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ABSTRACT Meningioma is derived from the cap cells that reside on the arachnoid membrane. The atypical
meninges of Grade II, a classification established by the World Health Organization, are included in one of
the grades of meningioma. It has been discovered that early surgical resection significantly reduces the
recurrence rate and mortality of tumors. Accurate segmentation of magnetic resonance images of brain
tumors is crucial for diagnosing and treating atypical meningiomas. However, the traditional automatic
segmentation framework heavily relies on convolution. The convolution-based segmentation network has
limitations such as the size of the convolution kernels, a restricted receptive field, and a lack of spatial
aggregation ability. To overcome these limitations, this paper presents a novel hybrid architecture named
TAGU-Net, which combines Transformer and convolution based on U-Net with an attention gate. The
TAGU-Net architecture extracts features of different resolution feature scales using convolutional neural
network and Transformer. This approach effectively captures the image’s long-distance dependency and
global characteristics in the encoder stage, relying on the global self-attention mechanism of the Transformer.
Additionally, the inductive bias of the convolution neural network is combined to enhance the local modeling
information and improve the model’s overall modeling ability. In the decoder phase, the attention gate
is introduced to adaptively learn the skip connection information and up-sampling information in the
network. This information is weighted and fused to highlight important features and suppress irrelevant
features. To obtain better model training and avoid the vanishing gradient, deep supervision technology
is used in the training process. Supplementary loss is added in some stages to supervise the training and
achieve the best effect of atypical meningioma segmentation. The proposed method is evaluated on both the
private atypical meningioma dataset and the publicly available BraTs2018 dataset. TAGU-Net has achieved
Dice Scores of 97.67% and 97.62% and Jaccard index of 96.35% and 95.35% on the private atypical
meningioma dataset and BraTs2018 dataset respectively, which is a state-of-the-art segmentation result
beyond existing methods. According to the research results, the TAGU-Net model significantly improves
atypical meningioma segmentation and can effectively assist doctors in processing MRI images.

INDEX TERMS U-Net, atypical meningioma segmentation, transformer, MRI, attention gate.

I. INTROUDUCTION

Intracranial meningiomas are extra-axial central nervous
system tumors, frequently occur in the brain and spine
[1], [2]. According to the World Health Organization (WHO),
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the lesions of meningiomas are classified as grade I (benign
tumors), grade II (atypical), or grade III (anaplastic) [3],
[4], and WHO grade II atypical meningiomas (AM) belong
to one of the grades of meningiomas [5]. Intracranial
meningiomas mostly present as low-grade (grade I) benign
tumors, and high-grade (grade II or IIT) meningiomas account
for 6% — 18% of all meningiomas [6]. Demonstrated that
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resection can be curative for nearly 80% of benign tumors,
but intracranial meningioma remains a dangerous disease [7].
However, high-grade meningiomas exhibit an increased risk
of recurrence after treatment, exhibit aggressive behavior,
and increase morbidity and decrease survival [8], [9], [10].
Numerous studies have shown that grade II and III menin-
giomas are recurrent, aggressive, and aggressive [11] and
that grade III meningioma are considered the most aggres-
sive, i.e., malignant. Therefore, the clinic is of great sig-
nificance for diagnosing and segmenting grade II menin-
giomas, i.e., AM, especially as the tumor grows slowly and
inhibits vital organs before progressing to malignancy. Early
detection of AM holds significant value in the treatment
of meningiomas and ultimately enhances patient survival
rates.

The segmentation method based on traditional machine
learning is not popular with the public because of its com-
plexity, cumbersome operation, and low accuracy. Currently,
the mainstream deep learning method still relies on the pure
convolution architecture, and the pure Transformer and con-
volutional neural network (CNN) and Transformer hybrid
architectures have their own defects. The traditional CNN
segmentation network is limited by the size of the convolution
kernel, which has the problems of limited receptive field and
insufficient spatial aggregation ability [12]. While dilation
convolution can increase the receptive field of CNN, it is not
sufficient to overcome these problems [13]. Due to the lack
of prior knowledge like CNN inductive bias (ie, locality and
translation equivariance), the pure Transformer architecture
requires a large amount of data to learn enough information,
which is extremely difficult and particularly challenging on
medical image data sets with few samples [14]. In the hybrid
architecture of CNN and Transformer, Transformer typically
operates on the feature map extracted by CNN [15]. Obvi-
ously, this approach leads to a significant loss of valuable
information.

In this study, we propose a novel hybrid architecture that
combines Transformer and convolution, based on U-Net with
attention gate, to achieve automatic segmentation of atypi-
cal meninges. two types of Encoders are designed, namely
ConvEncoder, and FormerEncoder. Different from the con-
ventional hybrid architecture of Transformer and CNN, the
proposed FormerEncoder does not model the feature maps
extracted by CNN, but in the encoder stage, the two types of
encoders extract the features of different resolution feature
maps at different scales. ConvEncoder and FormerEncoder
extract different information from different resolution feature
maps at different scales, and the information obtained by
the same Encoder at different scales and resolutions is also
different, and the shallow features obtained in high resolu-
tion contain texture, contour and position information, while
the deep features obtained in low resolution contain rich
semantic information. In the encoder stage, the two types
of encoders extracted the features of different resolution
feature maps at different scales. At the same time, TAGU-
Net fused the long-distance dependency and global features
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of images captured by FormerEncoder with the local fea-
tures extracted by ConvEncoder to produce a more effective
feature representation. Moreover, for FormerEncoder, it is a
flexible and efficient encoder, which can replace the Former
Encoder Block of FormerEncoder based on the characteris-
tics of different tasks or different data sets, such as Swin-
Transformer [16], PVT [17] or T2T-ViT [18]. In the decoder
stage, we only use ConvDecoder to avoid the high complexity
of the model. At the same time, we introduce the attention
gatie mechanism to adaptively learn the skip connection
information and the up-sampling information in the network,
and carry out the weighted fusion of the two, highlight the
important features and suppress the irrelevant features, real-
izing the feature reuse in the decoder stage. At the same time,
in the training phase, we use deep supervision, and in some
stages, we introduce an auxiliary loss function to carry out
supervision training. The main contributions of this paper can
be summarized as follows:

o A transformer convolution hybrid architecture based
U-Net with attention gate is proposed for MRI segmen-
tation and learning of atypical meningiomas. The results
demonstrate that this framework surpasses state-of-the-
art models in terms of performance.

« Use genetic algorithm-based adaptive histogram equal-
ization to preprocess the original MRI image to enhance
image details, thereby achieving a more precise segmen-
tation.

o The FormerEncoder module is designed to capture
global features at different scales and model the
long-distance dependence of the image, and it is flex-
ible and replaceable based on different data character-
istics. In addition, the convolution features generated
by ConvEncoder are fused to achieve a complementary
structure.

« The Attention Gate module is introduced to adaptively
learn feature information from different structures in
the decoder branch, highlighting important features and
suppressing irrelevant features.

The rest of this paper is organized as follows: The related
work of atypical meningioma segmentation and segmentation
network is presented in Section II, respectively. Section III
introduces the data set used and provides a detailed descrip-
tion and the model framework and algorithm proposed in this
paper. Subsequently, the experimental results are presented
and analyzed in Section IV, including the performance com-
parison with other methods. Finally, Section V draws the
main conclusions about the work introduced.

Il. RELATED WORK

Clinically, for meningioma diagnosis and recognition divided
into invasive and non-invasive methods, non-invasive medical
imaging techniques such as computed tomography (CT) and
magnetic resonance imaging (MRI) which is more favored in
the diagnostic stage as brain tumor recognition tools, outper-
forming invasive methods such as tissue biopsy [19]. Among
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noninvasive medical imaging techniques, MRI is considered
the most common technique for diagnosing meningiomas
because it can provide detailed images and noninvasive prop-
erties of human tissues and organs.

Brain tumor segmentation is an essential step before apply-
ing any treatment, and the current standard method of brain
tumor segmentation is manual and is based on expert expe-
rience. Experts must manually segment the MRI to delineate
the target image. The surge in the number of patients can lead
to a decrease in the quality of physicians’ work, creating a
situation of manual segmentation error. With the development
of computer technology, computer-aided diagnosis (CAD)
systems have been developed quickly and applied to segment
tumors. A large number of studies have achieved great suc-
cess in the fields of breast cancer [20], [21], brain tumors
[22], [23] and other fields.

A. MACHINE LEARNING

For meningioma, the field of meningioma segmentation has
developed rapidly. The main methods are divided into seg-
mentation methods based on traditional machine learning
and segmentation methods based on deep learning. There are
two kinds of segmentation methods based on conventional
machine learning, one is based on the unsupervised cluster-
ing method, and the other is to transform the segmentation
problem into a pixel classification problem. Almahfud et al.
used a combination of two K-means and Fuzzy C-means
(FCM) grouping methods to detect brain tumors [24]. Benson
et al. implemented an improved version of the fuzzy C-mean
clustering and watershed algorithm. An effective way of
selecting the initial centroid based on histogram calculation
was proposed to improve the accuracy of clustering. In addi-
tion, a set-based tag detection method was proposed to avoid
over-segmentation [25]. Saha and Hossain proposed a way to
automatically classify brain images of MRI using K-means
clustering, nonsubsampledcontourlet transform (NSCT), and
support vector machine (SVM). Because NSCT has signifi-
cant characteristics such as multiscale, multidirectional, and
displacement invariance, K-means clustering and NSCT are
used to segment brain images of MRI, which improves the
efficiency and accuracy of segmentation [26]. Amin et al.
used a fused eigenvector to apply a random forest (RF)
classifier to classify between three sub-tumor regions using
a mixture of gabor wavelet features (GWF), histograms of
oriented gradient (HOG), local binary pattern (LBP), and seg-
mentation based fractal texture analysis (SFTA) features [27].
Al-Dmour and Al-Ani proposed an efficient and fully auto-
matic brain tissue segmentation algorithm based on clustering
fusion technology. A Neural network simulates clustering
and divides the target based on superpixels, three clustering
algorithms, and a neural network [28]. Kaya et al. used
principle component analysis (PCA) for multivariable data
reduction and five standard PCA algorithms for target seg-
mentation [29].
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B. DEEP LEARNING

Among the segmentation methods based on deep learning,
due to the excellent performance of the convolutional neu-
ral network in the field of image processing and computer
vision, especially after the birth of AlexNet [30], CNN has
ushered in a blowout of explosive development. At the same
time, CNN architecture has become the leading choice in
medical image segmentation. Kamnitsas et al. proposed a
dual-channel, 11-layer deep three-dimensional convolutional
neural network and designed an efficient and effective inten-
sive training scheme while automatically adapting to the
inherent class imbalance in the data, using the dual-channel
architecture to combine local and more extensive context
information [31]; Havaei et al. proposed a fully automatic
brain tumor segmentation method based on deep neural net-
work (DNN). By using dual-channel CNN architecture and
cascade architecture, the system can more accurately model
local label dependency by using local features and more
global context features [32]; Diaz-Pernas et al. proposed a
deep convolution neural network with multiscale methods.
Inspired by the inherent multiscale operation of the human
visual system (HVS), the input images are processed at three
spatial scales along different processing paths. The multiscale
processing strategy can effectively extract discriminatory tex-
ture features for different types of tumors [33]; Haq et al.
proposed an integration and hybrid method based on a deep
convolution neural network and machine learning classifier.
By learning the feature map from the brain MRI image space
to the tumor marker region through CNN, a faster region-
based CNN was developed for tumor region localization,
followed by the potential region network (RPN). Finally, the
deep CNN and machine learning classifier were connected to
achieve target segmentation [34]; Ding et al. proposed Stack
Multi-Connection Simple Reduction Net (SMCSRNet) based
on U-Net framework, which reduces the number of model
parameters and adds bridging between stacked cascaded net-
works to improve information loss [35]; Maji et al. proposed
an Attention Res-UNet (ARU-GD) with a guided decoder,
which designs the loss function by guiding the decoder, and
introduces the attention gate to focus on the activation of
relevant information [36].

C. SEGMENTATION NETWORK

The complete convolution networks (FCNs) [37] proposed
by Long et al. achieve the state-of-the-art (SOTA) of image
segmentation and semantic segmentation under the premise
of only using convolution; Ronneberger et al. proposed a
symmetrical encoder-decoder structure of medical image seg-
mentation network U-Net [12]. U-Net has played an excellent
role in medical images with small data scale. Most future seg-
mentation networks will continue to use the U-Net structure
and make improvements; Ibtehaz et al. re-thought based on
U-Net. Inspired by Inception [38], they replaced the tradi-
tional convolutional layer with a multi-resolution idea and
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introduced residual connection [39]. Instead of simply con-
necting the feature maps from the encoder to the decoder, they
passed through the convolutional layer chain with residual
connection and then combined with the decoder features to
enhance the feature representation [40]; Influenced by Trans-
former [14], [41], a large number of studies have explored
the feasibility of Transformer in the field of medical image
segmentation. Hatamizadeh et al. used Transformer as an
encoder to learn the sequence representation of the input
quantity and effectively capture the global multi-scale infor-
mation, and combined the information with the CNN decoder
through the skip connection of different resolutions [42];
Wang et al. proposed a network based on Transformer’s
coder-decoder structure [43]. The 3D CNN is used to extract
the spatial feature map to carefully transform the feature
map of the global feature modeling of the input Transformer.
At the same time, the decoder uses the features embedded
in the Transformer and performs progressive up-sampling to
predict the detailed segmentation map.

Ill. MATERIAL AND METHODS

A. PRIVATE DATASET

This study used the private atypical meningioma patient
dataset from Weihai Municipal Hospital. In this dataset,
researchers retrospectively collected pre-operative MRI scans
of 203 subjects from 2010 to 2019. All subjects had the fol-
lowing MRI findings: (1) First operation of tumor resection
in Weihai Municipal Hospital; (2) The grade of postoperative
pathological diagnosis results was precise; (3) Preoperative
high-quality cranial T2 weighted imaging (T2) and contrast-
enhanced T1 weighted imaging (T1C) MRI; (4) Preoperative
complete clinical data and information; (5) No history of
surgery, gamma knife and other treatments; (5) No MRI
sequence was incomplete (T2 / TIC) and imaging was free
of artifacts.

Multimodal MRI delivers a great deal of information for
segmentation and extraction of meningiomas, specifically
for meningioma machine scans that provide hundreds of 2D
imaged brain slices with high soft tissue contrast, the common
MRI sequences are T1, T2, T1C, and fluid-attenuated inver-
sion recovery (FLAIR). Each MRI sequence produces images
with different tissue contrast, which has a different role in
distinguishing tumors [44], [45]. T1 modality is usually used
to process healthy tissue, T2 modality is more suitable for
detecting the boundary of edematous regions, T1C modality
highlights the tumor boundary, and flair modality is favorable
for detecting edematous regions in cerebrospinal fluid.

In this study, we utilized T1C and T2 MRI sequences at
the same time. Because different MRI sequences come from
different signal information and belong to different modal
information in a broad sense, the MRI sequences that use T1C
and T2 simultaneously in this study belong to multimodal
information fusion. In contrast, the joint multimodal informa-
tion fusion usually constructs a multi-branch structure. Each
mode has its flow; feature fusion is performed after feature
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FIGURE 1. Different modal MRI images and their corresponding
segmentation results, (a) (b) are T1C modal slices and their segmentation
results, and (c) (d) are T2 modal slices and their segmentation results.

extraction of different branches or streams. However, this
method is challenging to obtain the characteristic relation-
ship between different modes, and it is difficult to use the
complementary information between the modal information.
Moreover, although the mode represents different signals,
it represents the same feature. To address this issue, we pro-
pose a novel approach that directly inputs the two modal
information to effectively extract the relationship between
different modal information.

The resolution of most images in this dataset is 512 x
512, and the resolution of a few images is 432 x 512 and
496 x 512 in order to unify the resolution and facilitate
image feeding into the model, we set all image resolutions to
512 x 512. Fig.1 shows the MRI images of different modes
and their corresponding segmentation results.

B. PUBLIC DATASET

The BraTs dataset serves as a public benchmark for brain
tumor segmentation, and for our study, we utilized the BraTs
2018 [44], [46] training dataset acquired from the official
website to evaluate our proposed method. This dataset com-
prises two types of gliomas, high-grade glioma (HGG) typi-
cally classified as WHO grade I1I or IV, and low-grade glioma
(LGG), typically classified as WHO grade I or II. Given
that atypical meningiomas are only LGG, we focused our
verification solely on LGG patients, totaling to 75 patients
in the BraTs 2018 dataset. Each patient’s MRI includes cor-
responding T1, T1C, T2, and FLAIR sequences, which led to
a collection of 4845 slice images with each slice containing
information from the four sequences. The size of each slice
image was 160 x 160 x 4.

C. PREPROCESSING OF IMAGE DATA

Because medical images are very susceptible to noise, the
quality of the obtained images could be lower, with noticeable
noise and low contrast. However, the quality of the image
has a significant impact on the subsequent diagnosis and seg-
mentation. In low-quality images, the region of interest (ROI)
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(a) ()

(d) (e)

FIGURE 2. Different modal MRI images and their corresponding segmentation results, (a) original image, (b) after Gaussian filtering, (c) after AHE,

(d) after CLAHE, and (e) after GAAHE.

may not be observed, resulting in abnormal diagnosis or seg-
mentation. Therefore, it is necessary to de-noise and enhance
the image’s contrast. This preprocessing aims to solve the
defects of MRI and generate the most precise and representa-
tive MRI possible to achieve the most accurate segmentation
process. In this paper, we performed a series of preprocessing
operations, and Gaussian filter denoising was used to remove
general noise. Then we used a genetic algorithm-based adap-
tive histogram equalization (GAAHE) [47] to enhance the
contrast of MRI.

1) GAUSSIAN FILTER

The gaussian filter is a smooth linear filter. Gaussian filter is
used to smooth the image to remove noise. When calculating
the gaussian smoothing result, the origin is the center point.
Other points are weighted according to their positions on
the standard distribution curve to obtain a weighted average
value. The template used in this article is 5 x 5. The size of
the Gaussian filter is publicly defined as follows:

x2 +y2

e 22 (1)

G(x,y) =
(x,y) Tmol
of which x and y indicates the size of the kernel filter, o?is
the variance of the Gaussian filter.

2) GENETIC ALGORITHM BASED ADAPTIVE HISTOGRAM
EQUALIZATION

Adaptive histogram equalization (AHE) is commonly used
to enhance contrast in medical images, but artifacts and
noise amplification often occur in the actual process. It is
also evident in Fig.2 that the artifacts and noise of MRI
images after AHE are severe. Contrast limited adaptive his-
togram equalization (CLAHE) [48] is an improved approach
of AHE, which suppresses the problem of AHE noise ampli-
fication by limiting the contrast. This paper uses the genetic
algorithm-based adaptive histogram equalization method,
which is also improved based on AHE. A new subdivi-
sion method is applied to the histogram through exposure
threshold and optimal threshold to maintain brightness and
reduce information loss. The threshold parameters are opti-
mized using the concept of genetic algorithm. Then, mod-
ify each sub-histogram’s probability density function (PDF)
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to improve the image quality. Fig.2 shows the comparison
between the pre-processed image and the original image.

D. PROPOSED FRAMEWORK

This paper attempts to solve the segmentation problem of
atypical meningioma MRI. The proposed framework is to
design a hybrid model of transformer and convolution to
adapt to the input of multimodal MRI sequences to achieve
accurate segmentation. As shown in Fig.3, the framework is
divided into three stages: preprocessing image data, TAGU-
Net segmentation model, training, and model evaluation.

1) TAGU-NET NETWORK ARCHITECTURE

The TAGU-Net proposed by us is improved based on the
classical segmentation network U-Net architecture, which
consists of two parts, the encoder branch, and the decoder
branch. The U-Net achieved precise positioning mainly by
contracting and expanding paths. The encoder branch of the
U-Net network is primarily composed of convolution and
down-sampling operations, which are responsible for feature
extraction. The decoder branch is used to restore the origi-
nal resolution of the feature map. The connection between
the two branches is mainly through a skip connection.
The skip connection completes information fusion by splic-
ing the underlying position information and deep semantic
information.

In this paper, considering that U-Net belongs to a fully
convolutional network and is limited by the local spatial
information of convolution, we propose a novel hybrid archi-
tecture consisting of Transformer and convolution based on
U-Net with attention gate, combining Transformer’s global
characteristics and long-distance dependence of the image,
in which the attention gate acts on the skip connection and
up-sampling. Fig.4 shows the overall architecture of the pro-
posed TAGU-Net model.

The model’s input is an MRI image, and the output is an
AM mask image. In this model, we unified the size of the
input MRI image and used the image resolution of 512 x
512 MRIs. All input images go through ConvEncoder and
FormerEncoder, respectively, in the Encoder branch. After
feature fusion, they are gradually down-sampled. After the
final encoder, the size of the feature image has been reduced
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FIGURE 4. Structure diagram of TAGU-Net model, which mainly includes three modules: encoder branch, decoder branch, and deep supervison.

to the size of the original MRI image 1/16. The structure of After passing the Encoder branch, the feature map enters the
ConvEncoder and FormerEncoder will be introduced later. Decoder branch. The Decoder branch is mainly composed
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of ConvDecoder, attention gate, and deep supervision, and
the ConvDecoder has the same structure as ConvEncoder.
The attention Gate is primarily used for adaptive learning
of skip connection information and up-sampling information,
a weighted fusion of the two, highlighting important features
and suppressing irrelevant features. The purpose of deep
supervision is to train the network better and increase the
training of the auxiliary loss supervision network.

2) ConvEncoder

ConvEncoder is used to extract the image’s inductive bias and
local feature information. The traditional ConvEncoder is full
convolution, but the ConvEncoder in this paper is not full con-
volution. The main purpose is to learn the feature map weight
better. We added the channel attention SE module [49]. After
passing the SE module, ConvEncoder learned the correlation
between channels and improved the weight of important
channels in the subsequent feature fusion. ConvEncoder is
the stack of convolution layers. The super parameter depth
determines the number of convolution layers. To prevent Con-
vEncoder from following depth, the amount of calculation
and parameters added needs to be more significant. We only
add the SE module after the first layer of convolution. Mean-
while, because the size of MRI image at the time of input
is 512 x 512 x 1, using the SE module has little effect.
The SE module is not added in the first ConvEncoder. For
the activation function in all volume layers o (x) using SiLU
function, as shown below:

(@)

O'(x):x*m

In addition, for each ConvEncoder, we have added the
residual connection of the bottleneck structure to avoid
vanishing gradient problem and network degradation. The

VOLUME 11, 2023

equation is shown as follows:

Xo =0 (BN (F (X, {We}) €)
X, =0 (BN (SE (F (X;_,,{W¢})))), €=1...N (4)
Xy =Xy +F (X, {W,}) &)

where X is the input image X € RIXWXC I W is the reso-
lution of the image, C is the number of channels, F (x) indi-
cates same-padding convolution operation, W, is the weight
of convolution, BN (x) indicates batch normalization, o ()
indicates the activation function, SE (x) indicates SE module,
W; is residual connection convolution weight, N represents
the depth of ConvEncoder, Fig.5 shows the structure diagram
of ConvEncoder.

3) FormerEncoder

Recently, Transformer has gradually become the primary
means of natural language processing (NLP). At the same
time, Transformer also shines brilliantly in computer vision
(CV), and gradually becomes the basic component of a large
number of CV. Transformer has also received much attention
and research in medical image processing. Transformer’s
primary approach in CV is to split the input image into
patches with different strategies, at the same time embed-
ding the patch in high dimensions, and use the self-attention
mechanism to model long-distance dependency. Transform-
ers is immune to convolution imperfections. However, in the
hybrid architecture based on Transformer and CNN, Trans-
former is usually used to model the feature map after CNN
extracts features. It can be expected that such a method
loses most of the image information, and the Transformer
only models feature maps containing rich semantic infor-
mation, and the representation of shallow features is miss-
ing. In this paper, we design a Transformer-based encoder
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called FormerEncoder. FormerEncoder will work with Con-
vEncoder to perform feature extraction on feature maps of
different resolutions at different scales, combining different
representations of convolution and Transformer and deep and
shallow features will help the model perform better segmen-
tation. Meanwhile, FormerEncoder can be flexibly replaced
according to the task and data characteristics, such as Swin-
Transformer [16], PVT [17] or T2T-ViT [18]. In this article,
for the convenience of consideration, we only designed it
based on the basic ViT.

FormerEncoder follows the classic ViT [14] architecture.
FormerEncoder comprises three parts: Patch Embedding
Block, Former Encoder Block (FEB), and Upper Sampling
Layer (USL). Image in a FormerEncoder X € RH*WxC
enter the Patch Embedding Block and cut it into several
non-overlapping patches x, € RV*P ZXC, embedding the
patch in high dimension, where P is the resolution of each
patch, N = HW/P? is the number of patches gener-
ated. In FormerEncoder, the image is cut into patches from
ordered spatial information to unordered sequence informa-
tion. At this time, spatial position information is essential.
To retain the spatial position information of the image, after
all patches are embedded, we set a learnable position coding
information position embedding E,,; € RV*D pefore the
end of the Patch Embedding Block. Then, the embedded
information and position embedding are fused and added,
where D is the latent vector size set in the Patch Embedding
Block. The equation definition of the Patch Embedding Block
is as follows:

X0 = [x;Wp;x]fW,,; ;x,I)VW,,] + Epos, Wpe RP?XCxD
(6)
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FormerEncoder mainly includes FEB stack of, FEB it is
divided into three parts: Multiheaded Self-Attention (MSA),
Feed Forward Network (FFN) and LayerNorm (LN), MSA
capture the long-distance dependency and global feature
information of the image through self-attention, LN carry
out normalization adjustment and finally pass FFN perform
dimension transformation and mapping. The specific equa-
tion is defined as follows, where L is number of layers stacked
for FEB, d = D/H is the self-attention embedding dimension
in the FEB and H is number of heads in MSA:

O=x0-1Wy, K = x¢_1 Wy,

V = xe_1 Wy, Wy, Wi, W, € RP*¢ 7
Attention(xy_;) = softmax (QKT) \% (8)
vd
MSA@x¢_1) = [Attentionl(xz_l); Attentionz(x(g_l);

.- : Attention” (xg_l)] O]

x; = MSA(LN (x¢—1)) + xe—1, €=1...L
(10)
x¢ = FFN(LN(x;)) +x;, ¢=1...L (11)
y = USL (LN (xr)) (12)

The Upper Sampling Layer is the last component in For-
merEncoder. Because the resolution of the image halves after
Patch Embedding Block and FEB, the resolution does not
decrease after ConvEncoder. To fuse the feature map obtained
by the FormerEncoder with the feature map of the ConvEn-
coder, the resolution of the feature map needs to be restored.
Fig.6 shows the structure diagram of the FormerEncoder.
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FIGURE 7. Schematic diagram of Attention gate.The feature map from encoder and decoder is processed in parallel, and the resulting gating signal
controls the weight. The final feature map is obtained through the control of the gating signal.

4) ATTENTION GATE

The traditional U-Net structure only uses simple concatena-
tion in skip-connection and up-sampling information fusion,
and the more complex consideration is to use some non-
linear transformation to concatenate. However, these meth-
ods do not consider the correlation between skip-connection
feature information and up-sampling feature information.
In this paper, we propose an attention gate at this connection,
which will consider both skip-connection feature information
and up-sampling feature information. With this addition, the
model can adaptively learn skip-connection feature informa-
tion and up-sampling feature information and weigh the two.
Highlight important features while suppressing irrelevant fea-
tures. It can be seen from Fig.7 that the input of the attention
gate is the skip connection feature information generated by
the feature map of the encoder and the up-sampling feature
information generated by the decoder of the upper layer.
The skip connection feature information and the up-sampling
feature information are operated in parallel, and finally, the
concatenated fusion feature map is obtained. Some equations
are defined as follows:

2 = ReLU ([F(h, Wy): F(xe, WOD. £ =1...H (13)
a = Sigmoid (BN (F (', Wa))) (14)
vt =0 (BN (P - 1) as)

where 4 is the skip connection feature information generated
by the feature map of the encoder, x; is up-sampling feature
information generated by the upper decoder, H is the decoder
depth, F' () indicates a convolution operation, « is the atten-
tion coefficient obtained.

5) DEEP SUPERVISION

Deep supervision [50] is one of the commonly employed to
overcome the problems of vanishing gradients and slow con-
vergence in neural networks. Its main idea is to add auxiliary
classifiers to some hidden layers in the model as the network
branch structure and supervise and train the backbone net-
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work. The most important thing about deep supervision is that
it provides a method to judge the hidden layer feature map
quality during the training process. In this study, we also use
the deep supervision method to accelerate the convergence
of the proposed network structure and supervise training.
As seen in Fig.4, we added three groups of branch structures
in the decoder branch. These three groups respectively per-
form depth supervising on feature maps of different resolu-
tions and add auxiliary loss to calculate the corresponding
loss of feature maps restored by the three groups of depth
supervising during training, namely UpperLoss, MidLoss,
and LowerLoss, which ultimately adds different weights to
the main network loss MainLoss.

Loss = aUpperLoss + BMidLoss

+ yLowerLoss + §MainLoss
(16)

where «, 8, ¥, and § is the weight coefficient corresponding
to the loss, which determines the impact of the predicted loss
on the whole loss at different scales, MainLoss will be given
more weight.

6) LOSS FUNCTION
The most commonly used loss function in medical image
segmentation is pixel-by-pixel cross entropy (CE). Image
segmentation is the classification of each pixel. CE checks
each pixel separately and makes the cross entropy of the
predicted pixel value with ground truth one by one. The
formula of CE is as follows:
|

CELoss = — ;@,logpl + (1 =y)log(l=p)) (A7)
Among them, y; is the real category of the input image pixels,
pi is the probability of prediction category 1, N is the number
of all image pixels. Weighted cross entropy (WCE) improved
CE by putting the weight before the loss of each correspond-
ing class to alleviate the class imbalance. The formula is
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as follows:

N
1
WCELoss = —~ le (wyilogp; + (1 — y;) log(1 — p))
=

(18)

Dice loss and IOU loss [51] is another function based on
area loss, which aims to minimize the mismatch or maximize
the overlapping area between the ground truth and the pre-
dicted segmentation. The formulas are as follows:

23N
DiceLoss =1 — — Zt:lytl;[l 19
D Vit 2l pi
N . .
IOULoss =1 — D s ViDi 20)

>N i+ pi—vip)
In medical image segmentation, there are only one or two
targets in an image, and the proportion of the target will
be much smaller than the background. In essence, image
segmentation is a classification problem, which causes the
problem of class imbalance and severe imbalance between
positive and negative sample scales. Focal loss [52] added a
penalty item to solve this problem. Its basic idea is that the
network will tend to predict only negative samples in the case
of highly unbalanced categories. As a result, the prediction
probability of negative samples p; will be very high, and the
return gradient is also huge. Adding (1 — p;)” will reduce
the loss of samples with high prediction probability, and
increase the loss of models with low prediction probability,
thus strengthening the attention to positive samples. The
formula is defined as follows:

N
1
FocalLoss = Y Zl: ()’i (1 —pi)? logp;
i=

+ (1 —y)pllog(1 —pp) (1)

In this paper, we design a mixed loss function, which is
the sum of Focal loss, Dice loss, and IOU loss. Its goal is to
reduce the point-by-point cross-entropy of pixels through the
maximum matching on the region. At the same time, because
Focal loss is used, the problem of class inequality is solved
to some extent, wi, wp, and w3 is the weight coefficient of
various losses, where DiceLoss will be given more weight.

LossFunction = wjFocalLoss+wyDiceLoss+w3I0OULoss
(22)

IV. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, we use some evaluation metrics to evaluate
the performance of our TAGU-Net model and the effective-
ness of the experimental results. The model is mainly tested
on the data set introduced in the second section, including
training and testing. In the experiment process, we first dis-
cussed the comparison between the TAGU-Net model and
the commonly SOTA segmentation model. In this section,
we analyzed the performance of each model and the model
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we proposed. Then a group of ablation experiments is given
to analyze the performance of some module designed of
TAGU-Net proposed to confirm the superiority of our pro-
posed methods in actual performance and excellent in AM
segmentation.

A. IMPLEMENTATION DETAILS

The TAGU-Net model we proposed was implemented
through Python 3.8.13 and Pytorch 1.12.1. All experiments
were conducted in NVIDIA GTX 2080Ti GPU environment.
In order to maximize the superiority of the proposed method
and ensure the fairness of the experiment, all experiments
use the same experimental settings and training strategies.
The selection of some training configs and optimizers is as
follows: the optimizer selects the Adam optimizer. The initial
learning rate is set to 0.0001, g1 = 0.9, g2 = 0.999,
and weight_decay = le — 5 the learning rate adjustment
strategy adopts cosine annealing, T},,,x = 50. Model param-
eters in 4 were updated in batches. The maximum number
of epochs of training duration is set to 200. At the same
time, we have normalized all image pixel values. The pixel
value from [0 — 255] adjusts to [0 — 1] the image size is
uniformly adjusted to 512 x 512. In terms of training strategy,
to prevent over-fitting, we use the K-fold cross-validation
training method, K is set to 5. Detailed hyperparameters see
Table 1.

TABLE 1. Experimental configs and optimizer settings.

Training config

weight init Kaiming normal

optimizer Adma
init learning rate 0.0001
optimizer momentum £1=0.9, 52 = 0.999
weight decay le—5
batch size 4
patch size 16
training epochs 200
learning rate scheduler Cosine Annealing
learning rate warm restart 50
K-fold 5

B. EVALUATION METRICS

To evaluate the performance of the proposed model,
we adopted the following evaluation metrics commonly used
for segmentation tasks: Dice score (Dice) and Jaccard index
(Jac) are the two most essential segmentation indicators. The
definition of metrics is as follows:

. 2% TP
Dice = (23)
2%xTP+ FP+ FN
TP
Jac= ———— (24)
TP + FP + FN
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. TP
Sensitivity = ———— (25)
TP + FN
Specificit N (26)
ecificity = ———
Peetiely = IN ¥ FP
TP + TN
Accuracy = 27
TP+ TN + FN + FP
.. TP
Precision = ——— (28)
TP + FP

Hausdorff Distance(HD) = max [min lla — b||] (29)
acA | beB

The four essential items in the formula are true posi-
tive (TP), true negative (TN), false positive (FP), and false
negative (FN). Hausdorff distance (HD) is a measure that
describes the similarity between two sets of points. It defines
the distance between two groups of points and is also com-
monly used for segmentation metrics. HD is sensitive to the
boundary of segmentation, which is mainly used to measure
the accuracy of boundary segmentation. In the experiment,
we use 95% HD, the 95th percentile of HD. Compared with
HD, this metric is slightly stable for small outliers.

C. PRIVATE DATASET EXPERIMENTAL RESULTS

Through private dataset experiments, we compared the per-
formance of the proposed model with some SOTA models,
and the results are shown in Table 2. It can be seen from the
experimental results that the proposed TAGU-Net can obtain
the highest Dice and Jac, which indicates that the TAGU-Net
has higher performance than these SOTA models, and the
prediction mask generated by TAGU-Net is highly consistent
with the ground truth mask.

FCN fused the characteristic images with different sam-
pling coefficients through strip structure and full convolution
and restored the resolution by the operation of up-pooling
and transposed convolution, reaching the SOTA of pixel-level
segmentation at that time; U-Net achieved better performance
with a symmetric encoder-decoder structure and the skip
connection between the encoding feature and the decoding
feature; U-Net++ redesigns the skip connection based on
U-Net so that the decoder can aggregate different scale fea-
tures to achieve the effect of dense connection; U-Net 3+ pro-
posed a full-scale skip connection, which combines low-level
details from different scale feature maps with high-level
semantics to maximize the use of full-scale feature maps
and improve segmentation accuracy; AttU-Net introduces
the attention mechanism into U-Net, and designs the atten-
tion gate in the skip connection. The soft-attention method
gradually strengthens the weight of local ROI, inhibits the
activation in unrelated regions, and reduces the redundant
part of the skip. This method is similar but different from
the attention gate proposed in this paper. The attention gate
proposed in this paper aims to obtain the concatenate feature
map of the skip connection and decoder features through
the attention mechanism.The comparative results about the
attention gate experiments are given in Table 4; ChannelUNet
uses spatial channel-wise convolution, which can perform
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FIGURE 8. Comparison of dice and Jac histogram of each model. The right
side is the Dice and Jac histogram of the proposed TAGU-Net.

convolution operation along the feature map channel direc-
tion to extract the mapping relationship of spatial infor-
mation between pixels, which is conducive to learning the
mapping relationship between pixels in feature maps; R2U-
Net applies recurrent neural network and residual network
to U-Net, and designs recurrent residual layer to add fea-
tures to better extract features; SegNet is a segmentation
network based on FCN with encoder and decoder struc-
ture. In pooling operation, a Pooling Indices method is
proposed to save pooled point source information; U2Net
proposes a two-layer nested u-shaped structure, which turns
the simple convolution structure in UNet into RUS (Residual
U-blocks). RUS realizes the mixture of feature maps of differ-
ent scales and different receptive fields through this u-shaped
structure, which can capture more global information from
different scales; TransUNet is an attempt to combine with
Transformer. It uses the transformer’s encoder structure on
the encoder structure to enhance the representation of fea-
tures, and the rest still follows the U-Net architecture; Swin-
Unet is a pure transformer-based U-shaped architecture. The
contextual features extracted based on Swin-transformer are
upsampled by a decoder with a patch expanding layer, and
the spatial resolution of the feature map is restored through
skip connection and multi-scale feature fusion of the encoder,
further segmentation prediction; DeepLabv3+ uses dilated
convolution to solve the problem of the receptive field, and
obtains multi-scale object information based on spatial pyra-
mid pooling. Furthermore, it uses a fully-connected condi-
tional random field to improve the ability of the model to
capture structural information and solve the problem of fine
segmentation.

To make a reliable comparison, we compared the results
of these studies with our work. The TAGU-Net proposed
by us has reached the highest level in important metrics,
Dice, and Jac, surpassing other SOTA models. Fig.8 shows
the performance of each model in the Dice score and Jac
index. In terms of AM segmentation, the Dice of TAGU-Net
is 97.67%, and the Jac is 96.35%. Except for TAGU-Net,
the best performer is U2Net. Its Dice is 95.56%, and the
Jac is 92.03%. In contrast, TAGU-Net absolute accuracy is
2.11% higher in Dice and 3.36% higher in Jac. In terms of
relative accuracy, Dice is 2.21% higher and Jac is 4.69%
higher. In the evaluation metrics of 95HD, DeepLabv3-+
is 0.456, while TAGU-Net is 0.550, which lags behind
DeepLabv3+ by a narrow margin and is also far higher than

53217



IEEE Access

H. Huang et al.: TAGU-Net: Transformer Convolution Hybrid-Based U-Net With Attention Gate

TABLE 2. Comparison results between the proposed model and SOTA models. The bold black value indicates the highest score of all methods in the

corresponding metric.

Method Metrics

Dice (%) Jac (%) Sensitivity (%)  Specificity (%)  Accuracy (%) Precision (%) 95HD
FCN [37] 94.64 90.91 94.48 99.91 99.79 95.99 1.495
U-Net [12] 94.76 91.65 95.30 99.91 99.81 96.00 1.261
U-Net++ [53] 93.89 90.80 94.64 99.91 99.80 95.71 1.370
U-Net 3+ [54] 92.99 87.82 92.46 99.87 99.74 94.70 3.592
AttU-Net [55] 92.60 88.60 93.91 99.86 99.74 93.86 3.191
ChannelUNet [56] 93.26 90.64 94.21 99.89 99.83 94.55 1.561
R2U-Net [57] 77.26 72.24 83.94 99.65 99.31 83.97 25.79
U2Net [58] 95.56 92.03 95.43 99.93 99.85 95.94 0.668
SegNet [59] 93.81 90.25 94.85 99.89 99.78 94.90 1.821
TransUNet [15] 94.59 91.37 94.79 99.92 99.81 96.20 0.710
Swin-Unet [60] 94.85 91.18 95.26 99.91 99.81 95.49 0.805
DeepLabv3+ [13] 95.01 91.88 94.94 99.93 99.83 96.63 0.456
TAGU-Net 97.67 96.35 97.76 99.96 99.92 98.51 0.550

Channel Swin- TAGU-  Ground
Inputs FCN U-Net  U-Net++ U-Net3+ AttU-Net  UNet R2U-Net U2Net SegNet  Unet  TransUNet DeepLabV3 ., Truth

FIGURE 9. Comparison of prediction mask and ground truth of each model.

other models. In addition to the Dice and Jaccard metrics,
Table 2 presents a comparison of the sensitivity, specificity,
accuracy, and precision of our model with those of state-
of-the-art models. Sensitivity refers to the ability of the
method to detect tumors in MRI pixels, while specificity
reports the ability to identify MRI pixels without tumors.
Our proposed TAGU-Net model demonstrated a sensitivity
value of 97.76% for atypical meningiomas, indicating its
ability to accurately detect tumor-associated pixels in MRI.
Similarly, the TAGU-Net model exhibited a specificity of
99.96% for atypical meningiomas, demonstrating a strong
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ability to distinguish tumor and non-tumor pixels. Finally,
accuracy describes how well the model classified each pixel
class (tumor/non-tumor class). Compared to state-of-the-art
models, the proposed TAGU-Net model exhibits the highest
pixel-wise recognition ability, achieving the highest values in
various metrics. Our proposed model is generally superior to
other models in AM segmentation.

At the same time, we use the above model to generate
the predicted mask image and visually compare it with the
ground truth. As shown in Fig.9, the first column on the
left is the MRI image of the input model, the mask image
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TABLE 3. Results of different modules ablation experiment. The bold black value indicates the highest score of all methods in the corresponding metric.

FormerEncoder Attention Gate Deep supervision Dice (%) Jac (%)

— — — 94.76 91.65

4 — — 96.58 94.78

— v — 95.88 93.21

— — v 95.21 92.33

v (4 — 97.12 95.69

— v (4 95.74 93.14

v — (4 96.82 94.61

v 4 v 97.67 96.35
Excluding outliers, the median, maximum and minimum val-
T T ues of the Dice and Jac of the proposed method are higher

R2UNet
Model

FIGURE 10. Box-plot of dice score of each model.

R2UNet
Model

FIGURE 11. Box-plot of Jac index of each model.

generated by the model from left to right is the ground truth
of the image, and the penultimate column is the mask image
produced by the proposed model. It is evident from Fig.9 that
the mask image generated by TAGU-Net is the closest to the
ground truth. However, other models have different results
in generating mask images due to their characteristics and
generally have defects.

In addition, we have calculated the Dice distribution and
Jac distribution of the output of each model, which is dis-
played in the form of a boxplot. Fig.10 and Fig.11 show
the Dice and Jac boxplot of the proposed method and other
SOTA models respectively. It can be seen from Fig.10 and
Fig.11 that the box diagram of TAGU-Net is at the far right.
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than those of other methods. It can be seen from the figure that
the performance of the proposed TAGU-Net is much higher
than that of other models.

D. ABLATION EXPERIMENT RESULTS

To evaluate the effectiveness of our proposed method,
we have carried out many ablation experiments, mainly dis-
cussing the impact of FormerEncoder, Attention Gate, and
Deep supervision on TAGU-Net. For the sake of simplicity,
we only select the Dice and Jac, and the experimental results
are shown in Table 3.

From the results of the ablation experiment, it can be
seen that the FormerEncoder has the most significant impact,
improving the performance by 1.89% in Dice, and 3.41% in
Jac because it provides a global modeling capability for the
model, and the input through the FormerEncoder is informa-
tion from different scales. This multi-scale information will
enable the model to obtain richer semantic information when
fused. The role of the Attention Gate must be addressed.
As can be seen from Table 3, the results obtained without
the structure of the Attention Gate are generally lower, which
also fully proves that the Attention Gate adaptively learns the
skip connection feature information and up-sampling feature
information in the decoder branch, effectively enhancing the
activity of important information while suppressing the activ-
ity of irrelevant information. The impact of deep supervision
is not particularly clear in Table 3. We find that the effects of
deep supervision are not so fixed. In most cases, improving
the model’s performance is beneficial, and occasionally it
does not work. Based on the experimental results and the
mechanism of the deep supervision, we can speculate that in
most cases, the deep supervision increases the loss during the
model’s training to prevent vanishing gradient, which makes
the model better optimized and improve the performance of
the model. In a small part of the time, deep supervision can
only play a role if the model has converged or the model
fitting ability is limited. The experimental results also show
that the best results can be achieved simultaneously using For-
merEncoder, Attention Gate, and Deep supervision, which
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Without
Attention Gate

Original Image Ground Truth

Attention Gate

(OKktay et al.) Ours

FIGURE 12. The first column represents the original image, and the second column shows the ground truth. The other columns are heatmaps about the

corresponding methods. The deeper the red, the more attention the pixel gets.

TABLE 4. Comparison results between the proposed model and other
attention gate modules. The bold black value indicates the highest score
of all methods in the corresponding metric.

Module Dice (%) Jac (%)
Attention gate [55] 96.84 93.89
Ours 97.67 96.35

improves the performance by 3.07% in Dice, and 5.12%
in Jac compared with backbone. Overall, each module is
indispensable for achieving better performance.

In our experiments, we also perform an experimental com-
parison of loss functions to verify the effectiveness of the pro-
posed hybrid loss function. As shown in Table 5, compared
with WCELoss, our proposed hybrid loss improves 1.61% in
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TABLE 5. Results of different loss function ablation experiment. The bold
black value indicates the highest score of all methods in the
corresponding metric.

Loss function Dice (%) Jac (%)
‘WCELoss 96.12 93.62
DiceLoss 96.57 94.13
IOULoss 96.33 94.25
FoaclLoss 96.69 94.38

Ours 97.67 96.35

Dice and 2.91% in Jac, achieving the best results, which veri-
fies that our loss can facilitate model optimization. In Table 4,
we compare the attention gate proposed by Oktay et al. with
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TABLE 6. Comparison BraTs 2018 dataset results between the proposed model and SOTA models. The bold black value indicates the highest score of all

methods in the corresponding metric.

Method Metrics

Dice (%) Jac (%) Sensitivity (%)  Specificity (%)  Accuracy (%) Precision (%) 95HD
FCN [37] 92.20 88.15 93.34 99.72 99.47 92.46 2971
U-Net [12] 90.17 85.18 91.03 99.66 99.38 90.39 2.766
U-Net++ [53] 93.65 90.59 93.92 99.82 99.64 94.30 1.429
U-Net 3+ [54] 90.66 85.98 91.23 99.69 99.39 91.34 3.257
AttU-Net [S5] 93.25 90.35 93.68 99.77 99.65 93.97 1.341
ChannelUNet [56] 92.60 88.60 93.91 99.86 99.74 93.86 3.191
U2Net [58] 90.52 85.13 92.75 99.62 99.42 89.46 2.165
SegNet [59] 92.55 88.26 93.27 99.76 99.56 92.84 1.431
TransUNet [15] 90.18 85.03 91.55 99.60 99.37 90.02 2.545
Swin-Unet [60] 93.64 90.32 93.13 99.82 99.74 94.17 1.720
DeepLabv3+ [13] 91.15 90.11 92.54 99.68 99.33 90.25 2.185
TAGU-Net 97.62 95.35 97.84 99.91 99.83 97.40 0.624

the attention gate of this paper. The results show that the
proposed attention gate has a better effect. In Fig.12, the
comparison of the heatmap generated by the Grad-CAM [61]
based on different methods is shown. It can be clearly seen
that the region of interest of the proposed method tends to
coincide with the ground truth. It is worth emphasizing that
the heatmap generated by TAGU-Net pays more attention to
the meningioma boundary region, achieving better accurate
segmentation.

E. BraTs 2018

The proposed architecture was compared with other state-of-
the-art models used for semantic segmentation on the BraTs
2018 dataset as shown in Table 6. The metrics of the TAGU-
Net model, namely the Dice and Jac, demonstrate that our
proposed model surpasses all other state-of-the-art models in
LGG segmentation. Specifically, the Dice score is 97.62%
and the Jaccard index is 95.35%, indicating superior perfor-
mance compared to other models. Similar to the experimental
results presented in Table 2, TAGU-Net performs equally well
on the public benchmark dataset BraTs 2018. It is evident
that our model generally outperforms other models in terms
of low-grade glioma segmentation. Therefore, the proposed
framework has been demonstrated to be capable of accu-
rately distinguishing tumor tissue from other brain tissues
(normal and pathological) while precisely following tumor
tissue boundaries.

V. CONCLUSION

In the task of atypical meningioma segmentation, the shape
and size of atypical meningioma are irregular, and the bound-
ary is not apparent, especially in MRI images with a lot of
noise. Therefore, how to accurately segment atypical menin-
gioma accurately is very significant,arduous and challenging.
In this study, we used GAAHE to improve the quality of
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MRI images. At the same time, experimental verification is
carried out under the TAGU-Net framework we propose. The
proposed TAGU-Net is a hybrid architecture of convolution
and transformer. It combines ConvEncoder and FormerEn-
coder in the encoder branch and introduces Attention Gate
in the decoder branch. ConvEncoder and FormerEncoder
extract different information from feature maps of differ-
ent resolutions at different scales, effectively reducing the
small drawbacks of the limited receptive field in convolution,
while aggregating information from different encoders at
various scales. At the same time, FormerEncoder can well
capture global features with its unique properties, and the
long-distance dependency of the image is modeled to retain
fine details. Moreover, it is flexible and replaceable based
on different tasks and data characteristics. Furthermore, the
Attention Gate adaptively learns the skip connection infor-
mation and up-sampling information at the decoder stage,
highlights the essential features, and suppresses the irrelevant
features when fusing the two features. In addition, we have
built three sets of losses and one main loss at different
scales through the in-depth monitoring technology to help
the model learn and train better. TAGU-Net can effectively
extract features from MRI images and fuse features of dif-
ferent scales, and achieve accurate segmentation of atypi-
cal meningiomas through these proposed modules. We have
conducted rigorous experimentation on both a private atyp-
ical meningioma dataset and the publicly available BraTs
2018 benchmark dataset. Our proposed methodology has
been found to achieve state-of-the-art atypical meningioma
segmentation. In comparison to other models, our model
has exhibited superior segmentation results, boasting higher
levels of accuracy and precision with Dice and Jaccard coef-
ficients of 97.67% and 96.35%, respectively, in the private
dataset, and 97.62% and 95.35%, respectively, in the BraTs
2018 dataset.
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