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ABSTRACT We present a simple yet robust monocular depth estimation technique by synthesizing a depth
map image from a single RGB input image using the advantage of generative adversarial networks (GAN).
We employ an additional sub-model termed refiner to extract local depth features, then combine it with the
global scene information from the generator to improve the GAN’s performance compared to the standard
GAN architectural scheme. Notably, the generator is the first player to learn to synthesize depth images. The
second player, the discriminator, classifies the generated depth. In the meantime, the third player, the refiner,
enhances the final reconstructed depth. Complementing the GAN model, we apply a conditional generative
network (cGAN) to lead the generator in mapping the input image to the respective depth representation.
We further incorporate a structured similarity (SSIM) as our loss function for the generator and refiner
in GAN training. Through extensive experiment validation, we confirmed the performance of our strategy
on the publicly indoor NYU Depth v2 and KITTI outdoor data. Experiment results on the NYU depth v2
dataset show that our proposed approach achieves the best performance by 96.0% on threshold accuracy (§ <
1.25%) and the second-best accuracy on all thresholds on the KITTI dataset. We discovered that our proposed
method compares favorably to numerous existing monocular depth estimation strategies and demonstrates a
considerable improvement in the accuracy of image depth estimation despite its simple network architecture.

INDEX TERMS Depth estimation, single image, conditional GAN, generative adversarial network (GAN),
third player GAN.

I. INTRODUCTION

Estimating depth from a single image is a fundamentally
challenging task and a wide area of research in computer
vision. Knowledge of the scene depth information has been
applied in many vision applications such as 3-D model-
ing [1], robotics [2], and autonomous driving [3], as well as
potentially leading to improve related studies in pedestrian
detection tasks [4], [5], [6].

Significant progress has been achieved in obtaining depth
information from a single image using machine learning.
Various approaches have accomplished remarkable improve-
ments in extracting depth information using Convolutional
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Neural Networks (CNN). Several techniques have made
significant advancements in extracting deep information,
whether supervised [7], [8], [9], [10], semi-supervised [11],
[12], [13] or unsupervised [14], [15], [16]. The first impres-
sive single image depth estimation based on CNN, Eigen
et al. [7] estimated depth information using two independent
deep neural networks. One makes a broad global prediction,
while the other offers a more precise local prediction.

In the meantime, the generative adversarial network
(GAN) has significantly improved the learning of mapping
high-dimensional data distributions. It has been demonstrated
that a generative adversarial network is highly effective
at capturing the global structure of a scene and produc-
ing realistic images. In the adversarial network, the gen-
erator model (G) is responsible for reconstructing newly
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synthesized images. At the same time, the discriminator
(D) evaluates the probability that a given input image is
either derived from training data or is synthetically gener-
ated. On top of its excellent performance in constructing
synthetic photo realistic [17], the adversarial model has also
been utilized for image-to-image translation tasks such as
image segmentation [18] and, more recently, for single image
depth prediction [19], [20], [21], [22], [23], [24], [25], [26],
[27], [28]. However, there is still room for improvement in
accurately reconstructing depth information.

There are likely several challenges in this area, including
the fact that it is computationally expensive, requires large
data to train, generates poor depth image reconstruction, and
causes a problem with uncertainty. An example of a typical
symptom is a blurred reconstruction of object boundaries or
distortion of a certain object in the scene. The motivation
of our work is to utilize contextual global image structure
and local feature information for better depth reconstruction
results. The global feature describes the scene as a whole in
order to understand the global relations between pixels in the
image. For illustration, a patch of white pixels in the indoor
dataset could represent a wall in the distance or a nearby
white chair. On the other hand, the local feature information
is necessary to align with the local details of the object in the
scene.

We explore the benefit of the adversarial network, which
has been demonstrated to be effective in capturing global
scene structure with fewer training data than a stan-
dard encoder-decoder CNN. We utilize a conditional GAN
(cGAN) to provide additional information to boost the model
performance, allowing it to converge faster and reduce train-
ing time significantly. In particular, we propose a three-player
GAN (TP-GAN) that uses an additional sub-model (refiner)
to complement the cGAN performance. The broad idea here
is that the generator will extract the global scene layout while
the refiner learns to improve depth structure by integrating
updated weight from the generator with local scene informa-
tion and expressing feedback from the discriminator through-
out each mini-batch training session. Hence, our strategy
concurrently integrates global scene structure and local scene
information to enhance the performance of the adversarial
network for a single image depth estimation. In addition, the
SSIM loss will further evaluate the structural feature simi-
larity rather than pixel-by-pixel between two images, which
is a more effective strategy for image reconstructing tasks,
including image depth estimation. Fig. 1 shows the overview
of the schematic of our proposed model architecture, to be
described in detail in the next section.

The remainder of this paper is organized as follows. Sec-
tion II reviews several related works. The theory and proce-
dure of the proposed method are described in Section III.
Section IV shows the implementation of our strategy.
We describe our setup for the experiment in Section V. The
result of our method is discussed in Section VI, including
a comparison with the previous works. Finally, the paper is
concluded in Section VII.
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Il. RELATED WORKS

Several techniques for extracting depth information using
Convolutional Neural Networks (CNN) have been developed
in recent years. The related works are addressed in the fol-
lowing paragraphs.

A. NON-ADVERSARIAL BASED MODELS

Eigen et al. [7] estimated depth information from a monoc-
ular image using a multi-scale structure that stage-wisely
refines the estimated depth map from low to high spatial
resolution via independent networks. Following this seminal
work, Liu et al. [29] discover the unary and pairwise potential
of continuous Conditional Random Field (CRF) and train it
using a CNN. Laina et al. [30] proposed a fully convolutional
architecture to learn feature map up-sampling to generate
higher resolution output dense maps. Godard et al. [11] con-
sidered unsupervised learning for a monocular image depth
estimation using a deep CNN network. Their studies con-
structed disparity images using a left-right consistency image
reconstruction loss.

Later on, Chen et al. [8] presented a residual pyramid
decoder (RPD) that takes into account the underlying image
structure at many scales. Yin et al. [9] introduced a framework
that consists of two primary modules; a depth prediction and a
point cloud module, to improve the structure of point clouds
derived from depth maps in order to recover more accurate
3-D shape from a single image. Gur et al. [14] proposed a
deep learning-based method to estimate depth from a single
image based on depth focus cues. In their method, the model
requires at least one focused image of the same scene from
the same viewpoint. Bian et al. [ 15] proposed an Auto-Rectify
network to enhance unsupervised depth estimation by remov-
ing relative rotational motions in addition to their innovative
loss functions. Eventually, Ye et al. [10] introduced a trans-
former framework for multi-task dense prediction. They used
an inverted pyramid multi-task transformer (InvPT) to learn
long-range interaction in both spatial and all-task contexts in a
unified architecture. Subsequently, studies on enhancing the
quality of depth information using deep learning have been
readily conducted.

B. ADVERSARIAL BASED MODELS
Generative adversarial network (GAN) [17], also known
as two players deep learning network, have already been
explored for depth estimation. To mention a few, Aleotti
et al. [24] introduced monocular depth estimation based
on the intrinsic ability of GAN to detect inconsistencies in
images. In their research, the generator network learns to
estimate depth from the reference image to generate a warped
target image. Simultaneously, the discriminator learns to dif-
ferentiate between generated depth and target ground truth.
Several more studies are then presented to improve depth
estimation based on the benefits of adversarial networks
for image reconstruction tasks. Zheng et al. [27] proposed
a two-module domain adaptive network with a generative
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FIGURE 1. Outline of our proposed TP-GAN method.
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adversarial loss to map real and synthetic images to the
real domain. Kumar et al. [26] presented an adversarial
network-based model in which their generator network con-
sists of depth and relative object pose in addition to their
adjustable loss functions. Subsequently, Pilzer et al. [25] and
Kwak et al. [28] explored unsupervised deep learning depth
generation based on a cycled generative adversarial network.
Their model estimates a disparity map given input left and
right images from a calibrated stereo camera. Recently, Zhao
et al. [19] developed a Masked GAN framework for monoc-
ular depth estimation and ego-motion utilizing their scale-
consistency loss.

However, the methods mentioned earlier, their depth net-
work either requires a complex network, focuses on capturing
local information, or simply obtains scene structure globally
without taking scene local features into account. In addition,
they merely limit the consistency of values across depth maps
while ignoring the consistency of image structures, resulting
in poor performance. In this work, we use the advantage of the
adversarial learning-based model for image generation tasks
utilizing SSIM loss. Our proposed approach employs a con-
ditional GAN (cGAN) [31], in which both the generator and
the discriminator are conditioned on some extra information.

Motivated by these insights and the impressive perfor-
mance of the conditional adversarial network (cGAN) model,
including the ability to converge faster than the standard
CNN, we present a novel single image depth estimation by
expanding the cGAN model into a three-player GAN (TP-
GAN). In our model, the residual networks (ResNet) pro-
posed by He et al. [32] were implemented as the backbone
for our generator (G) sub-model. Our second sub-model,
discriminator (D), is designed as a patch GAN model encour-
aged by [18] that only penalizes structure at the scale of local
image patches in the N x N output vector as opposed to
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outputting a single value indicating whether an image is fake
or real. Then, we stack six convolutional layers to capture
local feature information in our refiner (R) sub-model, later
referred to as the third player in our GAN model.

Iil. PROPOSED METHOD

We propose a simple architecture for a single image depth
prediction based on an adversarial network, implemented as
three sub-models instead of standard two players. We study
the advantages of incorporating an additional sub-model into
the cGAN architecture to improve the prediction by incor-
porating global scene structure and local image information
along with the structure similarity (SSIM) loss.

We elaborate on our proposed strategy. First, we define the
outline of our technique by formulating problems, and then
we describe each sub-model in our three-player conditional
adversarial deep learning network in detail. Next, we specify
the reconstruction loss and explain our SSIM loss function,
which analyzes the structural difference between the pre-
dicted and ground truth depth.

A. PROBLEM FORMULATION

In this research, we utilize adversarial learning advantages
to formulate the problem of learning depth from monocular
inputs as an image translation problem. While the discrimi-
nator discovers how to distinguish between ground truth and
synthetic depth maps, the generator learns how to create more
realistic depth maps. In fact, the generator continuously seeks
the output that appears plausible to the discriminator.

Our proposed adversarial model is a conditional generative
adversarial neural network (cGAN) to assist the generator
and refiner in mapping input images to their respective depth
representation. This network consists of three sub-models: a
generator as the first player, a discriminator as the second
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player, and an additional refiner sub-model that we refer to as
the third player. The refiner will be responsible for fine-tuning
the locally generated depth prediction with the global scene
information.

The proposed technique updates the generator weight by
back-propagating through the discriminator during adversar-
ial training. Meanwhile, the refiner combines the updated
weight of the generator and then forwards it to the discrimi-
nator model for each mini-batch training. Further details are
discussed in the succeeding subsections.

1) THE 15t PLAYER: GENERATOR

We reconfigured the residual network (ResNet) [32] struc-
ture in the generator as our backbone model, which has
been demonstrated effective in improving the accuracy of
depth prediction from a single image [15], [30], [33]. Then,
we stacked some block layers to receive input from the
previous layer; the first block is a convolution layer with
1 x 1 convolution kernels to capture a global view of the
scene. The remaining blocks consist of transpose-convolution
(up-conv-activation), followed by regular convolution block
(conv-batch-activation) with {1024, 512, 256, 128}, and 64
filters, respectively. We utilized bilinear interpolation for our
up-sampling, while Leaky ReL.U activation was employed to
minimize the vanishing gradient. The final depth extraction
output layer has a linear activation function. The specifics of
our generator model are depicted in Fig. 2 (a).

2) THE 2"d PLAYER: DISCRIMINATOR
Figure 2 (b) shows the detail of our discriminator model.
This structure is encouraged by the work of Isola et al. [18],
implemented as a patch GAN, which looks at the structure of
local image patches and classifies each patch in an image as
real or fake in the N x N output vector. Since the generator
output is conditioned on the input, it is important to maintain
the discriminator input image in the mix. Our discriminator,
a conditional adversarial model, comprises pair of images as
input: the RGB image and its ground truth depth and the RGB
image and its corresponding generated image depth. Each of
which is size 48 x 64 for NYU and 40 x 128 for KITTI data.
We concatenate the RGB with its depth before fusing
them into the network. We modify parameter values using
4 x 4 kernel size and strides-2 except in the last two layers
with {64, 128, 256, 512, 512, 1} filters, respectively. Batch-
normalization is applied in all layers but in the first and last
layers. At that, in the last layer, the convolution is utilized to
map to a one-dimensional output with a size of 3 x 4 pixels,
followed by a sigmoid activation function. The model output
will be a probability of classifying whether the input patch
images come from training or generated data.

3) THE 3rd PLAYER: REFINER

As shown in Fig. 2 (c), the refiner model in our architecture
is a sequence of six block layers. The first five blocks are a
stack of convolution, batch normalization, ReLLU activation,
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and dropout regularization (conv-batch-activation-dropout)
to handle the overfitting problem with 64 filters. We use
7 x 7 kernel size and strides-2 to down-sample our input in
the first and second blocks, while the following three blocks
use 5 x 5 kernel size and stride-1. With a small enough kernel
size relative to the input, the extracted feature will not depend
on the value of the whole pixel in the input image. Since the
receptive field is smaller than the size of the input image,
extracted features will only depend on the local pixels. The
last block is a convolution layer with a filter number of one
and 5 x 5 kernel size, followed by a linear activation to capture
the depth of local features.

B. DEPTH RECONSTRUCTION LOSS AND LOSS FUNCTION

The discriminator is trained to maximize the predicted proba-
bility of real images and the inverted probability of deceptive
images throughout training. The generator, on the other hand,
works to maximize the log of the predicted probability of
discriminator for counterfeit images. In addition, the refiner
utilizes to improve the generator result as feedback from the
discriminator. We set our depth reconstruction loss in Eq. (1).

min max(G, R, D) = Ky y(log D(x, y)]

+ Exflog(1 — D(x, G(x)))]
+ Exllog(1 — D(x, R(x, G(x)))],
€))

where D(x, y) is the discriminator from the input RGB image
x with conditional target depth image y. G(x) is the generator
output when given input data x, and R(x, G(x)) is the refiner
output that comes from the generator and real data x.

In general, the Mean Squared Error (MSE) or Mean Abso-
lute Error (MAE) is taken as the standard loss for regres-
sion tasks to calculate the discrepancies between prediction
and target outputs. Similar to MAE, MSE computes the
error between two images by comparing pixel by pixel as
defined in Eq. (2). On the other hand, the Structural Similarity
Index (SSIM) measurement analyzes the structural difference
between two images. This structural information signifies the
idea that neighboring pixels have strong inter-dependencies
with one another, which is a more effective strategy for image
reconstruction tasks.

1
MSE(, yp) =~ 2, lvp =il ©)
YpEIN|

The SSIM formula, as expressed in Eq. (3), was introduced
by [34], which comprises three parameter comparison mea-
surements: luminance, contrast, and structure.

(2py, My, + Cl)(zaytyp +c2)

(13, + 15, + c)loy, + 0y +2)

In contrast to the MSE or MAE, the SSIM score range from
—1 and 1, with 1 indicating perfect similarity. We use SSIM
loss (L) in Eq. (4) for our generator and refiner while training
our adversarial network. Eventually, the SSIM loss will com-
pute the perceptual difference based on the visible structure

SSIM(yr, yp) = (€)
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SSIM(ys, yp)

Ly =0.5— 2 ,

“
With:

My, and wy, are the mean of y, and y,, respectively.
2

2 . .
oy, and oy, are the variance of y, and y,, respectively.

Oy,y, is the covariance of y; and yj,.

IV. IMPLEMENTATION

This section describes the implementation of our proposed
method in detail. First, we define the datasets used in this
experiment and then explain the training process we con-
ducted in detail. To confirm the efficacy of our proposed
study, we present the standard assessment metric utilized in
previous related studies.

A. DATASETS

We train our model using two popular publicly available

depth datasets, indoor NYU Depth v2 [35] and outdoor KITTI

data [36], commonly used in the area of depth estimation.
KITTI data contains outdoor scenes with images resolu-

tion of roughly 376 x 1241 captured by cameras and depth

sensors in a driving car. It contains over 93K depth maps
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from 56 scenes with corresponding raw LiDAR scans and
RGB images. We train our method on 25K images from the
random scene and set depth upper bound of 80 meters. We test
our model on the 697 images which are not included in the
training, following the split by the work of Eigen et al. [7].

NYU Depth v2 is an indoor dataset gathered using a
Microsoft Kinect camera with a resolution of 640 x 480.
It contains about 120K raw RGB images and their corre-
sponding depth from 464 different scenes. Only 50K images
from random scenes are used for training our network. To val-
idate the performance of our method, following the works of
Eigen et al. [7], we test on 654 from 1449 available densely
labeled pairs of aligned RGB and ground truth depth images
in the maximum depth of 10 meters.

B. TRAINING DETAILS

We implement our adversarial depth estimation network
based on deep learning Tensorflow [37] and Keras frame-
work [38]. The training is done on Ubuntu 16.04 and an
NVIDIA GeForce GTX 1080 GPU with 8§ GB memory.
The network architecture shown in Fig. 2 has been trained
using initialized random weight. The training is performed
using 16 mini-batches and load images and their corre-
sponding depth using an online generator for GPU memory
performance.
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We practice on-the-fly data augmentation procedures to
enrich the features of our inputs during training. Specifically,
we randomize the channels of the input RGB images using
a ratio of 0.5. We then apply a 0.25 ratio to our input RGB
images to implement Poisson noise. We utilize mirroring
techniques at a probability of 0.5 for both RGB images and
depths. Another geometry-preserving affine transformation
for RGB images and their corresponding depths, a horizontal
flipping strategy, is also applied at a probability of 0.25.

Since our strategy is an adversarial model, the generator
model was not trained independently and instead had its
weight updated by the loss of the discriminator. On the other
hand, the refiner model is updated by the previous generator
weight as well as the discriminator feedback for every input
batch.

In our approach, we train our model for 50 epochs using
an adaptive moment estimation (Adam) optimizer with the
exception of the discriminator, which uses Stochastic Gra-
dient Descent (SGD) as encouraged in the works [39].
We started with a learning rate of 2 x 10~* for the gener-
ator and refiner, while for the discriminator, we initialized
4 x 10™* and periodically adjusted as the training progressed
using an exponential rate decay of 0.5 and 0.999 for 1% and
2" momentum, respectively.

C. EVALUATION
We validate the performance of our proposed depth estima-
tion method on publicly available RGB-D NYU Depth v2
and KITTT datasets by evaluating our model compared with
several relevant studies. In order to objectively assess the
efficacy of our depth prediction model, we employ the fol-
lowing evaluation metrics, which have been widely employed
in prior research. Specifically, we assess our method using
metrics based on its error rate and accuracy in Egs. (5), (6),
(7), (8), (9), and (10).
« Root mean squared error (RMS):
The standard deviation of the prediction errors to mea-
sure the difference between predicted (y,) and the
ground truth data (y;).

lZ|—|2 )
N Yp — VeI~

Yp€EIN|

« Average log, error (LOG10):
The average of the absolute error of the log-transformed
predicted (y,) and log-transformed ground truth values

()’t)-
1
¥ Zl | [1og19(p) — log1o(o)- (©6)
YpEIN

« Average relative error (REL):
The ratio of the absolute error of the predicted (y,) to the
ground truth (y;).

1 _
ﬁ Z |}’p }’t|. %)

t
weng Y
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« Root mean squared log error (RMS LOG):
The Root Mean Squared Error of the log-transformed
predicted (yp,) and log-transformed ground truth
values (y;).

1
~ 2 llogy, —logy® ®)
YpEIN|

o Squared relative error (SQ REL):
The ratio of the squared error of the predicted (y,) to the
ground truth (y;).

o2
l Z |yp Vil . ©)

weng

o Accuracy with threshold (Py},): percentage (%) of y, to
max(%, )y—’t’) =8 < Py, where:

Py € {1.25,1.25%, 1.25%). (10)

Here, y, and y, are the predicted and ground-truth depth,
respectively, and N is the total number of pixels. With the
exception of the accuracy with threshold, lower numbers
indicate higher performance for all metrics.

V. EXPERIMENT

We carried out several experiments using our network on the
publicly available NYU Depth v2 [35] and KITTI dataset [36]
using Tensorflow [37] and Keras Framework [38] to demon-
strate the performance of our proposed method. We con-
ducted more experiments with various tasks to observe our
proposed method’s achievement.

A. ABLATION STUDIES

We perform an ablation study to examine the proposed three-
player adversarial with a non-adversarial model counter-
part to discover the effectiveness of our proposed approach.
We report the quantitative result in terms of accuracy in Tab. 1
on the outdoor KITTI dataset. We observe that the presence
of the third sub-model improves the depth performance of
the standard GAN model. Further improvement is found by
utilizing Stochastic Gradient Descent (SGD) optimizer in the
discriminator compared adaptive moment estimation (Adam)
to all sub-models. Our proposed TP-GAN achieve greater
improvement by utilizing the Structural Similarity Index
Measure (SSIM) loss rather than the standard Mean Squared
Error (MSE). The TP-GAN-ADAM-SGD-SSIM improves
the standard GAN-ADAM-MSE accuracy by 3%, 1%, and
0.5% for the threshold § < 1.25, 8 < 1.25%, and § < 1.25%,
respectively. These further demonstrate that the performance
of our depth estimation is positively impacted by the presence
of the refiner sub-model along with the SSIM loss in our
TP-GAN. Additional ablation research to evaluate the influ-
ence of SSIM loss function is included in our supplementary
materials.
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TABLE 1. Ablation study on the outdoor KITTI data.

Optimizers™ Accuracy Thresholds™
(G) (D) (R) Loss 8<1.25 6<1.252 §<1.253
Standard-GAN-ADAM-MSE =~ ADAM  ADAM — MSE 0.854 0.963 0.987
TP-GAN-ADAM-MSE ADAM ADAM ADAM MSE 0.869 0.969 0.990
TP-GAN-ADAM-SGD-MSE ADAM SGD ADAM MSE 0.880 0.971 0.991
TP-GAN-ADAM-SGD-SSIM ADAM SGD ADAM SSIM 0.884 0.973 0.992

*(G) generator, (D) discriminator, (R) refiner.
**The higher the better.

B. COMPARISON WITH EXISTING METHODS
We compare our proposed TP-GAN with some of the most

TABLE 2. Accuracy comparison on NYU Depth v2. The best results are in
bold and second best are underlined.

notable single image depth estimation methods and report the Accuracy”
. 2 =3
accuracy and error rate results in Tabs. 2 and 3 for NYU Depth versarial Vicihod range[m] §<125 0<1.25° 6<125
. . versariai ethods
v2, and Tabs. 4 and 5 for KITTI data, respectively. To confirm Zheng et al. 2018 [27] 1-10 0.540 0.832 0.943
an adequate and meaningful evaluation, we analyze the effec- Rwak et al. 2020 [28] — 0.834 0.941 0976
R 4 K . X Non-adversarial Methods
tiveness of our model using the same dataset split validation Eigen e7 al. 2014 [7] 0-10 0,611 0.887 0.971
: : Eigen et al. 2015 [40] 0-10 0.769 0.950 0.988
technique as Eigen et al. [7]. Wang ef al. 2015 [41] — 0.605 0.890 0.970
Roy et al. 2016 [42] 0-10 — — —
Chakrabarti ef al. 2016 [43] — 0.806 0.958 0.987
1) NYU DEPTH v2 Li et al. 2019 [44] — 0.788 0.958 0.991
. . . . Zhao et al. 2020 [50] — 0.701 0912 0.987
We examine our model W}th several previous adversarial Gur et al. 2020 [14] 0-10 0772 0.942 0.984
networks and non-adversarial methods on NYU Depth v2, Bian ef al. 2021 [15] 0-10 0.820 0.956 0.989
. . Ye et al. 2022 [10] — — — —
as shown in Tab. 2 and T'ab. 3. In the adversarlal' approafzh, A —= — 555 =5
our accuracy performs slightly lower than [28] in the first *the higher the better.

threshold (§ < 1.25) but perform better in other metrics with
a significant margin. Compared to the non-adversarial based
methods, our TP-GAN outperforms the preceding works [7],
[10], [14], [40], [41], [42], [43] and achieves comparative

TABLE 3. Error rate comparison on NYU Depth v2. The best results are in
bold and second best are underlined.

X Error Rate
performance, even better than [15], [44]. Here, ours achieves range [m] RMS LOGIO REL
better than [44] on the thresholds (8 < 1.25 and § < 1.252), Adversarial Methods
and error rate performances (root mean square error (RMS) Ehe;f ett “ll- 228213 [[2287]] 1-10 82;; - 0.257
W erat. —_— ., — —
and the average log error (LOG10)). Whereas [15.] performs Non-adversarial Methods
better only in the first threshold (§ < 1.25) with a small Eigen ez al. 2014 [7] 0-10 0.907 — 0.215
margin, our TP-GAN consistently improves performance in s\i[gen et “5- ggg E;(l)% 0-10 8-2; - g-égg
2 3 ang et al. — . — .
the other two thresholds (8. < 1.25° and 8 < 1.25°) and Roy et al. 2016 [42] 0-10 0774 . 0.187
performs the lowest RMS with a large margin. Chakrabarti ef al. 2016 [43] — 0.620 — 0.149
Li et al. 2019 [44] — 0.635 0.063 0.143
Zhao et al. 2020 [50] — 0.686 0.079 0.189
2) KITTI DATASET Gur et al. 2020 [14] 0-10 0.546 0.063 0.149
We report the performance of comparison with several sim- géa“te’l“éozzozz[ll 51]5] 0-10 8'2?2 0.059  0.138
. . . et al. —_— .. — —
ilar strategies on the KITTI dataset, both adversarial and Ours =5 0509 0080 0143

non-adversarial. In terms of accuracy, as demonstrated in
Tab. 4, our technique surpasses all nine previous adversarial
works [19], [20], [21], [22], [23], [24], [25], [26], [27] as
well as non-adversarial methods [7], [11], [12], [16], [45],
[46], [47], [48], [49], [50] by significant margins for all the
three thresholds § < 1.25,8 < 1.25%, and § < 1.25% but
performs lower than the work in [51] with a small margin.
In Tab. 5, we show our TP-GAN reliability in comparison
to the previous related works in terms of the average relative
error (REL), the squared relative error (SQ REL), and the root
mean square log error (RMS LOG).

VI. DISCUSSION
We evaluate depth estimation on indoor NYU Depth v2
up to a maximum distance of 10 and 80 meters for the
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outdoor KITTI dataset. To show that our proposed adversarial
approach benefits from the additional player in the GAN
model, we specifically compare the performance with pre-
vious related works on adversarial methods.

A. NON-ADVERSARIAL MODELS

On the NYU Depth v2 dataset, our method achieves less
accurate depth than the work of [15] in § < 1.25 by a
small margin of 0.001, but performs better in the second
threshold (§ < 1.25%) by a bigger margin (0.004). In terms
of error performance, our TP-GAN obtains the lowest RMS
error by a margin of 0.009 when compared with a very close
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FIGURE 3. Depth Prediction on NYU Depth v2 qualitative results from top to bottom: (a) RGB image, (b) ground truth, (c) Eigen

et al. [7], (d) Our TP-GAN.
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FIGURE 4. Qualitative comparison result on KITTI data. (a) RGB image, (b) ground truth, (c) Eigen et al. [7], (d) Liu et al. [45], (e) Kutznizov et al. [46],
(f) Godard et al. [11], (g) Our TP-GAN. Our method can determine missing depth in the upper part of the image.

KITTI data

\

4 |
FIEI
™

NYU Depth v2

FIGURE 5. Additional qualitative comparison result with Kutznizov et al. [46] on KITTI data (left) and with Liu et al. [45] on

NYU Depth v2 (right).

competitive method of [10]. While our quantitative results are
not as good as to those of [51] on the KITTI data, ours out-
performs a vast majority of previous methods [7], [11], [12],
[16], [45], [46], [47], [48], [49], [50]. Among the approaches,
our TP-GAN achieves the best on SQREL and RMSE LOG
scores. In fact, the transformer-based model of [51] employs a
far more complex and much deeper network with two distinct
encoders and a single decoder. Consequently, the model will
have significantly larger parameters and demand much more
GPU RAM to train. It can be stated that our method performs

VOLUME 11, 2023

comparably along with the previous non-adversarial works
in the metrics of interest. The global performance of our
proposed method revealed adequate depth prediction.

B. ADVERSARIAL MODELS

On the NYU Depth v2 dataset, we present a comparison
to similar previous works. However, there are only a few
GAN implementations in this dataset. Even though our depth
estimation appears less accurate depth than that of [28] in the
§ < 1.25, we reported significantly higher performance in the
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RGB [12] from [15]

[50] from [15]

[15] from [15] Ours

FIGURE 6. Qualitative comparison result on NYU Depth v2 from left to right: RGB images, Zhao et al. [50],

Godard et al. [12], Bian et al. [15], and our TP-GAN.

TABLE 4. Accuracy comparison on KITTI data. The best results are in bold
and second best are underlined.

TABLE 5. Error rate comparison on KITTI data. The best results are in bold
and second best are underlined.

Accuracy”

Error Rate”

range [m] § < 1.25 &< 1.252 § < 1.253 range [m] ABSREL SQREL RMSELOG
Adversarial Methods Adversarial Methods
Kumar et al. 2018 [26] — 0.732 0.897 0.959 Kumar et al. 2018 [26] — 0.211 1.979 0.264
Pilzer et al. 2018 [25] 0-80 0.789 0.918 0.965 Pilzer et al. 2018 [25] 0-80 0.152 1.388 0.247
Aleotti et al. 2018 [24] 0-80 0.808 0.939 0.975 Aleotti et al. 2018 [24] 0-80 0.150 1.414 0.216
Zheng et al. 2018 [27] 1-50 0.867 0.960 0.986 Zheng et al. 2018 [27] 1-50 0.114 0.627 0.178
Almalioglu er al. 2019 [23] 0-50 0.867 0.970 0.983 Almalioglu ez al. 2019 [23] 0-50 0.137 0.892 0.201
Li et al. 2019 [22] 0-80 0.823 0.936 0.974 Li et al. 2019 [22] 0-80 0.150 1.127 0.229
Puscas et al. 2019 [21] 0-80 0.828 0.933 0.967 Puscas et al. 2019 [21] 0-80 0.135 1.1815 0.235
Groenendijk et al. 2020 [20] — 0.847 0.945 0.975 Groenendijk et al. 2020 [20] — 0.122 0.928 0.215
Zhao et al. 2021 [19] 0-80 0.821 0.942 0.978 Zhao et al. 2021 [19] — 0.139 1.034 0.214
Non-adversarial Methods Non-adversarial Methods
Eigen et al. 2014 [7] 0-80 0.692 0.899 0.967 Eigen et al. 2014 [7] 0-80 0.190 1.515 0.270
Liu ez al. 2015 [45] — 0.647 0.882 0.961 Liu ez al. 2015 [45] — 0.217 1.841 0.289
Godard er al. 2017 [11] 0-50 0.861 0.949 0.976 Godard et al. 2017 [11] 0-50 0.114 0.898 0.206
Kutznietsov et al. 2017 [46] 0-80 0.862 0.960 0.986 Kutznietsov et al. 2017 [46] 0-80 0.113 0.741 0.189
Zhan et al. 2018 [47] 0-80 0.820 0.933 0.971 Zhan et al. 2018 [47] 0-80 0.135 1.132 0.229
Zou et al. 2018 [48] — 0.806 0.933 0.973 Zou et al. 2018 [48] — 0.150 1.124 0.223
Godard et al. 2019 [12] 0-80 0.876 0.958 0.980 Godard er al. 2019 [12] 0-80 0.106 0.806 0.193
Ranjan et al. 2019 [49] 0-80 0.826 0.941 0.975 Ranjan ez al. 2019 [49] 0-80 0.140 1.070 0.217
Zhao et al. 2020 [50] — 0.871 0.961 0.984 Zhao et al. 2020 [50] — 0.113 0.704 0.184
Bian er al. 2021 [16] 0-80 0.873 0.960 0.982 Bian ez al. 2021 [16] 0-80 0.114 0.813 0.191
Manimaran et al. 2022 [51] 0-80 0.926 0.986 0.997 Manimaran et al. 2022 [51] 0-80 0.082 — —
Ours 0-80 0.884 0.973 0.992 Ours 0-80 0.103 0.624 0.156

*the higher the better.

8 < 1.25% and § < 1.25% by 0.019 and 0.013, respectively.
Notably, [28] does not publish the depth range information of
their evaluation data, which significantly impacts the quan-
titative result. Nonetheless, we achieve the best error rate
performance compared with all the related methods [27],
[28]. Next, we provide a comparison to nine previous related
adversarial works on the KITTI data. Despite the fact that
some of them use a smaller depth range [23] and [27],
and some do not show their depth range [20] and [26], our
approach outperforms a series of the previous methods by a
big margin in all metrics of interest. The results show that
our proposed TP-GAN outperforms the previous monocular
depth estimation on adversarial model architectures.

C. QUALITATIVE RESULTS

We provide qualitative visualization results for more analysis
of our proposed method. We compare our predicted depth
with the work of [7] in Fig. 3, [45] in Fig. 5, and the works of
[12], [15], and [50] in Fig. 6 on the NYU Depth v2 dataset.
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To ensure a reasonable visualization comparison, we use
similar sample images adopted from their paperworks. It is
clear in Fig. 3, Fig. 5, and Fig. 6 that our proposed approach
is sufficient to generate more reproducible image depth esti-
mation performance, in which some results are close to their
ground truths.

Meanwhile, the performance of our depth estimation on the
KITTTI data along with the works [7], [11], [45], and [46] are
shown in Fig. 4 and in Fig. 5 to that of [45]. Compared to
their output depth, it can be seen that our method yields more
visually satisfying predictions with more visible transitions
that correlate with local depth information. We show that
our strategy is more proficient at detecting the major depth
structure of the image for both datasets.

D. ADDITIONAL QUALITATIVE RESULTS

Supplementary, we provide Fig. 7, Fig. 8, Fig. 9, and Fig. 10
to demonstrate additional qualitative results of our proposed
approach on 15 unseen random NYU and KITTI data. Fig. 7
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FIGURE 7. Image depth prediction from random images on NYU Depth v2: (a), (e), (i) RGB image, (b), (f). (j) ground truth, (c), (g), (k) our

TP-GAN method. (d), (h), (I) SSIM reconstruction error.

and Fig. 9 show further qualitative results of our predicted
depths, visualizing their SSIM error reconstruction images,
and calculating the SSIM scores. We demonstrate the effec-
tiveness of our proposed method in generating consistent

VOLUME 11, 2023

better depth visualization. The dark portion of the SSIM
reconstruction images represents the depth dissimilarity
between the predicted and the ground truth depth. Our method
prediction achieves a good performance in which some
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FIGURE 8. Depth value histogram from random images on NYU Depth v2: (a), (e), (i) RGB image, (b), (f), (j) GT histogram, (c), (g),

(k) Predicted histogram. (d), (h), (I) Combination histogram.

results are relative to the ground truth, as represented by their
SSIM error scores being close to 1.

As illustrated in Fig. 8 and Fig. 10, we study the depth
value distribution by analyzing the histogram from the ground
truths and its predicted images. The histograms of the ground
truth data show that the depth distribution corresponding to
different RGB images can vary to a large extent. Despite
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some obscured deviations of the predicted histograms from
the ground truth, the overall depth value data distributions
of our predicted images are more visually appealing for the
random unseen data. In addition, we also demonstrate 3-D
point cloud visualizations of the NYU sample data In Fig. 11.
Additional qualitative results, including random images from
the internet, can be found in the supplementary materials.
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FIGURE 9. Image depth prediction from random images on KITTI dataset: (a), (e), (i) RGB image, (b), (f), (j) ground truth, (c), (g), (k) our
TP-GAN method. (d), (h), (I) SSIM reconstruction error.

E. CROSS-DATASET ADAPTATION on another, and vice versa. As shown in the supplementary
To demonstrate how effective our model performance gener- materials, the accuracy of depth estimation decreases when
alizes to other datasets, we examine the cross-dataset adap- training and testing across two datasets. This is likely due
tation capabilities by training on one dataset and testing to different data collection environments (e.g., the maximum
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FIGURE 10. Depth value histogram from random images on KITTI data: (a), (e), (i) RGB image, (b), (), (j) GT histogram, (c), (g), (k) Predicted

histogram. (d), (h), (I) Combination histogram.

range in NYU is 10 meters and 80 meters in KITTI dataset).
After training on the outdoor NYU dataset, the model has
an issue estimating the distant objects on the indoor KITTI
dataset. Likewise, the trained KITTI model has difficulty
generating depth for some particular objects on the NYU
indoor dataset. Nevertheless, despite the different data set-
tings between the two datasets, we show that our model was
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able to generalize in learning scene variations across both
datasets and confirms reliable results, especially when trained
indoors and tested that use the outdoor dataset.

F. MODEL PERFORMANCE
We demonstrated that the model we proposed in this research
is rather concise, yet its performance is reliable. In fact, our
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FIGURE 11. 3-D point cloud from sample indoor NYU Depth v2.

TP-GAN is comprised of only three simple sub-models, the
first of which is a ResNet50V2-based generator sub-model.
The second sub-model, a discriminator, consists of a stack of
six convolution layers constructed as a patch GAN model.
The final sub-model consists of a series of six convolu-
tion blocks which the first five blocks comprising convolu-
tion, batch normalization, Relu activation, and dropout. The
last block contains a convolution layer following a linear
activation.

In particular, our TP-GAN model has around 59.2M train-
ing parameters, which 51.7M for the generator, 7M for the

VOLUME 11, 2023

discriminator, and 520K for the refiner sub-model. During
testing, only the refiner parameter is taken into account.
It takes about 39.5 minutes and 50 minutes to finish one epoch
for training KITTI and NYU data, respectively, measured in
a single 8GB NVIDIA GeForce GTX 1080. All the results
presented in this paper, the training process typically takes
around 36 epochs for the NYU and 28 epochs for the KITTI
dataset to converge with a batch size of 16.

Another benefit of using an adversarial network is the
ability to train the network using a single batch. This strategy
enables our model to train with fewer input data while still
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maintaining to show reliable performance. In comparison to
Eigen et al. work [7], we trained our model utilizing 50K vs.
120K for the NYU v2 depth data and around 25K vs. 40K for
the KITTI data. Whereas 25K vs. 39K training data on KITTI
compared with the works [11], [46].

VIi. CONCLUSION AND FUTURE WORKS

The use of an additional sub-model to integrate global scene
structure and local scene information in a generative adver-
sarial network (GAN) has been successfully demonstrated for
single image depth estimation. We confirmed that regardless
of its simple structure, the presence of the third player (TP)
in adversarial learning effectively improves the overall depth
prediction performance of the model. Extensive experimental
results demonstrate that employing a third player along with
the SSIM loss is beneficial in a single image depth estima-
tion. Our proposed TP-GAN-SSIM improves the standard
GAN-MSE accuracy by 3%, 1%, and 0.5% for the threshold
§ < 1258 < 1.25%, and § < 1.25% respectively, and
shows competitive performance compared with state-of-the-
art on the outdoor dataset KITTI and indoor dataset NYU
depth v2. Furthermore, we demonstrated that our proposed
model required less training time to converge compared with
the aforementioned related methods regardless of the GPU
device.

Our future work is encouraging to develop a robust single
image depth estimation to be applied not only for indoor or
outdoor data, but also will be applicable for such a complex
environment e.g. underwater. We will also consider to add
some scene data generated from Carla simulator for greater
generalization capability across different datasets.
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