, M. Shields, and I. Taylor, ‘“Workflows and
e-science: An overview of workflow system features and capabilities,”
Future Gener. Comput. Syst., vol. 25, no. 5, pp. 528-540, May 2009.

J. Liu, E. Pacitti, P. Valduriez, and M. Mattoso, “A survey of data-
intensive scientific workflow management,” J. Grid Comput., vol. 13,
no. 4, pp. 457-493, Dec. 2015.

J. Liu, S. Lu, and D. Che, “A survey of modern scientific workflow
scheduling algorithms and systems in the era of big data,” in Proc. IEEE
Int. Conf. Services Comput. (SCC), Nov. 2020, pp. 132-141.

P. Ivie and D. Thain, “Reproducibility in scientific computing,” ACM
Comput. Surv., vol. 51, no. 3, pp. 1-36, May 2019.

K. A. Ocaiia, D. D. Oliveira, F. Horta, J. Dias, E. Ogasawara, and
M. Mattoso, “Exploring molecular evolution reconstruction using a par-
allel cloud based scientific workflow,” in Proc. Brazilian Symp. Bioinf.
Cham, Switzerland: Springer, 2012, pp. 179-191.

J. C. Jacob, “Montage: A grid portal and software toolkit for science-grade
astronomical image mosaicking,” Int. J. Comput. Sci. Eng., vol. 4, no. 2,
pp. 73-87, 2009.

A. T. Kouanou, D. Tchiotsop, R. Kengne, D. T. Zephirin, N. M. A.
Armele, and R. Tchinda, “An optimal big data workflow for biomed-
ical image analysis,” Informat. Med. Unlocked, vol. 11, pp.68-74,
Jan. 2018.

Common Workflow Language. Accessed: Mar. 21, 2023. [Online]. Avail-
able: https://www.commonwl.org/

M. R. Crusoe, S. Abeln, A. Iosup, P. Amstutz, J. Chilton, N. Tijanic,
H. Ménager, S. Soiland-Reyes, B. Gavrilovié, C. Goble, and T. C. Commu-
nity, “Methods included: Standardizing computational reuse and portabil-
ity with the common workflow language,” Commun. ACM, vol. 65, no. 6,
pp. 54-63, Jun. 2022.

D. Merkel, “Docker: Lightweight Linux containers for consistent devel-
opment and deployment,” Linux J., vol. 2014, no. 239, p. 2, 2014.

G. M. Kurtzer, V. Sochat, and M. W. Bauer, “Singularity: Scientific
containers for mobility of compute,” PLoS ONE, vol. 12, no. 5, May 2017,
Art. no. e0177459.

Kubernetes: Production-Grade Container Orchestration.
Mar. 21, 2023. [Online]. Available: https://kubernetes.io/
Apache Spark. Accessed: Mar. 21, 2023. [Online]. Available: https://spark.
apache.org/

A. Sergeev and M. D. Balso, “Horovod: Fast and easy distributed deep
learning in TensorFlow,” 2018, arXiv:1802.05799.
CWL-PLAS. Accessed: Mar. 21, 2023.
https://github.com/PlatformedTasks

I. Colonnelli, B. Cantalupo, I. Merelli, and M. Aldinucci, “StreamFlow:
Cross-breeding cloud with HPC,” IEEE Trans. Emerg. Topics Comput.,
vol. 9, no. 4, pp. 1723-1737, Oct. 2021.

E. Deelman, K. Vahi, M. Rynge, R. Mayani, R. F. da Silva, G.
Papadimitriou, and M. Livny, “The evolution of the pegasus workflow
management software,” Comput. Sci. Eng., vol. 21, no. 4, pp. 22-36,
Jul. 2019.

V. Jalili, E. Afgan, Q. Gu, D. Clements, D. Blankenberg, J. Goecks,
J. Taylor, and A. Nekrutenko, “The galaxy platform for accessible, repro-
ducible and collaborative biomedical analyses: 2020 update,” Nucleic
Acids Res., vol. 48, no. W1, pp. W395-W402, Jul. 2020.

1. Altintas, C. Berkley, E. Jaeger, M. Jones, B. Ludascher, and S. Mock,
“Kepler: An extensible system for design and execution of scientific work-
flows,” in Proc. 16th Int. Conf. Sci. Stat. Database Manage., Jun. 2004,
pp. 423-424.

S. P. Huber, “AiiDA 1.0, a scalable computational infrastructure for auto-
mated reproducible workflows and data provenance,” Sci. Data, vol. 7,
no. 1, pp. 1-18, Sep. 2020.

E. N. Schettino. (Jun. 2021). Pydoit/Doit: Task Management & Automation
Tool (Python). Accessed: Mar. 21, 2023, doi: 10.5281/zenod0.4892136.
[Online]. Available: https://zenodo.org/record/4892136#.ZFEDGh9ByMS8
S. Lampa, M. Dahld, J. Alvarsson, and O. Spjuth, “SciPipe: A workflow
library for agile development of complex and dynamic bioinformatics
pipelines,” GigaScience, vol. 8, no. 5, May 2019, Art. no. giz044.

M. Wilde, M. Hategan, J. M. Wozniak, B. Clifford, D. S. Katz, and I. Foster,
“Swift: A language for distributed parallel scripting,” Parallel Comput.,
vol. 37, no. 9, pp. 633-652, Sep. 2011.

Accessed:

[Online]. Available:

VOLUME 11, 2023

(25]

[26]
(27]

(28]

(29]

[30]

(31]

(32]

(33]

(34]

(36]
(37]

(38]

(391

[40]

(41]

[42]
(43]
[44]

[45]

[46]
(47]

(48]

J. Tronge, P. Grubel, T. Randles, Q. Wofford, R. Davis, S. Anaya, and
Q. Guan, “BEE orchestrator: Running complex scientific workflows on
multiple systems,” in Proc. IEEE 28th Int. Conf. High Perform. Comput.,
Data, Anal. (HiPC), Dec. 2021, pp. 376-381.

Arvados Unified Data and Workflow Management.
Mar. 21, 2023. [Online]. Available: https://arvados.org/

J. Vivian, “Toil enables reproducible, open source, big biomedical data
analyses,” Nature Biotechnol., vol. 35, no. 4, pp. 314-316, Apr. 2017.

M. Kotliar, A. V. Kartashov, and A. Barski, “CWL-airflow: A lightweight
pipeline manager supporting common workflow language,” GigaScience,
vol. 8, no. 7, Jul. 2019, Art. no. giz084.
Calrissian. Accessed: Mar. 21,
https://github.com/Duke-GCB/calrissian
Cromwell. Accessed: Mar. 21, 2023. [Online]. Available: https://cromwell.
readthedocs.io/en/stable/

Y. Gil, V. Ratnakar, J. Kim, P. Gonzalez-Calero, P. Groth, J. Moody,
and E. Deelman, “Wings: Intelligent workflow-based design of com-
putational experiments,” IEEE Intell. Syst., vol. 26, no. 1, pp. 62-72,
Jan. 2011.

Y. Gil, “Mapping semantic workflows to alternative workflow execution
engines,” in Proc. IEEE 7th Int. Conf. Semantic Comput., Sep. 2013,
pp. 377-382.

A. E. Ahmed, J. M. Allen, T. Bhat, P. Burra, C. E. Fliege, S. N. Hart,
J. R. Heldenbrand, M. E. Hudson, D. D. Istanto, M. T. Kalmbach,
G. D. Kapraun, K. I. Kendig, M. C. Kendzior, E. W. Klee, N. Mattson,
C. A.Ross, S. M. Sharif, R. Venkatakrishnan, F. M. Fadlelmola, and
L. S. Mainzer, “Design considerations for workflow management systems
use in production genomics research and the clinic,” Sci. Rep., vol. 11,
no. 1, pp. 1-18, Nov. 2021.

1. Colonnelli, B. Cantalupo, R. Esposito, M. Pennisi, C. Spampinato, and
M. Aldinucci, “HPC application cloudification: The streamflow toolkit,”
in Proc. 12th Workshop Parallel Program. Run-Time Manage. Techn.
Many-Core Archit. 10th Workshop Design Tools Archit. Multicore Embed-
ded Comput. Platforms (PARMA-DITAM), 2021, pp. 65-78.

GEANT Cloud Flow (GCF) Platform. Accessed: Mar. 21, 2021. [Online].
Available: https://clouds.geant.org/community-cloud/

CWL Workflow Execution Service. Accessed: Mar. 21, 2021. [Online].
Available: https://github.com/elixir-cloud-aai/cwl-WES

D. Talia, “Workflow systems for science: Concepts and tools,” Int. Schol-
arly Res. Notices, vol. 2013, Jan. 2013, Art. no. 404525.

M. Hosseinzadeh, M. Y. Ghafour, H. K. Hama, B. Vo, and A. Khosh-
nevis, “Multi-objective task and workflow scheduling approaches in cloud
computing: A comprehensive review,” J. Grid Comput., vol. 18, no. 3,
pp- 327-356, Sep. 2020.

M. A. Rodriguez and R. Buyya, “Budget-driven scheduling of scientific
workflows in IaaS clouds with fine-grained billing periods,” ACM Trans.
Auto. Adapt. Syst., vol. 12, no. 2, pp. 1-22, Jun. 2017.

S. Abrishami, M. Naghibzadeh, and D. H. J. Epema, ‘“Deadline-
constrained workflow scheduling algorithms for infrastructure as a ser-
vice clouds,” Future Gener. Comput. Syst., vol. 29, no. 1, pp. 158-169,
Jan. 2013.

C. Bai, S. Lu, I. Ahmed, D. Che, and A. Mohan, “LPOD: A local path
based optimized scheduling algorithm for deadline-constrained big data
workflows in the cloud,” in Proc. IEEE Int. Congr. Big Data (BigData-
Congress), Jul. 2019, pp. 35-44.

M. Naghibzadeh, “Modeling workflow of tasks and task interaction graphs
to schedule on the cloud,” in Proc. CLOUD Comput., Mar. 2016, p. 81.
GA4GH CWL Task Execution. Accessed: Mar. 21, 2023. [Online]. Avail-
able: https://github.com/ohsu-comp-bio/cwl-tes

D. Bernstein, “Containers and cloud: From LXC to Docker to kubernetes,”
IEEE Cloud Comput., vol. 1, no. 3, pp. 81-84, Sep. 2014.

N. Dragoni, S. Giallorenzo, A. L. Lafuente, M. Mazzara, F. Montesi,
R. Mustafin, and L. Safina, “Microservices: Yesterday, today, and tomor-
row,” in Present and Ulterior Software Engineering. Springer, 2017,
pp. 195-216.

Helm. Accessed: Mar. 21, 2023. [Online]. Available: https://helm.sh/

F. Nielsen, Introduction to HPC With MPI for Data Science. Cham,
Switzerland: Springer, 2016.

M. A. S. Netto, R. N. Calheiros, E. R. Rodrigues, R. L. F. Cunha, and
R. Buyya, ““HPC cloud for scientific and business applications: Taxonomy,
vision, and research challenges,” ACM Comput. Surv., vol. 51, no. 1,
pp. 1-29, Jan. 2019.

Accessed:

2023. [Online]. Available:

44105

http://dx.doi.org/10.5281/zenodo.4892136

IEEE Access

A. Detti et al.: CWL-PLAS: Task Workflows Assisted by Data Science Cloud Platforms

[49]

[50]
[51]
[52]

[53]

[54]

[55]

[56]

[57]

[58]

A. M. Beltre, P. Saha, M. Govindaraju, A. Younge, and R. E. Grant,
“Enabling HPC workloads on cloud infrastructure using Kubernetes con-
tainer orchestration mechanisms,” in Proc. IEEE/ACM Int. Workshop Con-
tainers New Orchestration Paradigms Isolated Environ. HPC (CANOPIE-
HPC), Nov. 2019, pp. 11-20.

Docker Compose. Accessed: Mar. 21, 2023. [Online]. Available:
https://docs.docker.com/compose/

TESK. Accessed: Mar. 21, 2023. [Online]. Available:
https://github.com/elixir-cloud-aai/TESK

Task Execution Service (TES) API. Accessed: Mar. 21, 2023. [Online].
Auvailable: https://github.com/ga4gh/task-execution-schemas

L. Deng, “The MNIST database of handwritten digit images for machine
learning research [best of the web],” IEEE Signal Process. Mag., vol. 29,
no. 6, pp. 141-142, Nov. 2012, doi: 10.1109/MSP.2012.2211477.

M. D’Orazio, F. Corsi, A. Mencattini, D. Di Giuseppe, M. Colomba
Comes, P. Casti, J. Filippi, C. D. Natale, L. Ghibelli, and E. Martinelli,
“Deciphering cancer cell behavior from motility and shape features: Peer
prediction and dynamic selection to support cancer diagnosis and therapy,”
Frontiers Oncol., vol. 10, Oct. 2020, Art. no. 580698.

A. Mencattini, A. Spalloni, P. Casti, M. C. Comes, D. Di Giuseppe,
G. Antonelli, M. D’Orazio, J. Filippi, F. Corsi, H. Isambert, C. Di Natale,
P. Longone, and E. Martinelli, “NeuriTES. Monitoring neurite changes
through transfer entropy and semantic segmentation in bright-field time-
lapse microscopy,” Patterns, vol. 2, no. 6, Jun. 2021, Art. no. 100261.

C. Edlund, T. R. Jackson, N. Khalid, N. Bevan, T. Dale, A. Dengel,
S. Ahmed, J. Trygg, and R. Sjogren, “LIVECell—A large-scale dataset
for label-free live cell segmentation,” Nature Methods, vol. 18, no. 9,
pp. 1038-1045, Sep. 2021.

G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely
connected convolutional networks,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jul. 2017, pp. 4700-4708.

R. Ma, J. Miao, L. Niu, and P. Zhang, “Transformed ¢; regulariza-
tion for learning sparse deep neural networks,” Neural Netw., vol. 119,
pp- 286-298, Nov. 2019.

ANDREA DETTI (Member, IEEE) is currently a
Professor of wireless networks and cloud com-
puting with the Department of Electronic Engi-
neering, University of Rome Tor Vergata. He is
the coauthor of more than 80 papers in jour-
nals and conference proceedings and participated
in several EU-funded projects with coordination
and research roles. His current research interests
include computer networks and cloud computing.

by VE LUDOVICO FUNARI received the master’s degree
in ICT and internet engineering, in October 2019.
He is currently pursuing the Ph.D. degree with
the University of Rome Tor Vergata. He has
worked on European projects, such as the EU
H2020 “Fed4IoT” Project, as an Italian National
Inter-University Consortium for Telecommuni-

LUCA PETRUCCI received the master’s degree in
computer science engineering from the University
of Rome Tor Vergata, in April 2019. He is currently
pursuing the Ph.D. degree with the University of
Rome Tor Vergata. From April 2016 to December
2019, he was a Researcher with the Italian National
Inter-University Consortium for Telecommunica-
tions (CNIT), where he developed his bachelor’s
thesis and master’s thesis, respectively, concerning
the EU projects BEBA and 5G-PICTURE.

MICHELE DORAZIO is currently a Postdoc-
toral Researcher with the Department of Elec-
tronic Engineering, University of Rome Tor Ver-
gata. He has coauthored more than 14 publications
in international journals and conference proceed-
ings. His main research interests include machine
learning and deep learning algorithms applied to
biomedical applications, with a specific focus on
lab-on-chip data analysis.

ARIANNA MENCATTINI is currently an Asso-
ciate Professor with the Department of Electronic
Engineering, University of Rome Tor Vergata. She
has coauthored more than 120 papers in interna-
tional journals and conferences. Her main research
interests include the metrological aspects of image
and video processing techniques for the develop-
ment of computed-assisted systems.

EUGENIO MARTINELLI is currently a Full Pro-
fessor with the Department of Electronic Engi-
neering, University of Rome Tor Vergata, where
he is the Head of the Bioinspired Electronic Engi-
neering Group and the Co-Director of the Inter-
disciplinary Center of Organ-on-Chip and Lab-on-
Chip applications (IC-LOC). He was responsible
(PI) for several national and international research
projects for the development of sensorial systems
and data analysis for space, food, and biomedical

. cations (CNIT) Researcher, and on the MIUR applications. He has authored more than 240 publications in international

Research Project “Liquid_Edge”” with the Univer- journals and congresses (with more than 5000 citations and H-index equal to
sity of Rome Tor Vergata. His research interests 40) and holds six patents.

include the IoT and cloud and edge computing.

Open Access funding provided by ‘Universita degli Studi di Roma "Tor Vergata"” within the CRUI CARE Agreement

44106 VOLUME 11, 2023

http://dx.doi.org/10.1109/MSP.2012.2211477

