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ABSTRACT This research proposes a new flexible intelligent system that manages the inflow control valve
to improve oil production. For the efficient management of the smart oil field, the use of optimization
algorithms is required. Traditional optimization methods tend to be inefficient in solving such problems
due to many variables and the numerous locally optimal solutions, besides the effort of reservoir simulation.
Therefore, this work presents the development of a methodology that allows optimizing both the control and
the positioning of the valves, maximizing the reservoir Net Present Value obtained through the operation
management, and analyzing the deployment cost of intelligent wells and their operational returns. Decisions
of inflow control valve placement and its operation, flow control, throughout the reservoir’s life cycle
are simulated to verify the efficiency of the methodology. In order to evaluate and validate the proposed
intelligent system, the methodology was tested by building a new model with three evolutionary algorithms,
allowing the placement and control of the flow (valve) as a single problem. The results demonstrated that the
proposed approach has significant gains in the increased recovered oil volume and decreased water produced,
indicating more efficient and sustainable oil production.

INDEX TERMS Intelligent fields, positioning problems, evolutionary computing, control valve flow
management, decision support systems.

I. INTRODUCTION
Economic growth is essential in increasing the state capac-
ity and the continuous supply of public goods for emerg-
ing and developed countries. One of the main sources of
achieving economic growth is increasing the energy supply
[1]. Oil is one of the main sources of energy in the world.
Despite the growth in the use and production of renewable
energy, petroleum has continuously been widely used in by-
products, such as natural gas, naphtha, solvents, lubricants,
asphalt, and others. Besides, it involves complex planning and
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decision-making and the development of new technologies
[2], [3], [4].

In this sense, many investments in research, development,
and innovation (RD&I) have been made, aiming at removing
more and more oil from the reservoir or being able to span
over for several decades the reservoir’s production. Thus
maintaining greater efficiency in production and reducing
operating costs [5].

A commonly used practice in oil exploitation is the conven-
tional secondary oil recovery method. In this method, the oil
reservoir is supplemented with secondary energy by injecting
certain fluids into selected wells. The practical objective is
to increase recovery efficiency and accelerate production [6].
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These goals are the focus of the i-fields strategy. In order to
achieve these objectives, several studies are working with the
inflow control valves (ICV) [7], [8], [9], [10], [11], which
contribute to the control of the water injection and of the oil
flow that is extracted. Inflow control valves (ICV), as well as
downhole sensing devices, are part of the intelligent comple-
tion technology that is a great solution to improve production
performance by increasing cumulative oil recovery [12].

Thus, the petroleum area always seeks new technologies
andmethodologies tomake its productionmore efficient [13],
[14], [15]. The technological advance used in the oil produc-
tion area allowed remote management systems, which enable
real-time monitoring and actuation [16]. Besides, it results
in greater oil recovery and the new concept, i-fields or smart
fields.

The smart field in this study consists of intelligent wells
(IW), which have sensors that receive the production data
from certain well sectors and certain well equipment, such
as the ICV. The ICV is an adjustable control valve used to
maximize oil production. It can be adjusted automatically
or with operator intervention. ICV control optimization has
been a subject of research throughout the reservoir life cycle,
although there are few studies on the optimization of valve
placement.

In recent studies of ICV [10], [17], [18], [19], methodolo-
gies for optimal valves placement joint with ICV optimization
were created, presenting a greater potential for actuation.
Those approaches reduced the search space of the optimized
solution by focusing the control valve in previously deter-
mined valve positions, which results in a guaranteed converge
of the methodology but not necessarily an optimal global
result.

In those cases, the problems of placement and control
have been addressed separately, that is, using independent
and subsequent steps [10], [17]. In the literature, only one
simple case was found using a technique that addresses the
problem in an integrated way, considering the optimization
of both the control and the valves’ placement, nonetheless
using a very simple test case. Therefore, this work innovates
by presenting a methodology capable of approaching the
problem in an integrated way, both in control and in the
valves’ placement optimizations, validating complex cases
with geological uncertainties. The other contributions of this
work can be summarized as follows:

• Development of a new evolutionary optimization
methodology capable of working with the representa-
tion of two problems, control and placement of valves,
in smart fields;

• Creating a new hybridization algorithm, called Coop-
erative Coevolutionary Adaptive Genetic Research
[20], which models a population for control and
placement of producer wells valves and another
for control and placement of injector wells valves
(CCGeneAS-PIW);

• The utilization of objective function that seeks the max-
imization of the reservoir net present value NPV) by

financially analyzing the cost of implementing smart
fields and their operational return;

• Using a synthetic reservoir with simple geological char-
acteristics to allow visual interpretation of the results and
two real reservoirs: one is a subset of an aquifer reservoir
with multilateral wells, and the other is a real reservoir
with vertical wells; and

• Presenting an optimization with an uncertain geology
reservoir for the aquifer reservoir to verify the behavior
of the proposed methodology in situations where the
geological information of the reservoir is uncertain.

This article is organized into six sections. Section II
presents relevant definitions and a literature review in which
the studies found in the area properly referenced are reported.
Section III presents the proposed methodology, and mecha-
nisms of representation and simulation, as well as validation
and application methodologies. Section IV gives the mathe-
matical foundation regarding the evolutionary algorithm that
supports this work. Section V refers to the study case, pre-
senting the outcomes obtained so far. Finally, the concluding
remarks are presented in Section VI.

II. BACKGROUND AND RELATED WORKS
A. SECONDARY RECOVERY USING WATERFLOOD
TECHNIQUE
This work aims to optimize secondary recovery using the
waterflood technique supported by ICV. This technique
injects water into the reservoir to push the oil through the
production well. This results in a trade-off optimization of
avoiding reservoir pressure drop and increasing oil produc-
tion [21]. Figure 1 shows the analysis graph of the displaced
oil volume curve in relation to the volume of water injected
in the reservoir when performing the waterflood.

FIGURE 1. Displaced oil volume curve versus injected water volume in
the reservoir (source: adapted of Rosa et al. [6]).

Note that the linear portion of Figure 1 means that the
volume of injected water could displace the same oil vol-
ume. The beginning of water production is characterized at
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the point indicated as a breakthrough [6]. From this point,
the volume of water injected is not equal to the volume of
produced oil. That is, the part is retained in the reservoir, and
the part is produced together with the oil. The fundamental
milestone of this technique is to control the advance of the
injected waterfront, which should avoid the premature arrival
of water in the oil-producing well, resulting in the majority
production of water.

Figure 2 shows a flat cross-section delimited by the injec-
tion and production wells. This figure represents the chal-
lenge of reservoirs with several layers of different permeabil-
ity, stratified, the advance of water injected into the various
layers occurs non-uniformly, where k1 > k2 > k3. This
figure illustrates the non-uniformity caused by the continuous
and uniform water flow in the layers with different perme-
ability. The more complex it is the reservoir’ composition
(e.g., the geology and the permeability), the more complex
the control of the waterfront uniformity.

FIGURE 2. Vertical section of a stratified reservoir subject to water
injection (source: Rosa et al. [6]).

B. RELATED WORKS
1) OPTIMIZATION PROCESS
Several studies used traditional methods to optimize con-
trol valves based on gradients [22], [23], [24], [25]. This
approach converges to a local optimum, as opposed to some
gradient-free techniques that can search for the global opti-
mum. Besides that, obtaining the full gradient requires very
large computational power, making it prohibitive for a realis-
tic flooding optimization problem.

The simulated annealing algorithm was used in a simple
case with only one horizontal producer well [26]. The objec-
tive of the problem was to maximize the accumulated oil, and
the problem variables were the allocation of two valves and
their control. Ensemble Kalman filter is another approach to
optimize the reservoir, where Jansen et al. [24] performed a
combination of optimization and data assimilation. Besides
that, Chen et al. [25] used the novel ensemble-based optimiza-
tion scheme (EnOpt) with the ensemble Kalman filter (enKF)
to increase NPV.

A different approach, which applies evolutionary compu-
tation methods such as genetic algorithms, was published

by Almeida et al. [7]. Their work presented a decision sup-
port system capable of optimizing the process control of
intelligent wells considering technical failures and geological
uncertainties. Another study proposing a bi-objective analysis
in waterflood recovery is found in Isebor et al. [21]. Their
method, called BiPSOMADS, uses a global search algorithm
and a local search algorithm. The single-goal optimization
was combined into two objectives, maximization of Net
Present Value (NPV) and Cumulative Oil Production (COP).
Besides that, a different analysis approach was used, a per-
spective of long and short-term performance maximization.

Chen and Reynolds [27] presented a water-alternating-gas
(WAG) injection project that proposes an approach in which
well control and ICV settings are simultaneously optimized.
This study did not address the valve placement problem.

Furthermore, two recent studies regarding optimization
methods that combine proactive valve control and valve
placement are found in the literature. The first one seeks
to reduce the number of simulations required. In this sense,
the problem’s search space is reduced [10]. This approach
prioritizes regions only in producing wells where the use of
the valve has better technical and economic indicators. These
indicators reduce the number of variables, define restrictions
applicable to each variable, and help in the initial seed com-
position for the optimization method. Their work presented
a premise that the problem of ICV allocation is large and
complex, and an optimized solution can be found by dynamic
programming to evaluate a high number of valve allocation
alternatives; The second work optimizes the valve placement
and proactive control only in producing wells [17]. They used
a deterministic analysis to decide whether the producer well
would be smart or conventional and at which position the
valve would be allocated. Then, the control optimization is
performed using Fast Genetic Algorithm (FGA) combined
with the local optimization method, the nonlinear conjugate
gradient.

More recently, there have been works with new approaches
to the stochastic search algorithm that presents optimiza-
tion with geological uncertainty. Normally, their results have
sub-optimal performance when applied to the full ensemble
of possible realizations generated during an uncertainty study
of the reservoir model [28], [29]. Some NPV optimization
studies use proxy to approximate the reservoir-simulation
model [30], [31], [32].

2) PROACTIVE CONTROL
The ICV operation can be performed through reactive or
proactive control. Many studies have been developed to com-
pare the benefits of proactive control in relation to reactive
control [7], [8], [17], [33], [34]. Reactive control acts by con-
trolling flow production or flow injection after an event has
occurred. The proactive control foresees the event’s occur-
rence and performs the action before its accomplishment [9].

In optimized cases, the IW strategy with proactive control
is better than IW with reactive control. Besides, using both
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control strategies, Conventional Wells (CW) [34] is better
than the standard alternative. Other works that addressed
the production optimization problem in Smart Wells inte-
grated digital models of reservoirs and used wells data for
optimization.

Calvette et al. [18] used a Long Short-Term Mem-
ory (LSTM) neural network to build a proxy to forecast smart
wells production, taking advantage of a large amount of data
available in smart oilfields to minimize the use of compu-
tationally expensive simulations. It was tested in a simple
synthetic box reservoir and a modified version of the PUNQ-
S3 reservoir, achieving low errors in both cases. Temizel et al.
[35] presented a review of literature and concepts on multilat-
eral wells, optimization techniques, and applications, made a
brief review of Enhanced Oil Recovery (EOR) techniques,
and presented the economic and production advantages of
‘‘electrical resistive heating’’ as an EOR recovery method for
heavy oil. Finally, they do a simulation to compare oil accu-
mulation between models with active and passive devices.

The authors of Jia et al. [19] proposed an optimized model
for water injections in oil reservoirs. This optimization has
two parts: (i) model building and intelligent plan optimiza-
tion, where the model construction uses static data from the
reservoir and real-time data. Besides, the model is automati-
cally assembled using ‘‘data assimilation’’ and adjusted using
‘‘ensembleKalman filtering’’; (ii) the intelligent optimization
of the plan is carried out in 6 steps in which the use of
‘‘k-means clustering’’ is combined, a decision tree to analyze
the water injection, and ‘‘particle swarm optimization’’ to
optimize the injection plan.

As mentioned, this work presents a new approach to solv-
ing control and valve placement optimizations, validating
complex cases with geological uncertainties. Several works
in the literature proposed solutions to this problem. In order
to summarize all mentioned works contributions in the liter-
ature, Table 1 compares state-of-the-art works and Table 2
presents another comparison emphasizing the control type
and the case studies performed. In this table, the same works
in Table 1 are compared. However, this comparison regards
the type of control and case studies.

III. PROPOSED METHODOLOGY
The intelligent fields with ICV allow operational flexibility,
monitoring, and interaction during oil production. Besides,
it enables the integration of digital reservoir management
models while making it more expensive [37], [38]. These
wells require more careful evaluation since the potential ben-
efits should be estimated considering uncertainties. A pos-
sible increase in cash flow may occur after a few years of
production [17]. Thus, it is extremely important to anticipate
the behavior of the reservoir throughout its life cycle.

The proposed optimization method can optimize the quan-
tity and placement of the ICV and their control throughout the
reservoir life cycle [11]. The ICVs are considered installed on
the first day of optimization. Figure 3 illustrates the method-
ology that has the following steps:

• Reservoir and alternative development description:
format accepted by the simulator IMEX is used [39].
Nonetheless, the ICV configuration is not accepted in
the used version. Thus, the valve flow rate was tuned
using the keyword *FF, as described in [40, pp. 47];

• Optimization algorithm: in the search for the best
optimization result, 3 algorithms were used, and
these will be described in sections Cooperative
Coevolutionary Genetic Algorithms, A Genetic Adap-
tive Search (GeneAS) for Engineering Design, and
Cooperative Coevolutionary Genetic Adaptive Search
(CCGeneAS);

• Valves Description: The quantity and position of the
ICV are optimized by the placement solution.

• NPVCalculation (Financial Scenario): the IMEX out-
puts the production curve. The curve makes it possible
to extract information about NPV, and water production,
among others.

• Reservoir Simulator: IMEX [39] reservoir simulation
software; and

• Geological Uncertainty: the information is delivered
to the simulated reservoir to appropriately generate the
curve production.

FIGURE 3. Dynamic Optimization Methodology.

A. DYNAMIC OF SMART FIELDS
The concept of smart fields aims for better control of the
breakthrough and the uniformity of the waterfront advance.
The smart fields are composed of IW and CW. IW uses the
ICV to control the flow of oil production or water injec-
tion. Since CW is cheaper, they do not have flow adjust-
ment control, and they are usually used in regions where
IW contributes so little. It is important to mention that ICV
is operated remotely (from the surface) through an electric
hydraulic or electrohydraulic drive system [41].

B. DYNAMIC OPTIMIZATION METHODOLOGY
Figure 3 shows the dynamic optimization methodology.
In this kind of problem, the many variables involved result in
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TABLE 1. Comparison of the state-of-the-art with Search Methods.

TABLE 2. Comparison of the state-of-the-art between the Type of Well Control and the Case Studies Performed.

a larger search space. It is important to stress the versatility of
this approach since, unlike the mentioned state-of-art works,
there is no separation of the problems in sequential steps nor
a forced reduction of the search space [10], [17].

In this approach, both ICV optimization decisions
(i.e., placement and control) are taken dynamically and con-
tinuously. This allows the search for space exploration for the
optimal global solution. When using random search, there is
access to the entire search space, and the convergence capa-
bility of the algorithm drives the exploration. The optimiza-
tion result will find new ideas for better, more efficient, and
longer production reservoir exploitation. It will also reinforce
the initial analysis of the strategy chosen by the specialist [7].

C. DYNAMIC OPTIMIZATION ALGORITHM
In the search for a flexible algorithm capable of a more
efficient convergence, comparisons were made between

evolutionary algorithms. This research compared the
single-population GeneAS algorithm [42] and the coevo-
lutionary algorithms with two subpopulations: (i) CCGA
[43] and (ii) CCGeneAS-PIW. In this comparison, the fol-
lowing execution parameters were used, aiming at a fair
comparison:

1) The number of individuals in the GeneAS population
is 200, and 100 individuals for each subpopulation of
coevolutionary algorithms;

2) The initial population is composed of randomly gener-
ated individuals;

3) The composition of the individuals obeys the construc-
tion rules of the variables presented in sections Search
Space on Placement Valves and Search Space on Con-
trol Valves;

4) The selection of individuals in the population is per-
formed by Binary Tournament;
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5) The elitism strategy preserves two copies of the best
individuals in the population;

6) The genetic operators for binary individuals (place-
ment) are: Single Point Crossover and Bit Flip
Mutation;

7) The genetic operators for the real individuals (control)
are: Simulated Binary Crossover and Polynomial Bit
Flip;

8) The crossover probability is 90%;
9) The probability of mutation is 1 / chromosome; and

10) The stopping criterion is reached after a fixed number
of evaluations, depending on the complexity of the
reservoir used in the optimization. This is due to the
high computational cost of simulation.

D. VALIDATION METHODOLOGY AND PROCESSING
There are two important points in the optimization method-
ology. The first point is the chosen evaluation function,
that is, NPV, a methodology widely used in the literature
[7], [10], [17].

The other point is the optimized solution validation. To val-
idate the optimization of each reservoir, the NPV result is
compared with the reservoir simulation using CW, known as
the base case. In this evolutionary algorithm implementation
for oil extraction optimization, the evaluation function is the
most critical part of the code when considering the computa-
tional cost due to the IMEX Simulator time.

The framework used to implement the evolutionary algo-
rithms is the JMetal framework [44], based on Java APIs.
So, when evaluating a new individual’s skills, the new indi-
vidual’s generation must be evaluated in parallel processing.
Each one is queued and delivered to Java API that schedules
each task (thread process) and notifies when it finishes.

Note that computers with multi-cores were used for the
simulation. The number of cores in the computer is automat-
ically identified, and a thread is routed to an idle core. The
workstation used to reference the computational cost for the
simulations is a machine with two Intel Xeon CPUs E5-2630
2.30GHz. Each processor has six cores of 2 threads each,
totaling 24 threads for simultaneous execution, with 64 GB
memory.

E. STRUCTURED DESCRIPTION OF VALVES
1) SEARCH SPACE ON PLACEMENT VALVES
The placement solution optimizes the quantity and position
of the ICV. Any well position where there is completion is
enabled to receive the ICV. To represent the position that the
valve will receive, vector l̂ is used. This variable contains
all positions where there are completions. Each position is
represented by xwnw , where w is the well identifier and nw is
the completion position number in that well. This variable
can receive values 0 or 1 to represent whether or not it has
an ICV. Eq. 1 defines the vector l representing the location of
valves.

l̂ =

{
x11 , . . . , x

1
n1 , . . . , x

w
1 , . . . , xwnw

}
, where


x = {b ∈ N | b = 0 ou b = 1 }

w = well id
nw = completion id of the w-th well

(1)

Eq. 2 presents an example of the vector l̂ of a reservoir with
twowells. Eachwell has two completions. In the example, the
first well is not intelligent. However, the second well has ICV
in both completions. The numeric results for the example are
l̂ = {0, 0, 1, 1}.

l̂ =

{
x11 , x

1
2 , x

2
1 , x

2
2

}
(2)

The placement vector l̂ has a binary composition and the
search space represents 2nc , where nc is the number of well
completions that may be eligible to receive valves.

2) SEARCH SPACE ON CONTROL VALVES
The modeling of proactive control of ICV follows the follow-
ing criteria:

1) For the proactive control of the valves, 10 control
interventions are performed (ic) in the valves since
the reservoir life cycle is of 20 years and the control
interventions will occur every 2 years;

2) The chromosome has the configuration of a proactive
control operation for all possible ICV in all possible
time intervals of reservoir interventions;

3) If the well has at least one ICV, it is considered to be
an IW. Otherwise, it is considered to be a CW. These
definitions are important when considering the cost of
deploying each well;

4) Each control variable can assume a real value in a
[0, 1] range with one decimal point. Thus, the assumed
values are 1.0 for fully open, 0.0 for fully closed, and
9 intermediate valve operating positions; and

5) The search space for the prediction of the control valve
is defined by 11ic∗nc , where ic is the number of inter-
ventions defined and nc is the number of completions
that can receive ICV.

Eq. 3 defines the valve control vector ĉ(t), which is com-
posed of each intervention (i.e., Eq. 4). The c(t) defines the
aperture for all possible valve positions, w is a well id, and
nw is a completion id. Thus, ywnw identifies the aperture in a
determined well and its completion. The intervention count
in the reservoir cycle is t .

ĉ(t) =
{
ĉ1, ĉ2, . . . , ĉt

}
(3)

ĉi =

{
y11, . . . , y

1
n1 , . . . , y

w
1 , . . . , ywnw

}
(4)

The control example is in Eq. 5. For the former placement,
the example is in Eq. 2 can be ĉ = {1.0, 1.0, 0.5, 0.5}. Since
the first well (CW) does not receive an ICV, the valve opening
information data is 1.0, which is 100% of the capacity utiliza-
tion of the completion flow. For the other well (IW), there is
an opening information of 0.5, that is, 50% of valve capacity.

ĉ1 =

{
y11, y

1
2, y

2
1, y

2
2

}
(5)
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The search space is 2nc , where nc is the number of valves.
In the simulation, the reservoir life cycle is 20 years and
control intervention occurs every 2 years. For the proactive
control of the valves, 10 control interventions (ic) are per-
formed on the valves on them. The search space: 11ic×nc .

F. UTILITY FUNCTION
The NPV is the evaluation, or utility function, which has wide
use in the literature [7], [10], [17]. In order to obtain the
NPV, it is necessary to decode the location and control indi-
viduals in the information that describes reservoir wells. The
information is formatted in a text input file for the reservoir
simulator [39]. The simulator generates the oil production
curve and water injection curve. Adding the curves with the
text input file, it is possible to calculate the NPV for the
reservoir lifecycle.

f (l̂, ĉ(t)) = NPV (6)

Eq. 6 shows the NPV obtained by evaluating the oil reser-
voir with the valves allocated and configured according to
the information contained in the vectors l̂ and ĉ(t) previously
described. NPV is the mathematical-financial formula capa-
ble of determining the current value of all discounted future
cash flows at an appropriate interest rate minus the cost of
the initial investment. The NPV is determined by the Present
Value (PV) of the alternative (discounted cash flow) and the
development cost of the valves (Dv) included in the alternative
(i.e., Eq. 7) [7], [11].

NPV = PV − Dv (7)

The cost of each component of the Intelligent Well is
presented in Table 3. Eq. 8 shows the formula of Dv. It is
interesting to note that the cost of the reservoir increases as
the number of ICV increases. This highlights the relevance of
ICV operation optimization to increase profit.

Dv = (Cv + Cp) · nv + CFP · nw + CHPU , where{
nv = quantity of ICV; and
nw = quantity of intelligent wells.

(8)

TABLE 3. Cost of Smart Well Components.

The Present Value (PV ), in Eq. 9, is composed of the
sum of the difference between the Revenue Value (RV ) and
Operating Cost (Cop) discounted at an interest rate (ρ =

10%), representing the current value of future payments.
The RV is the multiplication of the oil volume production

(Q(ti)) and the oil price (Poil = $20 barrel), Eq. 10. The Cop
calculation considers the cost of water produced (Cwp = $3)
and the cost of water injected (Cwi = $1). The first refers

to the cost of separating the water from the extracted oil.
The second to the cost of injecting the water. These costs are
multiplied by the water flow produced (Wp(ti)) and injected
(Wi(ti)), respectively, Eq. 11. These values are measured
along the time of production (ti) until reaching the end, where
T is equal to 20 years.

PV =

T∑
i=1

[
RV − Cop

]
· e−ρ·ti (9)

RV = Q(ti) · Poil (10)

Cop = Wp(ti) · Cwp −Wi(ti) · Cwi (11)

IV. EVOLUTIONARY ALGORITHMS
Optimization algorithms seek to find good solutions to com-
plex problems in a reasonable amount of time. Evolutionary
computation is the field of research inspired by evolutionary
biology in order to develop, search, and optimization tech-
niques to solve complex problems [45].

So far, it has not been proposed a solution to solve the
problem considering the optimization of location and control
of intelligent valves involving geological uncertainty. Thus,
this work proposes to model three solutions with the objective
of finding the one that presents the best performance for
the problem: one using CCGA, one using Genetic Adap-
tive Search (GeneAS), and one based on both CCGA and
GeneAS, called Cooperative Coevolutionary Genetic Adap-
tive Search (CCGeneAS-PIW). Theywill be described below.

In order tomake significant comparisons regarding the best
algorithm, some parameters were fixed for all, such as pop-
ulation initialization, selection form and elitism, crossover
andmutation operators, operator rates, and stopping criterion.
There is a resume in Table 4.

It is important to detail the operators, the crossover binary
operator (Single Point Crossover and Bit Flip Mutation) and
the mutation and the current mutation operator (SBCrossover
and Polynomial Bit Flip), as they are the basis of comparison
for the algorithms.

A. SINGLE POINT CROSSOVER AND BIT FLIP MUTATION
The crossover operation will only be performed after the
probability rate for crossover execution is tested. If passed,
two individuals (chromosomes) are selected (Binary Tourna-
ment) and a random cut point is chosen. From the cut-off
point, there is the exchange of genes between the parents’
individuals, generating the individual children [46].

The mutation operation also has its probability ratio tested
for the operator execution on the child individuals generated
in the crossover. The bit flip mutation performs bit inversion,
that is, if the genome bit is 1, it is changed to 0 and vice
versa [46].

B. SBX - SIMULATED BINARY CROSSOVER
Important properties that a self-contained real GA should
have in its search engine [47]:
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• The crossover operator must produce a child population
that has the same mean as the parent population;

• The variance of the child populationmust be greater than
the parent population.

The SBX operator generates solutions that are closer to
each of the parents than solutions that are distant from the
parents, SBX has two properties [47]:

• The extension of child solutions is proportional to the
parent solutions;

• Solutions close to parents are probably more chosen as
child solutions than solutions parents.

Self-adaptation is a phenomenon that makes evolutionary
search algorithms flexible and closer to natural evolution.
In crossover at the gene level, the recombination happens
by variable, and in crossover at the chromosome level, the
recombination happens vector by vector. The SBX is a
crossover operator at the gene level, which is closer to the
natural recombination processes [48]. The SBX was built to
respect the single-point crossover properties in binary coding
GA [42]. To compute child solutions x1,t+1

i and x2,t+1
i from

the parents x1,ti and x2,ti , a polynomial distribution approxi-
mation is used.

The value βq is found so that the area under the probability
curve 0 to βq is equal to a random number chosen u. Eq. 12
shows that the distance between the children is proportional
to the distance between parents to a factor βq, and Eqs. 13 and
14 present the child solutions.

x(2,t+1)
i − x(1,t+1)

i = βq

(
x(2,t)i − x(1,t)i

)
(12)

x(1,t+1)
i = 0.5

[
(1 + βq)x

(1,t)
i + (1 − βq)x

(2,t)
i

]
(13)

x(2,t+1)
i = 0.5

[
(1 − βq)x

(1,t)
i + (1 + βq)x

(2,t)
i

]
(14)

C. EVOLUTIONARY ALGORITHMS - COOPERATIVE
COEVOLUTIONARY GENETIC ALGORITHMS
CCGA is the algorithm based on cooperative coevolution
between species populations. It suggests a new approach
to evolving complex structures. To successfully apply evo-
lutionary algorithms to problems of increasing complexity,
it is necessary to introduce explicit notions of modularity in
solutions to have reasonable opportunities to evolve in the
form of co-adapted subcomponents [43].

In a CCGA, the decomposition of a complex problem is
performed in interdependent subcomponents that will evolve
in their own search space, uncoupled from others, in which
each subcomponent is represented by an individual. Thus,
individuals are separated into distinct populations according
to their characteristics, enabling interaction between mem-
bers of the same population or species. During the evaluation
process, a complete solution is represented by the composi-
tion of an individual from each population. Figure 4 shows
the flowchart of the algorithm.

The CCGAwas used in this work to solve the optimization
problem of the valves’ placement and control. It uses a bio-
inspired paradigm, in which species cooperate with each

other and are genetically isolated. Individuals only evolve
with members of their species. Thus, the placement prob-
lem (l) and the control problem (c(t)) are considered from
different species. Besides, they are separated into different
subpopulations, the former is a binary population and the
latter is a real population, respectively.

D. A GENETIC ADAPTIVE SEARCH FOR ENGINEERING
DESIGN
GeneAS is an algorithm based on binary-coded and real-
coded genetic algorithms, it uses a natural coding schema
to represent mixed variables [42]. Since the binary GA and
real-coded GA cannot be used alone to efficiently handle
different kinds of variables, GeneAS is a solution that seeks to
solve this problem. The algorithm restricts its search only to
variable values of a determined type, thus reducing the search
effort in the convergence to the optimum solution.

The GeneAS was used in this work to solve the opti-
mization problem of the valves’ placement (l) and control
(c(t)). The individual contains binary and real vectors in his
chromosome. The real part of the chromosome uses the real
operators, while the binary part uses the binary operators.
Thus, GeneAS proposes a more flexible and efficient way
of solving engineering problems with mixed variables, even
though the operating principles of GA and GeneAS are the
same.

Figure 5 shows the algorithm flowchart. The initial popula-
tion is generated randomly. The genetic algorithm is genera-
tional, and the two best individuals are preserved for the next
generation (elitism). The selection of the individuals’ parents
to perform the crossover and mutation is performed by the
binary tournament [46].

E. COOPERATIVE COEVOLUTIONARY GENETIC ADAPTIVE
SEARCH (CCGeneAS)
The CCGeneAS is proposed in this work as the implemen-
tation of a Cooperative Coevolutionary GeneAS. Figure 6
shows the use of two subpopulations. Each subpopulation
uses individuals composed of both binary and real coding,
as structured in GeneAS [42]. This new algorithm allows the
problem to be broken and optimized.

This methodology was elaborated to solve the problem of
valve optimization to enable the problem decomposition in
other contexts of evolution. This decomposition is carried out
following the idea presented in thework of Sampaio et al. [34]
which makes use of the five-spot configuration using ICV
only in the producing wells, in front of this, we understand
it to be interesting to realize an optimization considering two
groups one with producing wells and one with injector wells.
As well this wells separation is presented in [26].

The initial population is generated randomly. The parents’
selection is performed by the binary tournament [46] and the
elitism operator is used for 2 individuals.

At the time of evaluation, the best individual of the one
subpopulation is selected to compose the solution of all the
individuals of the other subpopulation. Thus, the species
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FIGURE 4. CCGA flowchart.

FIGURE 5. Flowchart of GeneAS.

interact with each other through the shared domain model and
have a cooperative relationship [43]. If the stop criterion has
not been reached, the process of evolution continues. In the
end, the optimized solution is delivered.

This work proposes the CCGeneAS-PIW, which is the
separation in subpopulations of production wells and injector

wells. Figure 7 presents the coevolutionary model from the
perspective of each species. To the left of Figure 7, it is
performed the evolution of PW, which involves the selection
of individuals’ parents, crossover, and mutation operations.
The same procedure is executed to perform the evolution of
IW subpopulation, in the right of Figure 7. At the time of the
evaluation, each subpopulation uses the best solution of the
other subpopulation to compose a complete solution that can
be evaluated through the NPV function.

After all, the reservoir is composed of both types of wells,
production, and injection. After the completion of the first
evolution cycle, the IW subpopulation on the right follows
the same procedure.

V. RESULTS AND DISCUSSION
A. RESERVOIRS MODELS
Due to the cost of simulation and the complexity of the reser-
voirs, the stopping criterion of the algorithm was established
in 21.000 simulations. It was verified empirically that the
solution shows little evolution. At the end of each subsec-
tion that describes the reservoir, there is simulation time a
description. Figure 8 illustrates a comparison of sequential
and parallel runtime.

B. SYNTHETIC RESERVOIR
The synthetic reservoir [11] is composed of 3 layers isolated
with shale barriers and with a development alternative of two
vertical wells, where each with 3 ICV, one production, and
one injection [7]. Note that this is a test protocol created
by a specialist. The search space for this problem consists
of 26 possibilities of receiving valve locations and 1110×6
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FIGURE 6. Flowchart of CCGeneAS.

FIGURE 7. Ensemble Solution of CCGeneAS-PIW.

FIGURE 8. Comparison of Sequential and Parallel Runtime.

valve control possibilities in 10 interventions over 20 years.
Thus, the total space consists of 26 × 1110×6 ∼= 1.95 × 1064

possibilities.
The characteristics of the reservoir porosity are 0.2 and the

permeability of the 1st layer is 500.0 (mD) in the i, j and 50.0

(mD) directions in the k direction; of the 2nd layer 800.0 (mD)
in the directions i, j and 70.0 (mD) in the k direction; and of
the 3rd layer of 1200.0 (mD) in the directions i, j and 120.0
(mD) in the direction k.

Simulation of the synthetic reservoir only costs 1.04 sec-
onds. In a sequential execution of the algorithm, it would take
around 364 minutes or 6 hours and 4 minutes. Performing
parallel execution using thread, the simulation takes around
134 minutes or 2 hours and 15 minutes. The 30 runs for
comparison with the non-parametric test take 2 days and
19 hours.

C. AQUIFER RESERVOIR
The aquifer reservoir is composed of 100% water saturation
regions and other ones have a water saturation value of
25%. For this reservoir, the specialist created a restriction of
the water cut reservoir; when the value of water production
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reaches 90%, the operation is suspended. This reservoir has
a corner point type mesh grid of 33 × 57 x 3 blocks, whose
block dimensions are 100.0 × 100.0 × 8.66 meters. These
characteristics are important for optimizing the placement
and control of the wells to ensure efficient production and
injection of fluids in the reservoir. In addition, it has a perme-
ability of 575.0 (mD) in the directions i, j and 57.40 (mD) in
the k direction and a porosity of 0.229.

To improve oil production by increasing the contact area
between the wellbore and the reservoir, which leads to higher
oil recovery rates, a possible alternative is the development
of multilateral wells, as shown in Figure 9. This reservoir has
4 well producers, two wells with seven completions and the
other 2 with six completions; and four injection wells, with
six completions each. The search space (placement x control)
is 250 × 11(10×50).

FIGURE 9. Aquifer Reservoir with multilateral wells. Note that this
reservoir has four well producers, two wells with seven completions and
the other two with six completions; and four injection wells, with six
completions each.

The simulation of the aquifer reservoir only costs 4.88 sec-
onds and the sequential execution of the algorithm is 28 hours
and 28 minutes. The parallel execution (by threads) takes
around 5 hours and 40minutes. The 30 runs in parallel: 7 days
and 2 hours; and executions of the 4 algorithms: 28 days and
8 hours.

D. REAL RESERVOIR
Figure 10 shows a real reservoir. It has a corner point type
mesh grid of 43 × 55 x 6 blocks with block dimensions
100.0× 100.0× 10.0 meters. The reservoir geological values
of permeability are variables, which means that the flow of
fluids through the reservoir is not uniform and depends on
the permeability of the different blocks. The field is divided
into three regions, which are formed by layers 1 to 3; lay-
ers 4 and 5; and layer 6. However, it is important to note
that, for optimization of valve placement, all 6 layers were

considered. This means that the valves were placed in all
layers of the field, taking into account the permeability values
of the blocks in each layer to optimize the flow of fluids
through the reservoir. The wells are all vertical: 7 production
wells (3 wells with 3 completions, 3 other wells with 5 com-
pletions, and one well with 6) and 5 injection wells (1 well
with 4 completions, 2 wells with 5, and 2 other wells with
6 completions). The search space: 256 × 11(10×56).

FIGURE 10. Real Reservoir with vertical wells. This field has a total of
seven production wells, consisting of three wells with three completions,
three wells with five completions, and one well with six completions.
Additionally, there are five injection wells, with one well having four
completions, two wells with five completions, and two other wells with
six completions.

Regarding the synthetic reservoir, the simulation only
cost 1.04 seconds. The simulation of the real reservoir took
26.61 seconds and the sequential execution of the algorithm,
6 days, 11 hours, and 14 minutes. The parallel execution (by
threads) took around 16 hours and 10 minutes. The 12 exe-
cutions in parallel: 8 days and 3 hours; and executions of the
4 algorithms: 32 days and 9 hours.

E. OPTIMIZATION TEST PARAMETERS
Table 4 shows the values of the GA main parameters for
optimization.

TABLE 4. Optimization Test — Parameters.
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F. SYNTHETIC RESERVOIR - VERTICAL WELLS
After performing the optimization methodology, the result
presented has ICV in the last two completions of the
injection well. Table 5 shows the optimized control val-
ues, where the values (0.0) represent the valve closed
by the period. Figure 11 presents the performance results
obtained through GeneAS, CCGA, and the proposed solution
(CCGeneAS).

TABLE 5. Optimized Control Values of the Synthetic Reservoir.

Figure 11a shows themean value of the optimized solution.
The graph indicates that GeneAS has the best mean value of
NPV, that is, better convergence throughout the evolution of
the individuals.

Figure 11d presents the median and dispersion behavior of
the optimization results. The GeneAS shows less dispersion
of its results and rejects the null hypothesis with 99% confia-
bility for all other algorithms (i.e., Wilcoxon tests). So, in this
scenario, GeneAS presents a better performance.

Figure 11g shows the histogram of the optimized valves’
quantity in 30 runs. The scenario presents the consistency of
the GeneAS algorithm that always finds 2 ICV in the test
model. Table 6 presents US$5,746,142 of profit in relation
to the base case.

G. AQUIFER RESERVOIR - MULTILATERAL WELLS
The optimized solution considers the use of 5 conventional
wells (CW): 4 production CW and 1 injection CW; and the
use of 3 intelligent injection wells known as INJ2, INJ3, and
INJ4. Table 7 shows the optimized control values. In INJ2,
of the six zones, only the first two are completed with ICV,
in INJ3 all the zones have valves except the third, and in INJ4
only the third zone is completed with ICV.

Table 8 shows an increase of almost US$ 6 million in NPV
and an increase in accumulated oil production. There is also
an increase in the water produced and the water injected.
This is due to the extended operation of the optimized case
in relation to the base case. Both simulations, base case and
optimized, were suspended before the expected time due to
the water cut restriction of 90% defined for this reservoir.
However, the reservoir with the optimized solution operated
longer and, therefore, extracted more oil.

Figure 11b shows the average of the aquifer reservoir.
The graph indicates that GeneAS and CCGA have the best
mean values of NPV, that is, the best mean convergences
throughout the evolution of the individuals. In Figure 11e,
the CCGA presents less dispersion. All samples were tested.
They are from statistically different populations with a 99%
of confidence interval. Since in this GeneAS’s scenario has
higher values of NPV than CCGA, GeneAS has a better
performance. Figure 11h shows the valves’ quantity. The
GeneASwas capable of finding the best results with less ICV.

H. REAL RESERVOIR - VERTICAL WELLS
Figure 11c shows the average of the algorithms in the reser-
voir with the aquifer. The graph indicates that GeneAS has
the best average values of NPV, that is, the best average
convergences, throughout the individuals’ evolution.

In Figure 11f, the CCGA presents less dispersion of its
results. However, it shows the worst result of NPV. All
samples were tested and they are from statistically different
populations with a 99% of confidence interval. The GeneAS
has the best performance.

Figure 11i shows the histogram of the number of valves.
It can be seen that the number of valves found by the three
methodologies is very close.

Table 9 presents the optimized control of IW. From the
producing wells, PROD1 is completed with ICV in the first
three zones, PROD3 and PROD4 wells have valves in all
zones, PROD5 has ICV in the first two of three zones, and
PROD7 has valves in the second and last zone, as shown in
Table 9.
In the injection wells, INJ1 has no ICV in the last zone, and

INJ2 has ICV valves in all zones except in the first and third.
In INJ3, only the second and last receive a valve, INJ4 has
ICV in the first three zones, and in INJ5 the last three zones
have valves, as shown in Table 10.

Table 11 shows an increase of more than US$250 million
in NPV, representing 12.08% concerning the base case. The
accumulated oil produced increased by 9.33% concerning
the base case. The optimized solution showed no change in
the injected water. Nonetheless, it showed a reduction in the
water produced.

Another reservoir behavior indicator is the mean reservoir
pressure (Figure 12). It can be verified that the optimized case
can control the drop in reservoir pressure, especially in the
first half of the life cycle.

I. GEOLOGICAL UNCERTAINTY - AQUIFER RESERVOIR
MODEL
Three scenarios have been specified by the oil company
experts, aiming to evaluate the effectiveness of using intelli-
gent wells in this reservoir in a very favorable and worst-case
scenario. The experts have specified a degree of communica-
tion between the reservoir layers so that the control valves,
which control the water injection to avoid the early arrival of
the water flood in producing wells, could be evaluated. It is
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FIGURE 11. Comparing optimized results obtained from GeneAS, CCGA, and CCGeneAS across three distinct reservoir types.

TABLE 6. Results of Optimized Reservoir of the Synthetic Reservoir.

understood that the greater the communication between the
layers, the harder it becomes to control the water injection
through the valve since the flow of water from one layer can
affect other layers, resulting in a slower response to an action
in a given valve.

The geological scenarios were only available for the
aquifer reservoir. The parameter of uncertainty involves the
continuity of the layers of shales, in which:

• Scenario 1: Shallow shale-layer continuity;
• Scenario 2: Average shale-layer continuity; and

• Scenario 3: Continuous shale.

Table 12 presents the optimization result of each sce-
nario and its cumulative metrics. As expected, in the best
scenario, the NPV was higher. The interesting thing about
this case study is that the applied methodology produces
a considerable positive return even with various geological
uncertainties.

Table 13 presents the comparative mean results in uncer-
tainty geological aquifer reservoir, optimized and the base
case the simulation without ICV. It shows an increase in the
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TABLE 7. Optimized Control Values of the Aquifer Reservoir.

TABLE 8. Optimized Reservoir Results of the Aquifer Reservoir.

TABLE 9. Optimized Control Values in Production Well Real Reservoir.

TABLE 10. Optimized Control Values in Injection Well of the Real Reservoir.

TABLE 11. Metrics of the Real Reservoir (Vertical Wells).

volume of oil produced by almost 24%. In addition, there
was also an increase in the quantities injected and produced
of water. This suggests a great potential for this reservoir

exploitation. All of this reflects the increase, in the average
case of geological uncertainty, of 18% of NPV or a little more
than US$ 216 million.
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TABLE 12. Geological Uncertainty of Aquifer Reservoir.

TABLE 13. Geological Uncertainty — Results of Optimized Aquifer Reservoir.

FIGURE 12. Average Pressure Curve of the Real Reservoir.

VI. CONCLUSION AND FUTURE WORK
This work presented a flexible optimization methodology
capable of optimizing both the proactive control and the quan-
tity and placement of the valves throughout the life reservoir
cycle. Besides, this research efficiently compared the three
evolutionary algorithms: GeneAS, CCGA, and CCGeneAS-
PIW. The comparison outcomes showed a better conver-
gence in the use of GeneAS. The values demonstrated in
the presented simulations indicated significant gains in the
recovered oil increase in the volume, and a decrease in water
produced. This shows the gain in control of the advance of
the waterfront in the reservoir.

The best convergence of the GeneAS algorithm has been
demonstrated, providing solutions more stable regarding the
number of ICVs than other algorithms. Probably, this is due
to the better synergy of the iteration between the two forms
of representing individuals. After all, the representations have
no well-defined independence, causing a performance delay
in any multi-population representation.

When evaluating the reservoir with geological uncertain-
ties, it is observed that for all the scenarios (i.e., pessimistic,
conservative, and optimistic), there is a generation of positive
NPV. This shows that the simulation always predicts profit,
reinforcing the advantage of Smart Field use.

In terms of evaluation, this research work opens up several
future possibilities. For instance, improvements should be
made to the allocation of Wells considering intelligent wells
and the joint problem of valve allocation and control. Other
possibilities cover the insertion of different market uncertain-
ties, such as changes in production values over time, and
the insertion of technical uncertainties, such as the failures
in the operation of the valves, which was not done in order
not to expand the optimization process. However, this would
make the analysis complete; In addition to the black-oil type
reservoir model, compositional simulation models could also
be considered to analyze valves’ performance when there is
considerable gas production.
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