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ABSTRACT Alzheimer’s Disease (AD) is the most common form of dementia. It usually manifests through
progressive loss of cognitive function and memory, subsequently impairing the person’s ability to live without
assistance and causing a tremendous impact on the affected individuals and society. Currently, AD diagnosis
relies on cognitive tests, blood tests, behavior assessments, brain imaging, and medical history analysis.
However, these procedures are subjective and inconsistent, making an accurate prediction for the early
stages of AD difficult. This paper introduces a curvelet transform (CT) based-convolutional neural network
(CNN) (DeepCurvMRI) model for improving the accuracy of early-stage AD disease detection using from
Magnetic resonance imaging (MRI) images. The MRI images were first pre-processed using CT, and then
a CNN model was trained using the new image representation. In this study, we used Alzheimer’s MRI
images dataset hosted on the Kaggle platform to train DeepCurvMRI for multi and binary classification
tasks. DeepCurvMRI achieved an accuracy, sensitivity, specificity, and F1 score of 98.62% =+ 0.10%,
99.05% £ 0.10%, 98.50% =+ 0.03%, and 99.21 £ 0.08, respectively, using the leave-one-group-out (LOGO)
cross-validation approach in multi-classification task. The highest accuracy obtained in binary classification
is 98.71% =+ 0.05%. In addition to LOGO, DeepCurvMRI was tested using randomly stratified 10-fold
and 5-fold cross validation. These encouraging results are superior to the ones reported in related methods,
showcasing the potentiality of DeepCurvMRI in capturing the key anatomical changes in MRI images that
can be differentiated between various staged of Alzheimer’s disease classes.

INDEX TERMS Alzheimer’s disease, curvelet transform, deep learning, CNN, MRI images.

I. INTRODUCTION approved only two types of drugs to treat some symptoms of

Alzheimer’s disease (AD), the most common type of demen-
tia, is a neurodegenerative disease that deteriorates brain
connections, leading to memory impairment and decline in
other cognitive functions [1]. In 2018, it was estimated that
over 50 million people worldwide were living with demen-
tia, and this number is expected to reach 152 million by
2050 [2]. The average life expectancy after AD diagnosis is
3-9 years [3], as currently, there is no cure for AD, and in the
past 20 years, the Food and Drug Administration (FDA) has
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AD [4]. The stages of AD can be divided into two stages:
Mild Cognitive Impairment (MCI), and Alzheimer’s disease
(AD). The MCI stage can be subdivided further into Early
Mild Cognitive Impairment (EMCI) and Late Mild Cognitive
Impairment (LMCI). Individuals with MCI face a significant
risk in progressing into the late stages of Alzheimer’s [5].
MCI patients experience a mild decline in memory and other
cognitive functions. At a later stage, the patient would be
unable to respond to the environment or carry on a con-
versation. Therefore, early AD detection would significantly
contribute to preventive treatment and help delay cognitive
deterioration [6]. Accurate diagnosis of the disease requires
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FIGURE 1. DeepCurvMRI model workflow process for classifying Alzheimer’s stages using MRI images.

a series of examinations: cognitive tests, blood tests, behavior
assessments, brain imaging, and medical history analysis [7],
[8], [9]. However, the current examination relies explicitly
on behavioral assessments and the patient’s medical history
as pieces of evidence, which both demand multiple testing
sessions by expert doctors over a long period. The latter
increases the diagnosis cost and brings subjectivity and alter-
ity to the diagnostic outcome [10]. As a result, a more efficient
and cost-effective diagnostic system is crucial. Recently, with
the advancement in technology, several imaging techniques
have been developed, such as Magnetic Resonance Imag-
ing (MRI) [11], Positron Emission Tomography (PET) [12],
and Computed Tomography (CT) [13]. These techniques
are non-invasive, rapid, accurate, and are widely used to
obtain additional information about AD diagnosis. At the
same time, artificial intelligence (AI) has been significantly
developed in the recent years and offered substantial advan-
tages in computer-based diagnostic systems [14], [15], [16].
Over the past years, various efficient machine learning (ML)
algorithms have been designed to improve disease diagnosis
accuracy [17]. Research interests in this domain include both
Support Vector Machine (SVM) [18], [19], [20], [21] and
Deep Learning (DL) models [22].

SVM and regular neural networks have been criticized for
their poor classification performance when trained on the
raw/un-preprocessed data [23], [24], [25]. A series of fea-
ture preprocessing algorithms combined with the classifier is
necessary for improving the classifier accuracy. For example,
Kamal et al. [26] preprocessed MRI images using an adaptive
mean filter and histogram equalization. Afterwards, image
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features were extracted using Haar Transform for the binary
classification of AD using SVM. Additionally, Wang et al.
[27] trained AdaBoost as a classifier for AD diagnosis, while
intermediate features were processed and selected from brain
gray-matter images using kernel principal component analy-
sis (KPCA). In short, such methods heavily depend on a series
of feature processing algorithms to classify improve the ML
performance.

In contrast, DL models can take the raw data as input
and find discriminating features in the training dataset dur-
ing model traning, such as Convolutional Neural Networks
(CNNp5s) [28], [29], Recurrent Neural Networks (RNNs) [30],
and Multi-Layer Perceptrons (MLP) [31]. CNN models are
frequently used to extract features from PET or MRI images
for their ability to detect essential attributes accurately and
automatically with high-processing speed. MRI images are
easier to access than PET as they require less process-
ing time and are less expensive. AlSaeed and Omar [32]
utilized ResNet50, a pre-trained CNN model, to automati-
cally extract AD diagnosis features using MRI images. They
obtained an accuracy ranging from 73 to 99%. Hogan and
Christoforou [33] developed a 3D CNN model to identify
biological markers of AD from MRI images, giving an
accuracy of 80% on the testing dataset. Moreover, it has
been proven that a feature extraction approach in combina-
tion with CNN classification can improve the final predic-
tion result and decrease the training time compared to ML
approach [34], [35], [36], [37].

Recently, Anitha et al. [38] proposed a WT-CNN model
for AD image classification, in which wavelet transform
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FIGURE 2. Examples of brain MRI images from four different classes, i.e.: (a) ND, (b) VMD, (c) MID,

and (d) MOD.

(WT) is applied as a feature extraction method prior to train-
ing the CNN model. WT-CNN model achieved an accuracy
of 91.87%, which is 1.63% higher than the CNN model.
WT can detect features overlooked by other feature extrac-
tion methods, such as breakdown points and discontinuities.
Several other studies have also utilized WT as a tool for
feature extraction in the form of wavelet coefficients from
MRI images [26], [39], [40], [41]. However, WT’s major
limitation is its inability to identify curved edges, which in
some cases causes false alarms. A more advanced approach
is utilizing Curvelet Transform (CT) as a feature extraction
method for its ability to obtain both linear and curved edges
along multiple scales and orientations [42]. In this regard,
several studies have applied CT in various computer vision
tasks, namely tumor detection [43], [44], image segmenta-
tion [45], [46], [47], signature verification [48], [49], and face
recognition [50], [51], [52]. However, despite its advantages,
limited number of studies have reported using CT as a feature
extraction tool for AD detection using MRI images [53], [54].

In this article, we propose a novel CT-based CNN model
named DeepCurvMRI that improves AD stage prediction
accuracy using MRI images. The model incorporates Fast
Discrete CT (FDCT) for feature extraction across multiple
scales and orientations. Followed by a shallow CNN network
for the multi-class classification (Non-Demented (ND) vs.
Very Mild Demented (VMD) vs. Mild Demented (MID) vs.
Moderate Demented(MOD)) and binary classification(ND
vs. VMD). The major contributions of the paper are summa-
rized as follows:

« A novel Curvelet Transform-based Convolutional Neu-
ral Network approach is proposed, which provides a
more effective and faster method for AD diagnosis.

« Fast Discrete Curvelet Transform is applied as a feature
extraction tool for AD MRI image classification for the
first time.

o In comparison with other models, DeepCurvMRI
requires less number of training parameters, giving a
high classification accuracy in a short period.

o DeepCurvMRI shows better accuracy in comparison to
VGG-16 and AlexNet.

The rest of the paper are organized as follows. Section II pro-
vides details of the data used in this research and introduces
the proposed DeepCurvMRI approach. Section III evaluates
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TABLE 1. Number of images in the obtained Kaggle dataset.

Class No. of Images
Non-Demented (ND) 3200

Very Mild Demented (VMD) 2240

Mild Demented (MID) 896

Moderate Demented (MOD) 64

the performance of DeepCurvMRI and discusses the results.
Section IV concludes the paper.

Il. THE PROPOSED DeepCurvMRI FRAMEWORK

The overall flow of the DeepCurvMRI is illustrated in Fig. 1.
The model consists of three main steps: Data pre-processing,
feature extraction using Curvelet Transform, and classifica-
tion. Each step is discussed below.

A. DATA DESCRIPTION AND PRE-PROCESSING

The AD MRI dataset used here was obtained from the
open-source platform Kaggle,! which consists of 6400 MRI
images of four classes, i.e., Non-Demented (ND), Very Mild
Demented (VMD), Mild Demented (MID), and Moderate
Demented (MOD). The dataset contains 200 subjects, with
32 horizontal slices of the brain for each subject. To avoid
information leakage, the training and testing sets were united,
and leave-one-group-out and k-fold cross validation were per-
formed. The original image size is 176 x 208. All images were
resized into 208 x 208. Fig. 2 shows the typical brain MRI
samples for each class. Table 1 provides dataset distribution
with a number of images in the obtained dataset.

B. FEATURE EXTRACTION USING FAST DISCRETE
CURVELET TRANSFORM

Curvelet is an excellent Multiscale Geometric Analysis
(MGA) approach. CT reserves the same decomposition bene-
fits reported with the WT, but has the additional advantage of
compact representation of edges and singularities on curves
along multiple scales and directions [42], [55]. As a matter of
fact, CT is commonly used to obtain sparse representations of

1 https://www.kaggle.com/datasets/tourist55/alzheimers-dataset-4-class-
of-images
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smooth objects with discontinuity along curves. In this work,
Fast Discrete Curvelet Transform (FDCT) is applied to AD
MRI images to detect low-level features and reduce rough-
ness and noise-amplifications within the decomposed images.
This allows the detection of local and regional differences in
brain images between AD and control subjects. The input to
FDCT is Cartesian arrays f[x], x»] (representing an image),
where 0 < x1, xp < n. This results in a collection of curvelet
coefficients generated by 2D Fourier plane, as indicated in
equation 1, in which ®;; ; denotes the curvelet basis function
indexed by orientation /, scale j, and spatial positions (k1, k2).

Dbk = D L1, 1) P [ 1] ey

CDJ’?{ 1.x denotes the digital curvelet waveforms.

In the theory of CT, two main approaches can be used to
obtain the curvelet coefficients, namely Unequal Space Fast
Fourier Transform (USFFT) method and Wrapping-based
method [55]. USFFT generates the coefficients by sampling
the Fourier image samples in an irregular manner, making the
frequency curvelet response appear to be a trapezoidal wedge.
Furtherly, all scales and orientational coefficients are gener-
ated in an ascending order. With the Wrapping-based method,
on the other hand, the wedge is wrapped into a rectangle shape
to perform the inverse Fourier transform. The wrapping is
applied via periodic tiling of the spectrum using the rectan-
gular wedge to collect the coefficients. Both Wrapping-based
and USFFT methods produce identical results. However, the
Wrapping-based method is applied here, as it is more time
efficient and requires less computational resources in com-
parison than USFFT. Fig. 3 illustrates the curvelet wrapping
architecture. If f [x1, x2] denotes the Cartesian arrays’ 2D
discrete Fourier transform, then the construction of the FDCT
via wrapping is as follows:

1) Apply 2D Fast Fourier Transform to generate Fourier

samples

—_ < — ()
X1, X2 < 2
2_1 2 5

Flxt, xl,
2) If U [x1, x2] is the discrete localizing window, then form
the product for each scale (j) and orientation (/)

Ujalx1. x21f [x1, x2] 3)

3) Wrap the product around the origin to obtain
e, ] = W(UjuP)lx, 2] @

where the ranges for x; and x; are 0 < x; < 2/ and
0<xp <?2/? respectively.
4) Apply the inverse 2D Fast Fourier Transform to all
f?J in order to obtain the discrete curvelet coefficients
D 1 ky ko
The number of scales represents resolution, which depends
on the size of the original image. The maximum image size
in the dataset is 176 x 208 pixels; thus, the maximum num-
ber of scales to be used is 5. Scales 1 and 5, scale 2, and

VOLUME 11, 2023

‘ \\ X
.
A Curvelet at Scale j and Orientation / / \\

‘ FFT

Input Image

‘ FFT

Digital Curvelet Tiling in Space
and Frequency

| , Discarded D
Product (Symmetric)

Image in FT Curveletin FT
Domain ‘ Domain

Curvelet Coefficients at Scale
Jand Orientation /

X ‘\ ‘ \j IFFT
- T

Wedge | >
Wrapping | .

Product of Image in the
Curvelet Domain

Periodic Wedge Tiling

FIGURE 3. FDCT via wrapping.

20 20 30 3J0 40 4

Iog of curvelet cosfficients

50 200 20 00 30 400 450

FIGURE 4. Example of MRI images and their FCT: (a) ND brain,
(b) decomposed curvelet sub-bands of (a), (c) VMD brain, and
(d) decomposed curvelet sub-bands of (c).

scales 3 and 4 contain 1, 16, and 32 orientations, respec-
tively, giving a total of 82 subbands. Figure 4 illustrates
the decomposed images for an ND brain (Fig. 4(a)) and
VMD brain (Fig. 4(c)). The Cartesian concentric coronae are
characterized by the course level, the dyadic spatial square,
and the fine levels surrounding the center, representing higher
frequencies. The selection of specific scales and orientations
is essential to avoid redundancy in information. The first
scale of MRI images in the curvelet domain corresponds
to the general information in the images. As, the scale
increases, the noise content increases. Hence, for this type
of image, it is sufficient to utilize the coarse scale, as the
original image resolution is low. Thus, increasing scales does
not necessarily lead to improvements in the classification
accuracy.
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C. CURVELET DOMAIN DENOSING USING KURTOSIS

Due to its multiscale and multidirectional advantages, CT is
an effective tool for extracting meaningful information and
suppressing noise in seismic data [56], [57]. Before apply-
ing deep learning, it is necessary to remove coefficients
associated with noise by setting a proper threshold. Signals
produced by curvelet transform are normally found in lower
scales and specific orientations, while noise can be distributed
over all scales and directions. As the scale increases, the
noise present within the curvelet matrices increases. Thus,
curvelet coefficients can be processed with a scale-dependent
threshold as the following:

|¢j,l,k1,k2| < Thrj

. 0,
@1,k = I )

DGk, else

where CiJ(,;l,k) is the thresholded curvelet coefficients and
Thrj is the threshold value. In the curvelet domain denoising,
a crucial step is to estimate a threshold from the curvelet
noisy coefficients. Donoho and Johnstone [58] proposed a
multi-scale threshold value (Thrj) as

Thrj = ay/2log(N) x 27V=D/2,

where is the standard deviation, N is the total number of
coefficients, and J denotes the total number of decomposi-
tion scales. Lin et al. [59] improved on the above thresh-
old value and proposed incorporating kurtosis statistics.
Kurtosis is a measure of non-Gaussian characteristic for a
random variable. Noise is generically non-Gaussian in nature.
In image processing, noise found in images can be highly
non-Gaussian. Thus, one possible way to remove noisy coef-
ficients is by thresholding based on kurtosis. A high kurtosis
value indicates the presence of coefficients that carry cru-
cial information, while a low kurtosis value indicates noise.
Weighting the multi-scale threshold according to the coeffi-
cients kurtosis matrix gives

i Kk
Thrj = a+/2log(N) x 2-U=D2(q — |K;()k)|)’

j=12....0

ji=12,....0 (6

where K (k) is the kurtosis of the curvelet coefficients cal-
culated over a sample block, and K, (k) is the maximum
kurtosis found among all sample blocks [59]. Kurtosis is
calculated over a sample block using the following equation:

E[(x — 1)*]
54

x denotes a curvelet coefficient, E is the expectation, u is the
mean, and £ is the standard deviation. A sliding window with
a size of (3,3) is applied in this work. Fig. 5 represents the
reconstructed curvelet coefficients of an AD MRI image in
the coarse scale before and after kurtosis threshholding.

K(k) = ®)
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(@) (b)
FIGURE 5. Reconstructed curvelet coefficients of an AD MRI image in the

coarse scale (a) before kurtosis thresholding, and (b) after kurtosis
thresholding.

TABLE 2. DeepCurvMRI architecture details.

Layer Type Output Shape Parameters
Conv2D + ReLU (None, 12, 12,50) 1850
BatchNormalization (None, 12, 12,50) 200
MaxPooling2D (None, 6, 6, 50) 0

Conv2D_2 + ReLU
BatchNormalization_2
MaxPooling2D_2

(None, 1, 1, 25) 45025
(None, 1, 1, 25) 100
(None, 1, 1, 25) 0

Dropout (None, 1, 1, 25) 0
GlobalAveragePooling2D  (None, 25) 0
Dense (None, 160) 4160
Softmax layer (None, 4) 644

D. CLASSIFICATION USING CONVOLUTIONAL NEURAL
NETWORKS

After feature extraction with Curvelet Transform, specific
angles and subbands are fed into a CNN model to deter-
mine the areas most affected by Alzheimer’s within the
MRI images. To classify Alzheimer’s stages, the CNN model
is built from scratch. The proposed model consists of two
convolutional layers with Rectified Linear Unit (ReLU)
activation function, two batch normalization layers, two max-
pooling layer, a global average pooling layer, a dropout layer,
a dense layer, and a Softmax classification layer. Fig. 6 illus-
trates the architecture of the DeepCurvMRI model. Tabl. 2
represents DeepCurvMRI architecture details. The Deep-
CurvMRI parameters are represented in Table 3.

1) INPUT LAYER

The input layer is the first layer in the DeepCurvMRI model,
where threshholded curvelet matrices at scale 1 for all images
are given as an input. The threshholded curvelet matrices at
the coarse scale have a size of 17 x 17, thus making the input
image size 17 x 17.

2) CONVOLUTIONAL LAYERS

Conventional layers are the primary building block of the
DeepCurvMRI model. They receive an image as an input and
convolve using filters to produce an output image. The output
at each channel is known as a feature response or map, and it
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FIGURE 6. Architecture of DeepCurvMRI model for the multi-class classification of Alzheimer’s disease stages.

TABLE 3. Significant parameters of the DeepCurvMRI model.

Parameter Value
Input Channels 3
Batch Size 35
Stride 1x1
Number of Filters 50,25
Filter Size 6x6
Pool Size 2x2
Learning Rate 0.0001
Activation Function ReLU
Optimizer Adam
is calculated as follows:
Xp=IxW,+B,, n=1,2,...,F O]

where [ is the input, x;, is the output of the nth filter, W, is
the weight of the nth filter, B, is the bias of the nth filter,
and F is the number of filters. In the DeepCurvMRI model,
the number of filters for the first and second convolution are
9 and 12, respectively, and both have a filter size of 3 x 3 (see
Table 2). In this work, the ReLLU activation function has been
applied directly to the feature map output.

3) BATCH NORMALIZATION LAYERS

Batch normalization layers are used after conventional layers
to reduce the effect of initialization and speed up the process
of training by recenting and rescaling. Batch normalization
applies a transformation that keeps the output standard devi-
ation close to 1 and the mean output close to 0. The values
are normalized according to the following equation:

yi=oaXi+ B (10)

in which y; represents the output values, x; the normalized
input values, « the scale, and 8 the offset factor.

4) POOLING LAYERS

Pooling layers are applied after convolution layers to reduce
the size of the feature map, thus decreasing the number
of parameters required and lower computational cost. Max-
pooling layers pick maximum pixel values in the filter map
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TABLE 4. Performance of DeepCurvnMRI with three validation
approaches(i.e. LOGO, 10-Fold, and 5-Fold).

Classification Approach | Acc% Sens % Specs % F1 score
LOGO 98.71 £0.05 | 98.8440.03 | 98.50 +0.03 | 99.25 4-0.01

Binary (ND/VMD) | 5-Fold 97.41 £0.04 | 97.8040.03 | 98.01 £0.04 | 98.20 £0.03
10-Fold 97.61 £0.06 | 97.8540.04 | 97.90 £0.04 | 98.10 +0.05
LOGO 98.62 £0.10 | 99.05 £0.10 | 98.5 £0.10 | 99.21 £0.08

Multiclass 5-Fold 97.8340.03 | 97.80 £0.03 | 98.10 £0.02 | 98.70 £0.05
10-Fold 97.62+0.03 | 97.50 £0.01 | 98.00 £0.02 | 98.50 £0.04

selected by the kernel filter. The result is a feature map
containing the most prominent features of the convolutional
layer’s outputted feature map. Maximum pooling is computed
with the following equation

X—F

+ 1)

s

where X is the input, F is the max-pooling window size, s
is stride. After max pooling, a global average pool (GAP)
is applied to reduce the dimensions of the feature map and
produce a 2D feature vector. Unlike a flatten layer, GAP
considers the spatial information, making it more robust to
spatial translations of the input.

MP:Floor( (11

5) DROPOUT LAYER

Dropout is performed to randomly drop a fraction of the
neurons in the GAB layer to avoid some variables from being
repeatedly accepted during the training. This layer also aids in
reducing over-fitting. The dropout value applied here is 0.5.

6) DENSE LAYER

The fully connected or dense layer is a standard feedforward
layered network that includes input neurons, hidden neurons,
and a softmax regression unit. The output of the GAP layer
is fed to the dense layer. In the proposed method, 64 neurons
are used in the dense layer, after which a softmax layer is
applied to classify the classes. The softmax layer generates
the probability distribution of the classification results for
each pixel.

E. MODEL EVALUATION

Due to the limited number of patients in the dataset,
DeepCurvMRI performance was assessed using two different
methods: leave-one-group-out cross-validation (LOGOCV)
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TABLE 5. Performance analysis of DeepCurvnMRI with different models.

Method Classifier Classification Dataset | Acc. (%) | F1 Score (%) | Number of parameters | Reference
Neural Network | VGG-16 Binary Kaggle | 70.30 52.0 138,627,867 [60]

Neural Network | SVM Binary Kaggle | 73.0 - - [61]

Neural Network | Feed-forward LPQNet | Binary Kaggle | 99.64 -- [62]

Neural Network | HTLML Multi-class Kaggle | 91.75 90.25 - [63]

Neural Network | AlexNet Multi-class Kaggle | 94.0 94.12 60,000,000 [64]

Neural Network | DEMENT Multi-class Kaggle 95.23 95.27 4,534,996 [65]
FDCT-WR CNN Binary (ND vs. VMD) | Kaggle | 98.71 99.25 43,721 DeepCurvMRI
FDCT-WR CNN Multiclass Kaggle | 98.62 99.21 51,797 DeepCurvMRI

FDCT-WR: Fast Discrete Curvelet Transform - Wrapping Method.

and stratified k-fold cross validation. LOGOCV involves
using Ny — 1 groups (N; = 200) as training sets and one
group as a test set for validation. This process is repeated N,
times until each group has been used as the test set. On the
other hand, stratified k-fold cross validation randomly selects
a fraction of the data % x 100% for testing purposes and
uses the remaining data for training. The classification model
is reinitialized in each iteration and the subjects from the
previous iteration are included in the training. This process is
repeated for k iterations. To assure the robustness of the devel-
oped model, we performed the randomly stratified k-fold
cross validation approach with two values of k, i.e. 10 and
5. We evaluated the performance of DeepCurvMRI using the
following metrics: Accuracy, F1-score (F1), Specificity, and
Sensitivity.

TP + TN
Accuracy = (12)
TP+ TN + FP 4+ FN
2TP
Flscore = —————— (13)
2TP + FP + FN
Specificty = il (14)
pecyicty = TN + FP
Sensitivty = i (15)
ensitivty = TP+ FN

where TP is the number of correctly classified Alzheimer’s
disease subjects; TN is the number of correctly classified non-
demented subjects; FP is the number of non-demented and
intermediate subjects classified as Alzheimer’s disease; and
FN is the number of Alzheimer’s disease and intermediate
subjects classified as non-demented.

Ill. EXPERIMENTAL RESULTS AND DISCUSSION

A. EXPERIMENTATION RESULTS OF THE PROPOSED
DeepCurvMRI MODEL

This subsection presents the experimental results of the pro-
posed DeepCurvMRI model for the multiclass and binary
classification of AD. Adam optimizer was utilized with
a learning rate of 1073, The diagnostic abilities of the
proposed DeepCurvMRI were evaluated on the aforemen-
tioned 200 subjects (see section II) that have been included
in this study using a leave-one-group-out (LOGO) cross-
validation approach and different k-fold approaches (5-fold
and 10-fold). We evaluated the performance of our model
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using overall accuracy, sensitivity, specificity, and F1-score.
The classification process has outputted the results tabulated
in Table 4 in terms of the adopted performance metrics. With
accuracy, sensitivity, specificity, and F1 score of 98.62% +
0.10%, 99.05% £0.10%, 98.50% +0.03%, and 99.21 +0.08,
respectively, for the LOGOCY, 97.62% =+ 0.03%, 98.00% =+
0.02%, and 98.50 £ 0.04, respectively, for the 10-fold, and
97.83% =+ 0.03%, 97.80% + 0.03%, 98.10 £ 0.02, and
98.70 £ 0.05, respectively, for the 5-fold, DeepCurvMRI
proves itself as the best among common deep learning mod-
els. The highest accuracy, sensitivity, specificity, and F1
score achieved in binary classification is 98.71% + 0.05%,
98.84% £0.03%, 98.50% £0.03%, and 99.25+0.01, respec-
tively, using LOGOCV. Table 5 summarizes the comparison
results between the performances of different DL models and
approaches. These results indicate that incorporating image
transformation as a feature extraction method with a deep
learning model can drastically improve accuracy and lower
training duration.

B. DISCUSSION AND COMPARISON

This research aims to provide a detection system for
Alzheimer’s Disease stages using MRI images to improve
the diagnostic accuracy in medical centers. The first step in
the proposed model is applying curvelet transformation as
a feature extraction function on the collected images. The
next step is implementing kurtosis thresholding to remove
curvelet coefficients associated with noise. Afterward, the
images were reconstructed from the thresholded curvelet
coefficients and were classified using CNN classifier. Results
in Tabl. 5 express curvelet transformation’s ability to capture
the key anatomical changes in the brain MRI images, which
can be utilized to differentiate between the ND, VMD, MID,
and MOD classes. By feeding the deep learning network the
output from the FCT, a new space of the MRI representation
is created, giving a high classification accuracy.

Table 5 compares the performance analysis of
DeepCurvMRI with other models. The existing methods were
trained on the binary and multi-class classification on same
dataset utilized in this article. DeepCurvMRI is compared
to models such as VGG-16 [60], AlexNet [64], DEMENT
[65], SVM [61], HTLML [63], and Feed-forward LPQNet
[62]. LPONET achieved slightly higher accuracy than
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DeepCurvMRI for the binary classification of AD. However,
cross-validation has yet to be applied in LPQNet to account
for leakage possibility within the Kaggle Dataset, as there
are 32 MRI slices for each patient. DeepCurvMRI outper-
forms all the other models in terms of accuracy and F1-score,
as evidenced by the results of classifying four classes with
51,797 parameters. The performance of DeepCurvMRI is
28.41% higher than VGG-16 and 4.62% higher than AlexNet.
Both models utilize millions of parameters. This is attributed
to curvelet transformation and its ability to represent smooth
objects with discontinuities along curves. A better image
representation yields significantly better results within a
shorter period. Moreover, thresholding curvelet coefficients
using kurtosis removes coefficients associated with noise,
providing a more precise representation of the MRI images.
Within the Kaggle dataset, a 0.35% increase in accuracy is
observed for the multiclass classification of AD. Kurtosis
thresholding can be more advantageous based on the clarity
of the input images.

IV. CONCLUSION
This work proposes a curvelet-based CNN structure for the

binary classification of AD MRI images. DeepCurvMRI is
trained and tested using the Kaggle database to classify
Alzheimer’s disease stages. FCT with wrapping method is
used to decompose the MRI image into scales and sub-bands.
The obtained curvelet coefficients are then processed and
thresholded using kurtosis to extract prominent features. Our
model achieved an overall accuracy, sensitivity, specificity,
and F1 score of 98.62%+0.10%, 99.05%=+0.10%, 98.50% +
0.03%, and 99.21 £ 0.08, respectively, using LOGOCYV for
the multiclass classification of AD, and an accuracy, sensitiv-
ity, specificity, and F1 score of 98.71% =+ 0.05%, 98.84% =+
0.03%, 98.50% =+ 0.03%, and 99.25 £ 0.01, respectively,
for the binary classification of ND/VMD. DeepCurvMRI
surpassed the performance of the existing methods. Hence,
the results showcase the potentiality of the proposed Deep-
CurvMRI to efficiently identify brain regions associated with
AD MRI images, serving as a fast and easy to implement the
tool for assisting physicians in AD diagnosis. As for future
work, DeepCurvMRI will be trained and tested on various
datasets for Alzheimer’s disease diagnosis. Moreover, meta-
data such as clinical biomarkers and demographics can be
included and combined to create a holistic approach to AD
diagnosis.
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