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ABSTRACT Recently, a radical isogeny was proposed to boost commutative supersingular isogeny
Diffie–Hellman (CSIDH) implementation. Radical isogenies reduce the generation of a kernel of a small
prime order when implementing CSIDH. However, when the size of the base field increases, field exponenti-
ation, a core component of computing radical isogenies, becomesmore computationally intensive. As the size
of the field inevitably grows to resist a quantum attack, so it is necessary to discuss the practical utilization
of the radical CSIDH. This paper presents an optimized implementation of radical isogenies and analyzes
its ideal use in CSIDH-based cryptography with a review of quantum analysis. We tailored the formula for
transforming Montgomery curves into the Tate normal form and further optimized the radical 2-isogeny
formula and projective versions of the radical 5- and 7-isogenies. Except for CSIDH-512, using only the
radical 2-isogeny for all parameters improves performance by 6% to 10%.

INDEX TERMS CSIDH, isogeny, post-quantum cryptography, radical isogeny.

I. INTRODUCTION
Isogeny-based cryptography was first proposed by Cou-
veignes in [15]. Couveignes presented a non-interactive key
exchange using ordinary elliptic curves defined over Fq,
whose endomorphism ring is equivalent to a given order O
in an imaginary quadratic field. A Diffie–Hellman-like key
exchange protocol can be constructed from the commutativity
of Cl(O). This work was later rediscovered independently by
Rostovtsev and Stolbunov [13], which is now called the CRS
scheme. However, the quantum-subexponential attack exists
for the scheme [14], and the scheme is inefficient for practical
use.

The isogeny-based cryptography regained attention after
the introduction of supersingular isogeny Diffie–Hellman
(SIDH) by Jao and De Feo [12]. As SIDH uses supersingular
elliptic curves, the endomorphism ring is non-commutative,
so it resists the attack proposed in [14]. The security of
SIDH is based on the difficulty of finding an isogeny
between two given isogenous elliptic curves over a finite
field, known to be quantum-exponential. The supersingular
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isogeny key encapsulation (SIKE), a key encapsulationmech-
anism based on SIDH, was selected as an alternative candi-
date for NIST PQC standardization round three. However,
due to a polynomial-time key recovery attack by Castryck and
Decru, SIDH-based cryptosystems are no longer safe [11].
Although various masking methods are presented in [8], [10],
and [9], masked variants of SIDH are not yet attractive in
terms of performance and key size. Thus, commutative SIDH
(CSIDH), described later, could be a more attractive choice.

The CRS scheme was revisited by De Feo, Kieffer, and
Smith in [17] and independently by Castryck et al. in [16].
The advantage of the CRS scheme is that it offers efficient
and safe public key validation, making it suitable for con-
structing a noninteractive key exchange [17]. In [17], they
modernized the CRS construction by offering a more effi-
cient method to compute the group action and select algo-
rithm parameters. The CRS scheme was further improved by
Castryck et al. in [16] by proposing CSIDH, which solves
the parameter selection problem of the CRS schemes using
supersingular elliptic curves defined over Fp. As SIDH-based
cryptosystems become inefficient, CSIDH has attracted more
researcher interest because various cryptographic primitives
can be constructed [24], [25]. The average performance of
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one group action of CSIDH is around tens of milliseconds,
which is faster than other CRS-based protocols.

The advantage of CSIDH-based cryptography is that its
key size is smaller than that of any other PQC primi-
tives. However, unlike other PQC primitives, which use
simple matrix-vector multiplication as building blocks,
isogeny-based cryptography uses complicated elliptic curve
arithmetic over a finite field larger than 500 bits. The dis-
advantage of isogeny-based cryptography is that it is much
slower than other PQC primitives. Hence, numerous stud-
ies have been proposed to optimize the performance of
isogeny-based cryptography. One line of work is to opti-
mize isogeny computation, which can be performed using
another form of elliptic curve or by optimizing the isogeny
formula. In [27], [28], and [26], hybrid methods employing
the birational equivalence between Montgomery and twisted
Edwards curves have been proposed for faster implemen-
tation. To optimize isogeny computation, Bernstein et al.
recently proposed a new method of computing an ℓ-isogeny,
reducing the computational cost from Õ(ℓ) to Õ(

√
ℓ) field

operations [23]. Another line of work is to tweak the current
schemes for faster implementation. In [29], Costello proposed
a new type of SIDH called B-SIDH. In this scheme, Alice
computes isogenies from a (p + 1)-torsion supersingular
curve subgroup, while Bob computes on the (p − 1)-torsion
subgroup of the quadratic twist of the curve. In addition, B-
SIDH can be viewed as a tweak to SIDH, allowing faster
computation on Alice’s side with a more reduction-friendly
prime field.

For CSIDH, CSURF was proposed in [22], exploiting the
horizontal 2-isogenies using the supersingular elliptic curves
defined on the surface. Further, CSURF uses supersingular
elliptic curves with the endomorphism ring Z[(1+

√
−p)/2]

for p ≡ 7 mod 8. They demonstrated that these ellip-
tic curves could be identified with tweaked Montgomery
curves (Montgomery− curves), which have elliptic curve
arithmetic and isogeny formulae similar to Montgomery
curves (Montgomery+ curves). Over this prime field, the
prime number 2 splits in Q(

√
−p), allowing for the use of

horizontal 2-isogenies. As a 2-isogeny merely consists of
a single exponentiation over Fp, adjusting the private key
exponent can lead to better performance, and the desired
security level can be tailored more precisely. The CSURF
method is slower than CSIDH, as the elliptic curve arithmetic
and isogeny formula using projective coordinates are slower
on Montgomery− curves than on Montgomery+ curves.

However, the idea of exploiting the 2-isogeny has extended
to the introduction of the radical isogeny in [21]. The
CSIDH-based algorithms require isogeny computations of
various degrees, and for this operation, a point on an ellip-
tic curve of a specific order must be created to generate a
kernel of an isogeny. A random point Q is selected in Fp
to generate a kernel of a given order, which costs approx-
imately 1.5 log p field multiplications, and is multiplied by
some cofactor k , which costs approximately 11 log p field

multiplications in CSIDH-based settings. If P = [k]Q equals
the identity, another random point is selected to repeat the
process. Hence, generating a kernel is a painstaking process,
especially for small torsion points where the failure probabil-
ity is 1/ℓ [18], [21].
Hence, in [21], a novel approach called radical isogeny

is introduced that computes chains of n-isogenies. This
approach requires sampling at most one n-torsion point. Sim-
ilar to CSURF, the maximum value of the private key expo-
nent corresponding to primes using radical isogeny can be
enlarged, and the maximum value of the private key exponent
corresponding to primes not using radical isogeny can be
reduced to minimize the number of kernel point generations.

A. OUR CONTRIBUTIONS
This work analyzes the optimal usage of radical isogenies
for implementing CSIDH. The following list details the main
contributions of this work.

• In this paper, we optimize the radical isogeny formulae
in affine and projective versions proposed in earlier
studies [21], [30]. We can implement it more efficiently
in C by rationalizing the denominator and tailoring the
conversion between various curves. In addition, we ana-
lyze the radical 3- and 4-isogeny formula in [7] from
an implementation perspective. Through these studies,
we present the optimized C implementation results of
CSIDH with the N -isogeny (N ∈ {2, 3, 5, 7}).

• We review the quantum complexity of CSIDH and
derive CSIDH parameters that satisfy NIST security
Level 1 according to the power of the quantum adver-
sary. For the first time, we provide the C implementa-
tion result of CSIDH with the sliding window method,
improving the cost of field exponentiation, a core com-
ponent of computing radical isogenies. Through several
experiments, we conclude that using only the radical
2-isogeny is better with a larger prime field. Except
for CSIDH-512, using only the radical 2-isogeny for
all parameters improves performance by 6% to 10%.
The results of the implementation are presented in
Section IV.

B. ORGANIZATION
This paper is organized as follows. Section II introduces the
required background. Next, Section III briefly details the rad-
ical isogeny and presents the optimization results for degrees
of 2, 3, 4, 5, and 7 for implementation. The implementation
results are presented in Section IV, and we draw conclusions
in Section V.

II. PRELIMINARY
This section introduces two types of Montgomery elliptic
curves. Then, CSIDH and the idea of radical isogeny are
presented.
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A. MONTGOMERY CURVE AND TWEAKED MONTGOMERY
CURVE
We let K be a field with characteristics not equal to 2 or 3.
The Montgomery curves over K are defined by the following
equation:

Ma,b : by2 = x3 + ax2 + x,

where b(a2− 4) ̸= 0. Throughout the paper, an elliptic curve
in the above form is called the Montgomery+ curve. When
b = 1, we express it asMa. The tweaked Montgomery curves
over K are denoted by

M t
a,b : by

2
= x3 + ax2 − x,

where b(a2+ 4) ̸= 0. Throughout the paper, an elliptic curve
in the above form is called the Montgomery− curve. When
b = 1, we express it asM−a .

It is well known that point arithmetic on Ma can be effi-
ciently performed using only the x-coordinates. We let P =
(xp, yp) and Q = (xq, yq) be points on Ma such that xp ̸= xq,
and P − Q = (xp−q, yp−q). Then, the x coordinates of their
sumP+Q, denoted as xp+q, and the doubling of [2]P, denoted
as x[2]P, can be computed as follows:

xp+q = (xpxq − 1)2/(xp−q(xp − xq)2)

x[2]P = (x2p − 1)2/(4xp(x2p + axp + 1)).

We can induce a similar formula for a Montgomery− curve,
M−a [22]. We let P = (xp, yp) and Q = (xq, yq) be points
on M−a such that xp ̸= xq, and P − Q = (xp−q, yp−q. Then,
the x coordinates of their sum P + Q, denoted as xp+q, and
the doubling of [2]P, denoted as x[2]P, can be computed as
follows:

xp+q = (xpxq + 1)2/(xp−q(xp − xq)2)

x[2]P = (x2p + 1)2/(4xp(x2p + axp − 1)).

As defined in the above equations, the elliptic curve arith-
metic formula onM−a is similar to the case ofMa, except for
some sign flips in the numerator. However, these sign flips
cause changes in the computational costs when using projec-
tive coordinates and projective curve coefficients for imple-
mentation. In addition, as the isogeny formula is induced
using the differential addition formula, the elliptic curve arith-
metic and isogeny onM−a are slower than onMa.

B. CSIDH PROTOCOL AND SECURITY
1) CSIDH PROTOCOL
The CSIDH is an isogeny-based Diffie–Hellman-like key
exchange protocol proposed by Castryck et al. [16] and uses
commutative group action on supersingular elliptic curves
defined over a finite field Fp. We let O be an imaginary
quadratic order and Eℓℓp(O) denote the set of elliptic curves
defined over Fp with the endomorphism ring O.
It is well known that the class group Cl(O) acts freely and

transitively on Eℓℓp(O). This group action is represented by
[a]E , where E ∈ Eℓℓp(O) and an ideal class [a] ∈ Cl(O).

We let p = f ·
∏n

i=1 ℓi − 1, where ℓi values are small,
distinct odd primes. We let E be a supersingular elliptic curve
over Fp such that Endp(E) = Z[π], where Endp(E) is the
endomorphism ring of E over Fp and π =

√
−p. Note that

Endp(E) is a commutative subring of the quaternion maximal
order End(E). Then, the trace of Frobenius is zero; hence,
#E(Fp) = p+ 1.
As π2

− 1 = 0 mod ℓi, the ideal ℓiO splits as ℓiO = li l̄i,
where li = (ℓi, π − 1) and l̄i = (ℓi, π + 1). The group action
[li]E (resp. [l̄i]E) is computed via the isogeny φli (resp. φl̄i

)
over Fp (resp. Fp2 ) using Vélu’s formulas.
Suppose Alice and Bob want to exchange a secret key.

Alice chooses a vector (e1, · · · , en) ∈ Zn, where ei ∈
[−m,m] for a positive integer m. The vector represents an
isogeny associated with the group action by the ideal class
[a] = [le11 · · · l

en
n ]. Alice computes the public key EA := [a]E

and sends it to Bob. Bob repeats a similar operation with his
secret ideal b and sends the public key EB := [b]E to Alice.
Upon receiving their opponents’ public key, Alice computes
[a]EB, and Bob computes [b]EA. Due to commutativity, [a]EB
and [b]EA are isomorphic to each other, allowing them to
derive a shared secret value from the elliptic curves.

2) QUANTUM SECURITY OF CSIDH
In [5], the quantum security of CSIDH was thoroughly inves-
tigated. They revealed that the quantum security of CSIDH
depends on the size of the prime field, not on the size of the
private key exponent. Hence, to achieve a 128-bit quantum
security level, the authors recommended using a prime field
of at least 4096 bits. In [5], a 4096-bit prime is presented using
417 small primes. Using all 417 primes for a group action
degrades the performance and exceeds the target classical
security level.

The meet-in-the-middle type of attack is the best-known
classical attack; thus, based on the complexity of this attack,
the number of primes to be used varies according to the
maximum value of the private key exponent. For example,
for a constant-time CSIDH using the method in [19], if the
maximum value of the private key exponent is 5, then we
can use the 64 smallest primes. If the maximum value of the
private key exponent is 1, then we can use the 139 smallest
primes. The group action of CSIDH-4096 using the method
in [19] takes approximately 23 gigacycles. For details on the
quantum analysis, please refer to [5].

C. RADICAL ISOGENIES
Castryck et al. proposed an efficient method to compute
small-degree isogenies in [21]. Computing an ℓ-isogeny from
an elliptic curve E(Fp) consists of two steps in CSIDH. First,
a point P over Fp of order ℓ is generated. Second, an isoge-
nous curve E(Fp)/⟨P⟩ is generated.
To generate a kernel of a given order, a random point Q is

selected in Fp, which costs approximately 1.5 log p field mul-
tiplications, and is multiplied by the cofactor k = #E(Fp)/ℓ,
which costs approximately 11 log p field multiplications.
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If P = [k]Q equals the identity, another random point is
selected to repeat the process. Hence, generating a kernel is a
painstaking process, especially for small torsion points where
the failure probability is 1/ℓ [18], [21].

Thus, when computing ℓi-isogenies for 1 ≤ i ≤ n,
it is more efficient to sample a

∏n
i=1 ℓi-torsion point and

push it through the isogeny to create a chain of isogenies of
degrees ℓ1, . . . , ℓn than to generate ℓi-torsion points for each
ℓi-isogeny. Nevertheless, the probability of failure is higher
when creating a small torsion point; therefore, more random
points are selected than are needed.

In [21], they proposed an innovative approach to construct
a formula to compute chains of n-isogenies for small n. For
an elliptic curve E , we let φ : E → E ′ be an n-isogeny,
where ker(φ) = ⟨P⟩ for a n-torsion point P on E . The aim is
to express the n-torsion point P′ on E ′ in terms of the coeffi-
cients of E and the coordinates of P. Then, by composing an
isogeny E ′→ E ′/⟨P⟩with φ, we obtain an isogeny of degree
n2. More explicitly, they applied the fact that an elliptic curve
E over a field K with a K -rational point P of order n ≥ 4 can
be represented by the Tate normal form:

E : y2 + (1− c)xy− by = x3 − bx2, P = (0, 0),

for b, c ∈ K . Then, using Vélu’s formula, we can compute the
isogenous curveE ′ = E/⟨P⟩. The n-torsion pointP′ onE ′ can
be expressed in terms of the coefficients of E and coordinates
of P through the corresponding dual isogeny E ′ → E . Then,
the composition E → E ′ → E ′/⟨P′⟩ is an isogeny of order
n2. This method allows for computing chains of n-isogenies
of arbitrary length and requires only one n-torsion point for
the first step.

In the next section, we specifically state the formula for
radical isogeny of degrees 2, 3, 4, 5, and 7, which we use
to implement CRADSn. For general formula details, please
refer to [21].

III. INTEGRATION AND OPTIMIZATION OF RADICAL
ISOGENIES
This section presents the optimization techniques for imple-
menting radical isogenies. To exploit radical isogenies for
applications in CSIDH-based algorithms, we chose radical
isogenies of degrees 2, 3, 4, 5, and 7 for the following
reasons. Other than radical 2- or 4-isogenies, to compute an
ne-isogeny, we must have one n-torsion point to start the
process. Hence, using m different degrees of radical isogeny
requires processing m torsion point generations over a finite
field, which is costly. Although this can be minimized using
the Elligator method in [20], the advantage of the radical
isogeny is that it can minimize the number of randomly
generated points with a certain order. However, the radical
isogeny formula itself is costly because it requires n-th root
computation (exponentiation in this setting). Additionally,
as the radical isogeny formula becomes more complicated as
the degree increases, we infer that 7 is the upper bound for
CSIDH and implementation in C.

In [30], it was noted that using projective curve coefficients
for computing radical isogenies is more efficient because it
can reduce inversions during the computation of a chain of
isogenies. As this applies to radical isogeny of degrees 4, 5,
and 7, we apply the optimized version of the following for-
mulas. Moreover, we tailor the transformation between forms
of elliptic curves for further optimization. In [7], Onuki and
Moriya proposed new representations of the radical isogeny
with degrees 3 and 4. Including these formulae, we analyze
the radical isogeny formulae comprehensively from the per-
spective of implementation.

The notation M and E refer to field multiplication and
exponentiation, respectively, and we assume 1M ≈ 1S.
We consider the field inversion and n-th root computation
to be field exponentiation.
Remark 1: Recently, further optimization of the radical

isogeny formulae was proposed by Castryck et al. [6].
According to the paper, computing the radical N-isogeny was
optimized or newly proposed for N ∈ {2, 3, . . . , 17} ∪ {19}.
However, we do not discuss the formulae of [6] because they
have not resulted in noticeable improvement, at least in this
paper.

A. RADICAL 2e-ISOGENY
1) RADICAL 2E -ISOGENY USING THE MONTGOMERY−

CURVE
For the radical 2-isogeny, we briefly define the formula for
supersingular elliptic curves E defined over a finite field
Fp with p ≡ 7 mod 8, which is the main field used in
CSIDH-based algorithms. Over this prime field, curves (E)
can be divided into two groups: those located on the floorwith
the endomorphism ring Z[

√
−p] and a unique Fp-rational

point of order two or those located on the surface with the
endomorphism ring Z[(1+

√
−p)/2] and three distinguished

Fp-rational points of order two. These three points of order
two are categorized as follows:

• P−: whose halves have x-coordinates not defined over
Fp;

• P+1 : whose halves are not defined over Fp, but their x-
coordinates are; and

• P+2 : whose halves are defined over Fp.
As denoted in Lemma 9 in [21], using points P+1 or P+2 allows
us to compute the chain of 2-isogenies. Additionally, as stated
in Proposition 4 of [22], supersingular elliptic curves with the
endomorphism ringZ[(1+

√
−p)/2] areFp-isomorphic to the

curveM−a .
Hence, we optimized the 2e-isogeny formula in [22].

In [22], an algorithm that computes a chain of 2-
isogenies is presented by composing the 2-isogeny formula
on Montgomery+ curves and transformations between a
Montgomery− curve and Montgomery+ curve. Step 4 in
Algorithm 1 can be rewritten as follows:

a← 2(a
√
a2 + 4− (a2 + 3))
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Algorithm 1 Computing 2e-Isogeny on M−a Over Fp, With
p ≡ 7 mod 8 [22]

1: if e = 0 then
2: return a
3: else
4: a← sign(e) · a

5: a← 2 a−3
√
a2+4

a+
√
a2+4

6: For i from 2 to e do
7: a← 2(3+ a(

√
a2 − 4− a))

8: a← a+3
√
a2−4√

2
√
a2−4(a+

√
a2−4)

9: return sign(e) · a
10: end if

Compared to the direct implementation of Step 4, the above
equation saves one inversion. The cost for computing 2e-
isogeny is 5M+3E+ (e − 1)·(2M+1E), where E refers to
a field exponentiation. Over a finite field Fp, where p ≡ 3
mod 4, for a ∈ Fp, the square root of a is computed as
a(p+1)/4, the inverse of a is computed as a(p−2), and the square
root inverse is computed as a(p+1)(p−2)/4 mod p−1. As expo-
nentiation dominates the performance of the 2-isogeny,
we used the sliding window method.

2) RADICAL 2E -ISOGENY USING THE TATE NORMAL FORM
When computing the 2e-isogeny, it is sometimes better to
work with a chain of 4-isogenies and compute the 4e/2-
isogeny. This approach is applied to implement SIDH-based
algorithms, and we describe the corresponding process as
stated in [21]. To use a chain of 4-isogenies, we transformed
the Montgomery− curve into the Tate normal form:

Eb : y2 + xy− by = x3 − bx2,

where P = (0, 0) is a 4-torsion point on Eb and b ∈ Fp.
We let r be the x-coordinate of the 4-torsion point on the
Montgomery− curve. Then, r is expressed as follows:

r = 1/2 ·
(√

2(a2 + 4− a
√
a2 + 4)+

√
a2 + 4− a

)
.

In addition, b, expressed in terms of r , is

b =
(γ 2(3γ 2

+ 8aγ − 24)− 16)3

(γ (4γ 2 + 8aγ − 16))4
,

where γ = 2r . Applying Vélu’s formula results in

E ′ : y2 + xy− by = x3 − bx2 + (−5b2 + 5b)x

+ (−3b3 − 12b2 + b),

where E ′ = E/⟨P⟩. To compute consecutive 4-isogenies,
we transformed a 4-torsion point P′ on E ′ to (0, 0). Then, E ′

is isomorphic to the following elliptic curve:

E ′ : y2 + xy− b′y = x3 − b′x2,

where b′ = −α(4α2
+ 1)/(2α + 1)4 for α = 4

√
−b. If p ≡

7 mod 16, then α = −bµ. If p ≡ 15 mod 16, then α =

bµ, where 4µ ≡ 1 mod (p− 1)/2. After computing a chain
of 4-isogenies, we transformed E ′ back to the corresponding
Montgomery− curve,

a =
3
√
−16b′ + 1+ 8b′ − 1√

−2(
√
−16b′ + 1+ 8b′ − 1)

√
−16b′ + 1

.

The computational cost for transforming a Montgomery−

curve to a Tate normal form (i.e., computing b) is 9M+3E.
The cost for computing one 4-isogeny in affine curve coef-
ficients is 3M+2E. Using projective curve coefficients for
computing radical isogenies is more efficient [30], as it can
reduce inversions during the computation of a chain of isoge-
nies. We let α = A/C for A,C ∈ Fp. Then, −b′ = X/Z4

∈

Fp, where

X = (4A2 + C2)AC

Z = (2A+ C).

Now, in the next round of computing the 4-isogeny, we must
calculate 4

√
−b′ = 4

√
X/

4√Z4. In projective coordinates, this
is equivalent to ( 4

√
X : 4√Z4) = ( 4

√
X : Z ). However,

gcd(4, p−1) = 2 for the chosen prime field; thus, 4√Z4 is not
unique. Hence, applying the fact that (X : Z4) = (XZ4

: Z8),
computing the fourth root results in ( 4√XZ4 : Z2). Hence,
if we map it to (XZ4

: Z ), then 4
√
−b′ can be computed as

( 4√XZ4 : Z2), which saves one inversion.

3) RADICAL 2E -ISOGENY USING THE MONTGOMERY+

CURVE
Onuki and Moriya proposed an optimized representation of
the radical 4-isogeny in [7]. If Ma is a Montgomery curve
with coefficient a ∈ Fp, and β is a fourth root of 4(a + 2),
then the 4-isogenyMa→ Ma′ can be computed by

a′ =
(β + 2)2

4β(β2 + 4)
− 2.

To compute the 4-isogeny chain, we calculated the interme-
diate value corresponding to 4(a′+ 2) and computed a′ at the
end of the radical 4e/2-isogeny. Thus, the cost of computing
the radical 4-isogeny once is 3M+2E. The computational
cost of transforming the modified Montgomery coefficient
of the form 4(a + 2) into the Montgomery coefficient is
only 1M + 1A through precomputed constants. If e is an odd
number, the last 2-isogeny must be computed at the end of the
4-isogeny chains. This 2-isogenyMa′ → Ma′′ is as follows:

4(a′′ + 2) =
(β + 4)2

β
,

where β is a square root of 4(a′ + 2). This 2-isogeny can
be computed by 1M + 2E . There is an advantage of not
transforming the curve form; therefore, we apply this method
in the implementation.
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TABLE 1. Computational cost of 2e-isogeny. Others include transforming
curves, etc.

B. RADICAL 3-ISOGENY
1) RADICAL 3-ISOGENY USING THE WEIERSTRASS CURVE
For a given 3-torsion point Q on Ma, we can transform Ma
into an isomorphic curve of the form:

E : y2 + a1xy+ a3y = x3,

for some a1, a3 ∈ Fp, where Q on Ma is mapped to a point
P = (0, 0) on E . We let r be the x-coordinate of Q. Then,
a1 and a3, expressed in terms of r , are as follows:

a1 =
2ar + 3r2 + 1√
r(r2 + ar + 1)

a3 = 2
√
r(r2 + ar + 1).

Applying Vélu’s formula to E by letting ⟨P⟩ be the kernel
results in the 3-isogenous curve E ′ = E/⟨P⟩. A translation
that maps the 3-torsion point Q′ on E ′ to (0, 0) is required to
construct a formula for computing the chain of 3-isogenies.
Hence, the final curve, obtained by translating Q′ to (0, 0),
is of the form:

E ′ : y2 + a′1xy+ a
′

3y = x3,

where a′1 = −6α + a1 and a′3 = 3a1α2
− a21α + 9a3,

for α = 3
√
−a3. After computing the chain of 3-isogenies,

we transform E ′ back into the corresponding Montgomery
curve. The formula for transforming a Weierstrass curve to a
Montgomery curve is presented in Magma code in [21]. Like
the Weierstrass coefficient a2 = a4 = a6 = 0 in the case
of a radical 3-isogeny, we specifically optimized for these
circumstances. The computational cost for transforming the
Montgomery curve to a (close) Tate curve (i.e., computing
a1 and a3) is 4M+2E. The cost for computing one 3-isogeny
is 2M+1E, and the cost for transforming a Weierstrass curve
back into the Montgomery form is 16M+4E.

2) RADICAL 3-ISOGENY USING THE MONTGOMERY CURVE
Onuki and Moriya proposed an optimized representation of
the radical 3-isogeny in [7]. We let Ma be a Montgomery
curve with coefficient a ∈ Fp and let α be a cube root of
t(t2− 1), where t is the x-coordinate of the 3-torsion point of
Ma. Then, the 3-isogeny Ma → Ma′ and t ′, the x-coordinate
of the 3-torsion point ofMa′ , can be computed by

t ′ = 3tα2
+ (3t2 − 1)α + 3t3 − 2t,

a′ =
−3(t ′)4 − 6(t ′)2 + 1

4(t ′)3
.

TABLE 2. Computational cost of 3-isogeny. Others include transforming
curves, etc.

The computational cost of a 3-torsion point on the image
curve is 4M+1E, slightly more expensive than the Weier-
strass version. However, recovering the Montgomery coeffi-
cient is much cheaper at 4M+1E. Thus, for the Weierstrass
version to be better than this method, the radical 3-isogeny
must be performed at least 2.5 k + 8 times, with k ≈
1.5 log2 p. Therefore, we implement this radical 3-isogeny.

C. RADICAL 5-ISOGENY
The computation of the radical 5-isogeny follows a process
similar to that of the radical 3-isogeny. For a given 5-torsion
point Q onMa, we transformedMa into an isomorphic curve
of the following form:

E : y2 + (1− b)xy− by = x3 − bx2,

where Q on Ma is mapped to a point P = (0, 0) on E . If r is
the x-coordinate of Q, b is computed as follows:

b = −
(4ar3 + 3r4 + 6r2 − 1)3

(4r(r2 + ar + 1))4
.

Applying Vélu’s formula to E by letting ⟨P⟩ be the ker-
nel results in a 5-isogenous curve E ′ = E/⟨P⟩. Again,
to construct a formula for computing a chain of 5-isogenies,
a translation that maps the 5-torsion pointQ′ on E ′ to (0, 0) is
necessary. Hence, the final curve, obtained by translating Q′

to (0, 0), is of the following form:

E ′ : y2 + (1− b′)xy− b′y = x3 − b′x2,

where

b′ = α
α4
+ 3α3

+ 4α2
+ 2α + 1

α4 − 2α3 + 4α2 − 3α + 1
,

for α =
5
√
b. After computing a chain of 5-isogenies,

we transformed E ′ back into a corresponding Montgomery
curve. The computational cost for transforming a Mont-
gomery curve into a Tate curve (i.e., computing b) is 8M+1E.
The cost for computing one 5-isogeny is 5M+2E, and the
cost for transforming aWeierstrass curve back into the Mont-
gomery form is 18M+4E. Similar to the 4-isogeny, using the
projective curve coefficient as in [30] can save one exponen-
tiation. If α = X/Z , for X ,Z ∈ Fp, then b′ can be expressed
as b′ = X ′/Z ′, where

X ′ = X (X4
+ 3X3Z + 4X2Z2

+ 2XZ3
+ Z4)

Z ′ = Z (X4
− 2X3Z + 4X2Z2

− 3XZ3
+ Z4).

Because (X ′ : Z ′) = (X ′ : Z ′5), only one fifth-root computa-
tion is required, which can save an inversion.
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TABLE 3. Comparison of the computational cost of radical isogenies.

TABLE 4. Computational cost of radical isogenies using affine curve
coefficient.

D. RADICAL 7-ISOGENY
For a given 7-torsion point Q on Ma, whose x-coordinate is
r , we transformedMa into an isomorphic curve of the form:

E : y2 + (−N 2
+ N + 1)xy+ (−N 3

+ N 2)y

= x3 + (−N 3
+ N 2)x2,

where

N =
(r2(3r2 + 4ar + 6)− 1)3

(2(r2(r2 + 2ar + 6)+ 2ar + 1))

·
1

(4r2 + 4ar + 4)2(r4 − r2)
.

where N ′ can be expressed in terms of α for α =
7√N 5 − N 4.

As N ′ is too large, we do not explicitly state it in this paper.
After computing the chain of 7-isogenies, we transformed E ′

back into the corresponding Montgomery curve. The compu-
tational cost for transforming aMontgomery curve into a Tate
curve (i.e., computing N ) is 10M+1E. The cost for comput-
ing one 7-isogeny is 10M+2E, and the cost for transforming a
Weierstrass curve back into aMontgomery form is 20M+4E.

Table 4 lists the computational cost of a radical isogeny
of various degrees when the affine curve coefficient is
used. In Table 4, Mont_to_E refers to the transformation
from the Montgomery curve to the Tate normal form for
odd-degree isogenies and refers to the transformation from
the Montgomery+ curves to the Montgomery− curves for
2- and 4-isogenies. The ℓ-isogeny refers to the com-
putation of the one ℓ-isogeny, where ℓ ∈ {2, 3, 4, 5, 7},
and E_to_Mont refers to the transformation from the
Weierstrass or Tate curve to the Montgomery curve for
odd-degree isogenies and refers to the transformation from
the Montgomery− curves to the Montgomery+ curves for
2- and 4-isogenies.

FIGURE 1. Strategy for computing a group action in our implementation.

Table 3 compares the computational cost of radical iso-
genies in [30] and in this work. In Table 3, the 2- and 3-
isogenies refer to the computational cost of a radical isogeny
using the affine curve coefficients. Hence, affine curve coef-
ficients are used to implement 2- and 3-isogenies, whereas
projective curve coefficients are used to implement 4-, 5-, and
7-isogenies.

The computational cost of E_to_Mont combines the
transformation from the projective curve coefficients to the
affine curve coefficients and the transformation between
curves. Last, extra_2_isog refers to the additional com-
putation of the 2-isogeny when the 4-isogeny formula is used
to compute the 2e-isogeny for an odd integer e.
Remark 2: Table 3 excludes the multiplication by a small

constant as a multiplication count in [30] because multipli-
cation by a constant in radical isogenies can be substituted
with addition.

As denoted in Table 4, computing a 4-isogeny once saves
only 1M compared to computing a 2-isogeny twice. More-
over, the transformation from the Montgomery− curve to
a certain form of an elliptic curve is more costly in the
4-isogeny case than in the 2-isogeny case; therefore, using the
radical 4-isogeny in affine coordinates does not reduce com-
putational cost. As denoted in Table 3, computing a 4-isogeny
once saves 1E, which can offset the increased computation
necessary to change the curve compared to a 2-isogeny.

IV. IMPLEMENTATION RESULTS
This section discusses parameter selection for CSIDH against
quantum attacks and presents the implementation results of
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TABLE 5. Performance results of the sliding window method with various sizes (in thousands).

TABLE 6. The DW-cost of solving AES according to MAXDEPTH
(log2 scale).

TABLE 7. The DW-cost of CSIDH (log2 scale).

CSIDH using various radical isogenies. From this section
onward, CSIDH that uses a radical isogeny up to prime degree
n is denoted as CRADSn. We measured the performance of
CRADSn andCSIDHwith various parameters. For CSIDH-k ,
an approximately k-bit primewas used in the implementation.
These primes are in the form p ≡ 7 mod 8 to use the radical
2-isogeny.

To estimate the implementation results, we executed
CSIDH and CRADSn with the maximum exponent private
key. In addition, to implement large odd-degree isogenies
for CSIDH and CRADSn, we used the square root Vélu
formula in [23]. In this paper, the square root Vélu formula
was applied for isogenies of degrees greater than 100. The
strategy for computing a group action in our implementation
is summarized in Fig. 1.
Other optimization methods, such as the action strategy,

were not applied in the results presented in Tables 9 and 11
to understand the pure influence and availability of radical
isogenies. We measured only the group action without val-
idation and averaged over 10 000 rounds. All cycle counts

TABLE 8. Primes of the form: p = 8(
∏n

i=1 ℓi ) · ℓlf − 1, where ℓ1, . . . , ℓn are
the first n odd prime and ℓlf refers to last factor of p + 1. k is the number
of used odd primes and m is derived from [5] for classical security level 1.

were obtained on a one-core Intel(R) Xeon(R) Gold 6230R
CPU at 2.10 GHz, running Ubuntu 22.04 LTS. For the com-
pilation, we used GCC version 11.3.0 with the optimization
level -O3.

A. PARAMETER SELECTION FOR CSIDH
As mentioned in Section II-B2, a quantum-subexponential
attack occurs against CSIDH. Earlier studies are presented
to estimate the quantum complexity of CSIDH [3], [4], [5].
In this paper, we chose parameters with the potential to satisfy
NIST security Level 1.With theDW cost, which is the product
of the quantum circuit depth and width, we estimated the
quantum security of each parameter and compared it with
AES-128. We used the c-sieve estimator provided by [5],
including the CSIDH oracle cost. We refer to the quan-
tum security of AES algorithms according to MAXDEPTH
from [1] and [2].

Table 6 reveals that decreasing the limit of the quan-
tum depth results in an increase in the DW cost of solving
AES because the depth limitation does not guarantee enough
Grover iterations, resulting in higher costs. Ironically, AES-
128 and CSIDH-512/1024 have similar security levels for
a stronger quantum adversary. However, in MAXDEPTH
240 (a more realistic assumption), CSIDH-3072 is similar
to AES-128, indicating that the quantum security level must
be comprehensively reviewed by analyzing the development
status of quantum computers and various factors in real time.
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TABLE 9. Performance results of a group action of CSIDH and CRADSn with naive interval of exponents (clock cycles).

TABLE 10. Modified interval of exponents for CSIDH and CRADSn.

Thus, we considered p512 to p4096 for candidates for quantum
security Level 1 and experimented.

B. PERFORMANCE OF CSIDH AND CRADSn

In this implementation, all primes are of the form p =
8(

∏n
i=1 ℓi) · ℓlf − 1. We set the basic parameters to satisfy

classical security Level 1, as listed in Table 8. In this field,
we chose a supersingular Montgomery+ curve, M+0 : y

2
=

x3+x, as a base curve for CSIDH and aMontgomery− curve,
M−0 : y

2
= x3 − x, as a base curve for CRADSn. Field

exponentiation is the core operation of radical isogeny; thus,
we used the sliding window method for effective exponenti-
ation. The window sizes of this implementation are 5 and 7,
obtained from the results in Table 5.
As a result of Section III, we used the radical 2-/4- and

3-isogenies of Onuki’s method with some adjustments and
used the projective radical 5- and 7-isogenies in this paper.
The performance of the group action and comparison results
of CSIDH and CRADSn are presented in Table 9. The param-
eter settings are based on Table 8, and radical isogenies are
used only for a fixed m.
As indicated in Table 9, even considering that we do not

adjust the interval of radical isogenies, it seems inefficient
to use odd-degree radical isogenies. Moreover, as the size
of the prime field increases, the inefficiency of odd-degree
radical isogenies also increases because odd radical isoge-
nies still require the point sampling process and have vari-
ous operations that require considerable field exponentiation.
We executed further experiments with modified intervals to
determine the optimal exponents.

FIGURE 2. Performance results of a group action of CSIDH and CRADSn (a
logarithmic chart of Table 11).

In Table 10, (e2, e3, e5, e7) in the RAD row indicate that
we ran CSIDH/CRADSn using radical 2e2 -, 3e3−, 5e5−, 7e7 -
isogenies. Further, (m : k) in the ODD row means that each k
odd-degree isogeny is iterated at most m times, respectively.
For example, a group action of CRADS7 with prime p512 is
computed over the following interval:

[−32, 32]2 × [−16, 16]2 × [−4, 4]33 × [−3, 3]33.

As listed in Table 11, CRADS2 using the window method
leads to a 6% to 10% performance improvement in all prime
fields. In p512, where the cost of exponentiation is rela-
tively small, CRADSn (n ∈ {3, 5, 7}) outperforms CRADS2.
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TABLE 11. Performance results of a group action of CSIDH and CRADSn with Table 10 (clock cycles).

However, as the size of the prime field increases, using only
a radical 2-isogeny makes CSIDH more efficient.

V. CONCLUSION
There is a risk that a quantum-subexponential attack can
change CSIDH parameters at any time. Thus, studying vari-
ous optimization techniques is valuable. This paper analyzed
the optimal use of radical isogenies to implement CSIDHover
various prime fields. In this regard, we further optimized the
radical isogeny formulae in [21] and [30] and compared them
with the results of previous studies.

However, according to the results, odd-degree radical iso-
genies appear impractical for implementing large CSIDH due
to the inefficiency of exponentiation in a large finite field.
Nevertheless, the experiments demonstrate that a radical
2-isogeny is still valuable, leading to a 6% to 10% improve-
ment, although other optimizing methods are not considered.

Finally, as the size of the finite field must be increased
to resist quantum attacks, more research and optimization
are required to use radical isogenies effectively. In particular,
a more effective approach to utilizing radical isogeny will be
achieved by combining it with previously studied techniques,
such as those discussed in [31], to derive the optimal group
action strategies. We expect our study to form the basis for
extension to more practical use of a radical isogeny in the
future.
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