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ABSTRACT Decoy targets such as honeypots and decoy I/O are characterized by a higher accuracy in
detecting intrusions than anomaly, misuse, and specification-based detectors. Unlike these detectors, decoy
targets do not attack an activity classification problem, i.e. they do not attempt to discern between normal
activity and malicious activity. By design, decoy targets do not initiate system or network activity of
their own, consequently any operation on a decoy target is unequivocally detected as malicious. However,
we have found that this innate characteristic of decoy targets can be exploited by malware-initiated probes
to detect them quite reliably. As a proof of concept, we describe red team tactics that collect and analyze
live performance counters to detect decoy targets. To counter these threats on machines in production,
we developed a defensive countermeasure that consists of decoy processes, with dynamics that are regulated
and guarded by convolutional neural networks. Our deep learning approach characterizes and builds the
performance fingerprint of a real process, which is then used to feed a performance profile into its decoy
counterpart. Decoy processes emulate the existence of system activity, which is crafted to enable decoy I/O on
machines in production to withstand malware probes. We evaluated the interplay between red team tactics
and decoy processes integrated with a decoy Object Linking and Embedding for Process Control (OPC)
server, and thus discuss our findings in the paper.

INDEX TERMS Malware interception, operating system kernel, deep learning, decoy, OPC.

I. INTRODUCTION
Malware is on the rise with the ever increasing amount of data
transferred in modern communication networks. Malware
impacts both general-purpose computing and industrial con-
trol systems. In response, many defensive tools and tech-
niques have been utilized against them. Honeypots are among
those defensive measures. Honeypots can detect malware
quite reliably because they do not initiate any activity on
their own. Nevertheless, decoy-savvy malware checks for
inconsistencies in its targets prior to pursuing them. Should
malware suspect a target to be a decoy, it will fall back,
erase itself and hence disappears before the defender sees any
clues at all.

As a proof of concept, we developed a red team approach
that leverages live performance counters to detect a honeypot.
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The approach is also applicable against decoy I/O on
machines in production. Decoy I/O consists of phantom I/O
devices and supporting mechanisms that are deployed on
machines in production [1]. Performance counters are data
that characterize the performance of a process, kernel driver,
or the entire operating system (OS). Their intended use is
to help determine performance bottlenecks and fine-tune
machine performance. Performance counters are provided by
the OS and hardware devices [2].

In our previous works [3], [4], we designed decoy pro-
cesses that enable a decoy to qualify as a valid target of attack
and hence affect malware’s target selection. We worked on
two factors related to decoy processes, namely existence and
performance consistency. Existence is achieved via instru-
mentation of data structures related to performance coun-
ters in the OS kernel. Performance consistency is achieved
via deep learning, namely a convolutional neural network
that can learn the performance fingerprint of a real process.
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We use the extracted knowledge to protect its decoy coun-
terpart from malware probes. To the best of our knowledge,
we are the first to propose a solution that uses OS-level
performance data to create the existence of a decoy process
and protect it from adversarial probes.

In the past, we have explored data structure instrumen-
tation to emulate the existence of a decoy process [5].
Nevertheless, we instrumented data structures that were
strictly related to processes and threads, consequently we
only created the partial existence of a decoy process without
any run-time performance dynamics. Saldanha and Mohanta
from Juniper Networks proposed HoneyProcs, which is a
deception methodology based on decoy processes [6]. Hon-
eyProcs’ objective is to detect malware that injects code into
other processes. HoneyProcs creates a real decoy process that
mimics another real process. Once the decoy process reaches
a steady state, it stops making progress with its execution,
which leaves its state immutable.

HoneyProcs uses the fixed state of a decoy process as
a baseline against any changes, including those made by
malware’s code injection. Our red team tactics, which we
describe in detail later on in this paper, can detect HoneyProcs
without making any changes to the fixed state of a decoy
process. A simple analysis of real-time performance coun-
ters shows that the resource utilization of a decoy process
freezes to constant. For example, the size of the working
set of a decoy process, which is the number of its memory
pages that are currently present in physical main memory,
remains constant or decreases due to the global memory
frame replacement algorithm.

This is abnormal, given that the working set is a moving
window that represents memory localities. Similarly, the page
fault rate of a decoy process swiftly drops to 0, whereas a
continuous 100% page hit rate is simply not possible due to
demand paging in virtual memory.

Our research on camouflaged user space is slightly larger
than the contribution of this paper, therefore a few elements
of this research are out of scope for this paper. The deep
learning in this work needs to be hidden and protected from
malware, otherwise threat actor may manipulate its compu-
tations and evade it. One solution is to run the deep learn-
ing code on a virtual machine (VM), which is managed by
a hypervisor and is isolated from the host machine. The
overhead of a VM solution needs to be carefully assessed.
Another alternative is to run the deep learning code on a
hardware sideboard that is physically isolated from the host
machine.

A honeypot’s lack of network activity can be leveraged to
detect it remotely. A threat actor could only attack machines
that show network activity. Given that no machine in produc-
tion communicates with a honeypot, a threat actor will never
pursue a honeypot. We have described tactics for remote
detection of honeypots in [7], therefore we do not treat this
subject in this paper.

The remainder of this paper is organized as follows:

• Section III describes the threat model for this work.
• Section IV describes our red team tactics that collect
and analyze live performance counters to detect decoy
targets.

• Section V fingerprints the performance counter via con-
trol flow graph.

• Section VI describes the model that protects a decoy
process from malware probes.

• Section VII describes synthetic I/O channel.
• Section VIII presents implementation, testing, and vali-
dation of this work.

• Section II discusses research related to various aspects
of this work.

• Section X summarizes our findings and concludes the
paper.

The contribution of this article can be listed as follows:

• Discussing the key concepts of the existence of decoy
processes through operating system techniques.

• Discussing attacks we developed to detect deep incon-
sistencies in the resource utilization of a decoy process
provided by neutral network.

• Identifying input/output data inconsistency in decoy
process.

• Proposing a solution to improve the visibility of decoy
process.

The OS reference in this work is Microsoft Windows. The
foundations of the method have been established in prior
work [3], [4], but the main features are summarized here to
make this paper self-contained.

II. RELATED WORK
The development of deception strategies in the manufacture
of machines is not recent. We discuss various technologies
to malware detection and compare them to our proposed
solution.

A. BEHAVIOUR ANALYSIS
Intelligent malware can detect if it is in an emulator envi-
ronment. After detecting that it is in a virtual machine or
decoy machine, it can easily halt its activities and exit the
system without a trace [8]. Malware can check the behavior
of a system, including its running processes and OS level
behaviors, to identify suspicious activity in its environment.
Chen et al. demonstrated that malware can perform consis-
tency checks and infer if a process is running under a decoy
environment because some instructions take different paths to
finish in an emulated machine than in a real one [9]. In order
to camouflage our decoy environment, we apply machine
learning and a Control Flow Graph (CFG) to provide the
consistency of a real process to a decoy.

Various detection techniques have been researched in order
to counteract anti-honeypot technology. Hayatle et al. studied
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FIGURE 1. Adversarial probing of decoy processes on a compromised machine.

the interaction of malware and honeypots through a Markov
Decision Process (MDP) model to determine an optimal
defense strategy that minimizes the probability of attack [10].
Jiang and Xu proposed a catering honeypot architecture
called BAIT-TRAP, which dynamically identifies services
to use as ‘‘bait’’ for incoming attackers in order to quickly
trap subsequent exploitation [11]. Since both ignore system-
level activity, we employ a different technique through decoy
processes which represent the activity of a real machine.

Rrushi proposes an anti-malware solution to detect Object
Linking and Embedding for Process Control (OPC) malware
on machines in production. This is accomplished by config-
uring a Decoy Network Interface Card (DNIC) on a computer
in production, i.e., one being used by a human for real work
tasks. The DNIC is a decoy connection to a decoy network.
No such network exists in reality, but it appears to be real
to malware. Therefore, the malware is detected with no prior
knowledge of its behavior or code [5].

Behavior-based detection has been studied recently.
Demme et al. uses performance counters to capture micro-
architectural features [12], [13]. The authors apply these
counters to detect abnormal malware behavior. Singth et al.
expanded on this idea by specifically testing kernel rootk-
its using performance counters [14]. Wang et al. focus on
similar detection of kernel rootkits [15]. They employ a
custom, code-based solution which collects the number of
system-specific call events during the execution of a process.
However, threat actors can use these counters to subvert a
system to find inconsistencies. We use these features to show
the consistency of our decoy process.

Bruschi et al. use control flow graphs to detect self-
mutating malware and its malicious code fragments and

therefore detect malware [16]. Jaffar et al. also use this type
of graph to study paths sensitive to where there are mul-
tiple nodes to execute a process [17]. Anomalous run-time
behavior detection is another method used by researchers.
Nadi et al. use execution logs to form a control flow
graph [18]. Our research not only uses CFGs to improve
the heatmap training mechanism, but also to evaluate the
unexpected black swan values in order to predict resource
utilization. Chirkin et al. estimate bounds on workflow pro-
cesses for all paths in workflow graph [19].

Murphy explores graphical models and relates them into
Bayesian networks. By understanding the graphs associated
with algorithms, machine learning can be leveraged to pro-
duce better results [20]. With the assumption that a hot path
has minimal effect on the program state, Ali uses a Bayesian
network approach in order to infer whether a program’s code
path is categorized as hot or cold. Their modified model
enumerates static paths for each method to determine the
best hot paths to increase performance [21]. Based on these
methodologies, we use hot paths to find inconsistencies of a
decoy process.

B. HONEYPOTS
Honeypots provide a line of defense against incoming attack-
ers. However, techniques have been researched to show that
they also have many vulnerabilities. These techniques com-
monly aim towards retrieving and analyzing key attributes
on the decoy which do not align with those on a real sys-
tem. In the past, techniques have been used to fingerprint
the performance of network links based on Neyman-Pearson
decision theory [22] and open proxy relays [23], [24] show
that honeypots are vulnerable by focusing on a performance
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analysis technique over networks. They show that attackers
can measure features set to clearly distinguish honeypots and
real systems.

Our approach seeks to resolve another common honeypot
vulnerability: resource utilization consistency of decoy pro-
cesses. Instead of focusing on network attributes, we seek to
intercept and deceive malware against machines in produc-
tion based on the consistency of resource utilization of decoy
process with its counterpart.

C. DECOYS
Decoy techniques have been an effective defense method to
secure our computing systems and detect attacks. The unique
characteristic of decoys is the fact that they are deployed
within the true system. Decoys have the advantage in that
they can expose stealthy attacks effectively and the legitimate
users are not required to login to the decoys.

Park et al. proposed software decoys to generate Java
source code using code obfuscation techniques [25]. There-
fore, the code appears real to an attacker. In [26], Lee et al.
proposed a method to create decoy files based on the analysis
of the Ransomware. Sun et al. developed a hybrid decoy
system to display a decoy over the network [27]. The sys-
tem separates light weigh front and end decoy proxies from
servers.

In our approach, we use the operating system performance
counters to display a decoy process to the attacker.

III. BACKGROUND AND THREAT MODEL
The research described in this paper delivers a survivability
capability that protects a machine after it has fallen in the
hands of threat actors. At this point, malware has penetrated
and landed on a machine, and is now probing its environment
to determine if all or a part of the machine is a decoy. Thus,
probes originate from the inside. These factors are illustrated
in Figure 1. We have observed that target validation in mal-
ware is commonly a precursor to further attack operations.
These operations are implemented as separate malware mod-
ules that follow the exploit modules. Malware modules are
brought into a compromised machine primarily in two ways.

A single-stage malware dropper incorporates these mod-
ules and brings them along. The dropper itself is downloaded
over the network from another machine controlled by threat
actors. A multi-stage dropper operates slightly differently.
A multi-stage dropper is first brought into a compromised
machine. Subsequently, the multi-stage dropper downloads
these modules into the compromised machine. Figure 1
shows a threat actor in pursuit of a target OPC server. Since
the latter may be a decoy, the threat actor avoids contacting it
right away. If no processes in the compromised machine are
seen to communicate with the OPC server for a long time,
then the OPC server is likely a decoy.

A process that accesses the OPC server over the network
indirectly becomes a viable validation instrument. If that
process is real, then the target OPC server ought to be real.
No real processes access decoy OPC servers. By the same

token, a decoy process will appear to access a decoy OPC
server. Furthermore, a decoy process cannot mask a real
process while the latter accesses a real OPC server. Now that
a decoy process is at the center of the threat actor’s attention,
it is important to define what actions the threat actor could
and could not take. First and foremost, it is disadvantageous
to the threat actor to access the virtual address space of the
target process. Although this virtual address space is mapped
to inexistent physical addresses, all accesses to it are easily
monitored.

As with the decoy OPC server, any memory contact with
the decoy process results in immediate detection. Conse-
quently, the threat actor is forced to engage in passive probing
techniques against a decoy process. In this paper, we consider
probes that use performance counters, however other types
of probing techniques are feasible. Performance counters are
a set of special-purpose registers, which are built into the
performance monitoring units of modern microprocessors to
store counts of system activities. Performance counters are
commonly used to gather low-level details of events that
occur in the hardware during code execution.

The intended purpose of performance counters is to help
system administrators with performance tuning and system
diagnostics. They have minimal overhead, and their use
requires no modifications to the OS or the underlying hard-
ware. Overall, performance counters are a powerful tool for
system administrators, but also for threat actors, to gain
insight into the behavior and resource utilization of a process.

Figure 1 conveys the key message that engineering decoy
processes which can withstand probes is of significance value
to the defender. Decoy processes and their performance con-
sistency, along with other types of consistency, are decisive
on whether malware falls into a trap, or steps away from a
decoy target, erases itself and hence disappears even before
the defender sees any clues at all. An ineffective decoy results
in none of the malware modules or even the dropper ever
being brought onto the machine.

Post-exploit defense is a necessity. The initial exploit may
go undetected, such as when it leverages a 0-day vulnera-
bility to land on a target machine. Malware operations that
unwittingly involve decoy I/O are the defender’s opportunity
to detect them.

IV. ADVERSARIAL PROBING
We now describe experiments in which we leveraged live
performance counters to detect honeypots, decoy I/O, and
later decoy processes.

A. HONEYPOT EXPERIMENT
We did an experiment based on performance counter analysis
to stress test decoy covertness. The goal was to practically
assess the ability of honeypots and decoy I/O to protect their
decoy function. We performed the experiment separately on
a Windows honeypot, and then on a Windows machine in
production that was running decoy I/O devices. The research
testbed consisted of two desktops and a laptop. We connected
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FIGURE 2. Contrast between the performance of a process on a honeypot and the performance of the same process on a machine in
production [3].

all these machines to a local area network (LAN) and we log-
ically and physically isolated them from any other networks.

We ran metasploit [28] against the honeypot to exploit a
publicly known vulnerability in one of its network services.
The exploit injected and ran code that returned a shell on
the honeypot, which was then usable to fetch and run decoy
probing code. The honeypot mechanisms detected the exploit
as soon as its first packet reached the honeypot machine.
Nevertheless, neither the exploit, nor the vulnerability, were
of any value to the defender because they are both publicly
known already. In these circumstances, the defender could
benefit by patiently waiting for the testers’ next steps, namely
operations like those that we referenced in the threat model
earlier in this paper.

Advanced malware will not proceed with any further oper-
ations on the compromised machine until they have validated
the compromised machine is not a honeypot. To this end,
given our red team position, we wrote a PowerShell script
to collect performance data in real-time. The data that we
collected included host processor and memory utilization,
and secondary storage activity. The PowerShell script con-
tinuously filled a data repository with samples. The data
repository enabled us to view a table of the names and process
identifiers of all processes currently running on the system.
We could also view and store all details and attributes of a
specific process of our choice.

We analyzed performance counter data to search for pat-
terns of either low or completely absent resource utilization
in [3]. We found that per-process performance analysis is
much more accurate in spotting inactivity than machine-
wide performance analysis. Let us start with the processor
time, which refers to the percentage of elapsed time that the
processor spends executing an active thread. Host processor

time on the honeypot was somewhat comparable to a machine
in production that is idle or in low use. We reached similar
conclusions about the amount of time the processor spent exe-
cuting user space code and kernel space code, respectively.

The only machine-wide activity that we generated in this
experiment consisted of our PowerShell script in user space,
and the honeypot monitoring tools in kernel space. The result-
ing interrupt arrival rates and page fault rates were hardly
distinguishable from their counterparts on a machine in pro-
duction that is idle or in low use. It may occur that multiple
independent threat actors land on a honeypot. Furthermore,
it is common for malware to compete with each-other.
In these cases, resource utilization rises. Together with the
lack of attribution in machine-wide performance parameters,
high resource utilization by multiple malwares makes inac-
tivity detection more challenging. These findings formed the
basis for directing deep learning towards the performance
profile of specific processes rather than the machine.

After directing our PowerShell script towards specific
processes, we obtained performance counters that indicated
a total lack of any resource utilization on the honeypot.
Occasionally, performance counters revealed existent but low
resource utilization, which came from our own operations on
the honeypot. We had pre-computed the resource utilization
of all operations that we had planned to run on the honeypot,
consequently self-generated activity and related jitter was
easy to filter out. The processor time of processes on the
honeypot stays flat at 0, because those processes do not make
progress with their execution.

New pages in memory are not referenced, consequently
no page faults occur. Human-machine interaction is absent,
consequently interrupts do not occur. Secondary storage is
not accessed, consequently the data rate and the number of
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I/O operations per second are both null. The data plot on the
left of Figure 2 shows some of the performance parameters
of a Desktop Windows Manager (DWM) process on the
honeypot. Patterns of absent or low resource utilization are
clear. Apart from the working set parameter, all other perfor-
mance parameters visualized on the data plot are constantly 0.
A few processor time spikes occurred; however, those are
very minimal.

It is interesting to see how the working set, which is
represented by the flat horizontal line at the very top of
Figure 2, never changed from a specific constant value. This
comes as no surprise, given that with no page faults occur-
ring, the working set could not change. In the data plots of
Figure 2, we have applied a log10 reduction of the working
set to make this parameter fit within the same plot as the
other performance parameters. The data plot on the right
of Figure 2 shows the same performance parameters of the
DWM process, but this time these parameters come from a
machine in production. The working set and the disk data
per second have both been reduced log10. They are high and
variable.

We repeated the honeypot experiment on decoy I/O. This
time, we directed the red team probes against a decoy process,
which was hidden in a set of real processes on a machine in
production. Decoy I/O consisted of a decoy network inter-
face controller, which projected a decoy network providing
connectivity to a decoy Object Linking and Embedding for
Process Control (OPC) server, as in [5]. The decoy pro-
cess in our experiment was an OPC client, which, just like
HoneyProcs, maintained a consistent appearance. The decoy
process appeared to load the same libraries, had the same size
on disk, and created the same number of threads, as its real
counterpart. Nevertheless, after we probed the decoy process
over performance counters, we could detect it immediately
due to obvious patterns of low or absent resource utilization.

We collected and analyzed multiple performance samples
to improve the accuracy of our red team approach. Periods
of inactivity or low use may be quite common even for a
machine in production. By extending data collection over a
large time window, we made sure that if production activity
existed, we could collect it sooner or later.

B. DECOY PROCESS EXPERIMENT VIA
INFLUENCE ANALYSIS
Influence-based probing consists of running code to con-
sume resources on amachine in production, and subsequently
studying how the consumption of those resources affects the
resource utilization of a target process. This probing tech-
nique is illustrated in Figure 4. Threat actors acquire a pro-
file of the compromised machine which consists of detailed
hardware specifications along with their speed or capac-
ity. This includes CPU, main memory, secondary storage,
OS type and version, and a list of processes and installed soft-
ware along with their respective configurations. Threat actors
send the machine profile to another machine under their
control.

The attacker can mimic the compromised machine and
create a replica of it once the archived package including
the machine profile is received on the attacker’s external
machine. The replica on the external machine will have the
same CPU, memory, secondary storage and running pro-
cesses. Now that they have all the needed information about
the compromised machine, they create their own process
on the replica by using an executable file of their own and
collect the performance data to characterize the resource uti-
lization, which includes memory usage over time, time spent
in user space, time spent in kernel space, etc. After collecting
and evaluating the performance counters, this information is
sent to the compromisedmachine under the attacker’s control.

At this point, the attacker creates the same process used
on the replica and runs the executable file to collect the
performance counters on the compromised machine. The
threat actors now can compare the data from the compromised
machine against that collected via performance counter on the
external replica regarding their specific process. The threat
actors make the decision to continue the attack based on these
comparisons. If they do not see any meaningful discrepancy
between the two sets of data they stay and continue their
operation; otherwise, they will likely erase all malicious code
and disappear before the defender is alerted to their presence.

Should they fail to uncover the decoy, the defender gets an
opportunity to detect and analyze the threat actor’s actions
and methods based on their contact with the decoy. On the
other hand, an ineffective decoy results in none of the mal-
ware modules ever being brought onto the machine.

V. FINGERPRINTING THE PERFORMANCE COUNTERS OF
A REAL PROCESS USING CONTROL FLOW GRAPH
The consistency of a decoy process is obtained by fingerprint-
ing the performance counters of a real process. Although OS
behavior can be deterministic and predictable, the resource
utilization of a process can always changes depending on
its Control Flow Graph (CFG), which is not always a set of
specific values. Processes contain executable programs that
are connected using their appropriate state transition instruc-
tions. Therefore, a process can go through different paths on
its control flow graph. Since these paths are not sequential,
the same process and input variables on that process can
produce different processor times in user and kernel space
on each execution. An effective decoy process should adapt
this dynamic behavior of execution flow so the threat actors
cannot distinguish it from a real process.

When a process is executing it can go through many con-
ditional and unconditional statements in the graph, possibly
leading to a state explosion problem. As the length of the
graph grows infinitely, it becomes challenging to fingerprint
the entire range of performance counter values. Furthermore,
we understand that a real process can have a varying set of
performance counter values alongside a possible set of black
swan values. These black swan values are unexpected, but not
unpredictable; therefore, in our approach, we also capture the
frequency by which black swan values occur. Otherwise, the
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FIGURE 3. System settings collected by attacker.

decoy is going to exhibit a stationary performance counter
that will never break out of a set of values.

A CFG is made up of blocks of code in a certain program.
When the program is executed as a process, the execution
flows from one block to another block of code. However, the
neural network does not have awareness of the flow of execu-
tion outlined in the CFG and so does not learn the value for the
path that reaches a block of code less frequently. Therefore,
for a similar heatmap the neural network disregards the flow
of execution outlined in the CFG and reports the performance
counter data with no regard to the current location of the
process in its CFG and learns from the more frequent code
locality.

Moreover, the neural network has no awareness of a time
factor. Below are factors that cause the neural network to
report inconsistent performance counters:

1) UNBOUNDED PERFORMANCE COUNTER DATA
The neural network needs to take into the account the relation
between performance counter values and time. Therefore,
it reports performance counter data without regard to the total
resource utilization. For example, a real processmay issue I/O
write or read operations which can be spread out across the
execution time of the process. The neural network does not
have the sense to report the exact value that is consistence
with the total number of I/O operation performed by the
process and will only report when there is a match with

the heatmaps. However, the reported values of performance
counter values that match with heatmaps are not in the same
frequency of the real process. To get the correct consistency,
our neural network needs to be capable of reporting the
maximum resources which a process is capable of drawing
from.

2) UNTIMED PERFORMANCE COUNTERS
The neural network needs to consider the progress of
a process’ execution over time when reporting perfor-
mance counter data. The neural network reports performance
counter values when there are matches to a heatmap image.
However, the time in the execution of a process is not repre-
sented in the heatmaps and the neural network reports when
there are matches to the heatmaps without considering the
time in which the heatmaps were created. For example, if the
decoy process reports values {α, β, β, γ } over the course
of 15 seconds, then the real process may have reached only
{α, β} in the same amount of time.

3) UNCORRELATED PERFORMANCE COUNTERS
This issue arises when the reported performance counter data
are out of sequence and are not correlatedwith each other. The
neural network can accurately read heatmap images individu-
ally but not when viewed as adjacent or consecutive heatmap
reading. The execution flow of a real process over the control
flow graph follows sequences which the heatmap images by
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FIGURE 4. Illustration of influence analysis against a decoy process on a machine in production.

themselves cannot recognize. A real process executing over
the control flow graph can have a sequence of values {α, β,
β, γ }. However, because the adjacent values could be read
too fast or slow the returned values could be only {α, β, γ }
or {α, γ , β} in the same amount of time. Some performance
counter data would be ignored because the two performance
counters are out of sequence with one another.

In our experimentation section VIII, we show how an
attacker can use techniques to detect inconsistencies in per-
formance counters of decoy process reported by a naive
neural network that does not consider the automaton model.

A. SCHEDULING INCONSISTENCY ATTACK
Scheduling is a main operating system function. CPU
scheduling decides which of the processes is ready to execute.
On windows and all time-shared modern OSs, where there
is more than one process in the ready queue waiting its run
to be assigned to the CPU, the operating system decides
through the scheduler the order of execution. Therefore, when
we have a large population of processes running on the
machine that needs CPU cycles. The CPU scheduler will
apply an algorithm to schedule the allocation of processor
cycles to the hungry process. This can cause a specific pro-
cess to run slower as it must wait for other processes to be
serviced first.

InWindows OS, the scheduling code is implemented in the
kernel. Windows implements a priority-driven, preemptive
scheduling system [29] where the highest priority process in
ready queue always runs. When a process is selected to run,
it runs for an amount of time called quantum. A quantum
is the amount of time a process is allowed to run before
another process in the ready queue can run. Already processes
are kept in a queue. The CPU scheduler picks the highest

priority process from the queue, sets a time to interrupt after
the time interval of quantum, and dispatches the process.
BecauseWindows implements a preemptive scheduler, a pro-
cess might not complete its quantum. Therefore, the currently
running process might be preempted before finishing its time
cycle. Consequently, the CPU takes the next process to run.
If the process finishes before the end of the quantum, the
process itself releases the CPU.

We detected an inconsistent scheduling issue by loading a
large population of processes admitted to the system demand-
ing CPU cycles. In our CFG, we apply a model with the time
transition criteria at which each transition from one state to
another state can occur only at certain times. However, if we
do not consider the load of processes and the number of CPU
hungry processes, we can display a progress of decoy process
over time that is inconsistent with the current load process.
Therefore, a threat actor can simply perform a load analysis
to indicate that the decoy process is running too fast or slow.

We found the root cause is the inconsistency of the load
of processes requesting CPU cycles. This situation is graph-
ically represented in Figure 5. The two data plots represent
the I/O operations per second for both the decoy process and
its real counterpart. Roughly, in the first third of the graph,
the two data plots run simultaneously. This indicates that
the decoy is accurately imitating the real process’ rate of
I/O operations. Then, at a time between 10 and 15, the data
plots diverge; the synthetic process begins its I/O operations
a few seconds before the real process. At this time, a batch of
other processes began execution and compete for CPU cycles,
causing the real process to have a delay in its own execution
as it waits to be scheduled. The decoy does not account for
this delay and continues, and thus a noticeable discrepancy
occurs between itself and the real process.
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FIGURE 5. Architecture of CPU Scheduling model [4].

B. SOLUTION TO THE SCHEDULING INCONSISTENCY
To provide a solution to the scheduling inconsistency prob-
lem, we first create a pre-computed hash table in which to
store the various possible states in the control flow graph in
which the performance counter of our decoy process may
be in its execution. A hash table is a data structure that can
be used inside an OS kernel. This information is provided
to a threat actor who is asking for performance counter data
pertaining to the decoy process, which must align with a real
process operating in a system hosting many other processes
that affect each other’s performance. In other words, the
hash table stores an indication of the cluster in the cluster
graph, as well as the specific state in the inner automaton,
where the decoy process currently resides. This hash table
is created and populated ahead of time before any query-
ing for performance counter data has been done. This is
done by running CPU scheduler simulations under various
conditions and is described in detail below. Once this is
finished, the table is ready to be queried when needed using a
three-part key.

The pre-computed hash table is, as with any hash table,
queried with a key. In our approach as shown in the Figure 6,
we use a key that consists of three components: a path identi-
fier, arrival time, and simulation identifier. The path identifier
is simply a number that corresponds to a specific path on
the control flow graph at which the number of paths is given
by automaton. The arrival time refers to the time in which a
threat actor asks for performance counter data of the decoy
process. This time begins counting when the decoy process’
execution is begun. Finally, a simulation identifier is assigned
to each simulated CPU scheduler scenario that is performed
and its state recorded.When the hash table is queried with this
three-part key, it returns the relevant position on the control
flow graph where the decoy process would be located given

the time in which it has been executing and the load of other
processes slowing execution.

1) SIMULATION-IDENTIFIER
Several CPU scheduling simulators have been previously
developed for CPU scheduling algorithm evaluation. We use
CPU scheduling simulators from [30] to simulate varies cir-
cumstances. The simulator enables us to study the behavior
of the windows CPU scheduling when running different
processes and simulate the normal work for the system.
We assign a time quantum of one for CPU scheduling sim-
ulator to execute each process. In our experiment, we found
that the code inside each cluster is normally executed entirely
with one time quantum which is enough to make the decoy
process indistinguishable from its counterpart. A simulation-
identifier is assigned for each simulation that pertains to
specific simulation situation which represents the number
of processes used during the simulation and what processes
they are. We also emulate the CPU scheduling by running
real processes which for our approach will not matter. What
we get at the end is a quantification of how other processes
compete with the decoy process for CPU.

When a threat actor makes a request for the performance
counter of decoy process. At the time of arrival, our approach
identifies the simulation that complies with the current situa-
tion of the load of processes.We use the OS kernel data which
is the real CPU scheduler trace file to find the current situation
of running processes on the system. For example, reading
the trace file can show how many processes the decoy pro-
cess is competing with and since we use pre-simulated CPU
scheduling and real CPU scheduler trace file, our approach
can identify what simulation identifier should assign to.

2) REMOVING THE ROOT CAUSE OF CPU
SCHEDULING INCONSISTENCY
We now discuss the effect of our improved heatmap training
mechanism on the failure exploited by the CPU scheduler.
Based on the time of requests for performance counters for a
decoy process, our models now consider the large population
of processes and the CPU scheduler at which the time that
takes for the CPU to enter the node or the cluster in inner
automaton.

VI. BUILDING MODEL
This section discusses how our approach learns the perfor-
mance fingerprint of a real process to carry out performance
recognition tasks in support of the process’ decoy counter-
part. We express details of our approach through the lens of
deep learning. The reader is referred to [31] for a detailed
discussion of deep learning.

A. DECOY PROCESSES
We now describe the method for creating dynamic display
for decoy processes. The objective of this work is to project
a decoy process as a new process in a way that the process
appears to the attacker to be fully functional and have the
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FIGURE 6. Architecture of CPU Scheduling model.

same performance values as its real counterparts. However,
it does not exist, so our process does not consume real
resources on the machine. The creation of our process is
different than spawning. When spawning a real process, there
is an overhead involved for consuming resources, data, code,
and libraries to store the decoy process in the main memory.
Spawning a process requires a freeze of execution so the CPU
scheduler does not run the process. However, as we discussed
earlier in this paper, freezing execution to create a fixed state
is not effective because it still consumes CPU cycles and
secondary storage.

A dilemma exists in distinguishing our process from any
malicious processes. Malicious actors hide their process
through manipulating the normal execution of system calls.
They modify the system calls and process manager in such a
way that information about the malicious processes will not
appear in the returned list and therefore the process manager
bypasses it. However, there are known techniques to show the
existence of process that has been obscured in this way, such
as the task manager tool, the tasklist command and the PS
command.

In our previous research [3], we wrote data structure instru-
mentation code that deposits synthetic data in the repository
of performance counters. Figure 3 shows how a decoy process
is visible to malware in user space. The figure presents the
performance counters which track the counter sets that are
provided by OS Kernel components. They are in the drivers
of the OS kernel which operate as a Performance Counter
Library (PERFLIB). We can acquire the performance data
by querying this library. The performance data is linked in
data structures, including linked lists. For our decoy pro-
cess, we have written data structure instrumentation code to
project the existence of a decoy process. We then inserted

synthetic performance data in the repository of performance
counters. The synthetic and real performance counters are
provided to consumers in user space, including any potential
malicious actors or programs. This way, a decoy process
has a dynamic synthetic resource utilization and appears to
the malicious intruder to have utilization values in line with
the decoy’s real counterparts. However, the synthetic perfor-
mance data values need to be consistent with those given by
the system’s performance counters, which we address later in
this paper.

The OS kernel counts performance data at specific time
windows when events occur so the performance data in user
space is not updated at the same time as in kernel space
and there is a delay until the counting is completed. For
instance, a counter for page faults increments anytime a page
is referenced that is not in the physical main memory. The
counter is buffered until the counting completes and is not
stored immediately in the repository of performance counters.
Therefore, the consumers of performance counters in the user
space do not see fresh counter data until after the counting is
done. As a result, it is important that the data instrumentation
driver in Figure 3 does not store the synthetic performance
data generated by the neural network too fast or too slow in
the repository of performance counters.

We use a fully trained neural network to generate syn-
thetic performance counter values so the process of producing
performance counters is rapid. For the neural network to
perform performance recognition, it needs to learn from the
performance counters of real processes. The trainingwill help
the neural network produce synthetic performance data. The
synthetic performance data is stored in the repository where
the data instrumentation driver can access it directly. As the
neural network delivers the synthetic performance data to the
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data instrumentation driver, the data will be buffered until the
counting period is done.

We need to mention that it is safe for honeypots to have
synthetic performance data for a decoy process that does not
exist. Honeypots lack the human factor. Since there is no
human interaction on a honeypot, the risk of a user interacting
with a decoy process is null. However, the risk of a user in
production equipped with decoy I/O is considerable. We rely
on a safety measure from previous work [5], which is a filter
driver integrated into the driver stack of the monitor device.
The driver filters out decoy entries from frames of bytes
bound for the monitor before those data have traveled far
enough to be displayed. Since we know the name and the
performance data of the decoy process, we can have them
filtered out from the user’s visual interface.

B. DESIGN OF PERFORMANCE PROFILE
In this section, we present the approach we use to learn the
performance counters of real processes. We use deep learning
to learn the performance counters of real processes and to be
able to predict the performance counter of a decoy process.
The reader is referred to [31] for a detailed discussion of deep
learning. The reasoning of this work is specific to the OPC
client process. However, it is generally applicable to all pro-
cesses.We selectedOPC client for the deep learning approach
because of its integration with a decoy I/O capability that we
have developed in previous work [5].

We use the performance counter of real processes in pro-
duction because the environment is more complex compared
to the honeypot environment. Honeypots are decoy computer
resources so we can configure most or all processes to be
decoy processes in the honeypot and choose their perfor-
mance counters ourselves. Therefore, it is easier to calculate
their resource utilization. However, we cannot control the
performance of real processes in production, especially while
malware is probing for performance inconsistency. There-
fore, we tailor our work for a production environment to
ensure it will work with any possible values.

C. AUTOMATON MODELS OVER TRANSFORMED
CONTROL FLOW GRAPHS
In this section, we present the automaton approach we used
to make our machine learning approach more effective.
We divide the computation executed by a real process into
individual tasks and assign an operation code (opcode) to
each of them. Our machine learning approach is then applied
to these tasks. That is, the neural network learns and rec-
ognizes one task at the time within the larger functionality
delivered by a process.

1) GRAPH CLUSTER
We build a CFG of a real process and apply clustering of
the vertices, which represent blocks of code in the program.
Graph clustering is the task of grouping the blocks of code of
the CFG into clusters such that there should be many edges

FIGURE 7. Architecture of automaton models over a transformed control
flow graph.

between blocks assigned to a particular cluster, and relatively
few between clusters. Blocks in each cluster have similar
functionality or is connected in some predefined sense. In the
CFG, the vertices are ordered in a complex way; there is
no clear structure in the adjacency matrix. Therefore, it is
challenging to interpret the number or quality of clusters
inherent in the graph. Thus, we applied techniques from [32],
the Schaeffer algorithm [33], and graph partitioning [34]. The
result of this clustering work is what we call a cluster graph.

As shown in Figure 7, each vertex of the cluster graph con-
sists of a grouping of blocks of code that the processor tran-
sitioned between frequently. In other words, those vertices of
the control flow graph that are more densely connected via
edges with each other than they are with other vertices are
clustered together. These clusters become the vertices of the
cluster graph. There is a directed edge from a node in a cluster
B to a node in another cluster.

2) BUILDING INNER AUTOMATON
We use an automaton model for our machine learning
approach. We apply an outer automaton on top of the control
flow graph, and an inner automaton at each vertex of the
control flow graph. These are timed probabilistic finite state
automata with a few additions. They contain a time module
that limits when a transition may be taken. A clock increases
as the automaton is fed input. When a transition is success-
fully taken, the clock may or may not be reset to zero and
begin its count anew. Furthermore, a probability is assigned
to each transition that defines how likely that transition is to
be taken.

We use the k-means clustering method [35] to cluster vec-
tors of performance counter samples within each vertex of
the cluster graph. Clusters of vectors of performance counter
samples from the states of the inner automaton for their
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corresponding vertex in the cluster graph. These clusters are
the states of the inner automaton. As a processor runs code
within a vertex of the cluster graph, the type and amount
of resources consumed by the process evolve. Accordingly,
in our inner automaton model, the process transitions from
one state, i.e., cluster of vectors of performance counter sam-
ples, to another.

We observe the times at which a state transition occurs
relative to the start time of the task at hand. We subsequently
turn those observations into a time condition for that specific
transition in the inner automaton. We study the execution of
real process based on the recorded time. As the processor
runs code within a cluster, we collect performance counter
samples every second to determine the time the transition
from one cluster of vectors of performance counter data to
another occurred. Furthermore, the input of each transition
from one cluster of vectors of performance counter data to
another is defined as the major difference between these two
clusters of vectors of performance counter samples that are
connected by the transition.

Given that, by definition, the transitions between states in
the inner automaton are probabilistic, we developed n-gram
models [36] to estimate their probabilities as well as possible
sequences of transitions. For each sequence of n previous
states of the inner automaton, our n-gram model predicts
the next possible states along with their respective probabil-
ities of occurrence. As a result, for each inner automaton,
we now have states, transitions between those states, input,
time conditions, and a probability of occurrence for each state
transition.

3) BUILDING OUTER AUTOMATON
The states of the outer automaton are defined as the vertices
of the cluster graph. Each cluster holds blocks of code that
branch into each other regularly, and more rarely branch
into a block that is in another separate cluster. These inter-
cluster branches form transitions between states in the outer
automaton. The input of a transition in the outer automaton
is the cluster of vectors of performance counter samples that
the process is going into upon completing the transition.
For example, if we have outer automaton transition from
C to B, then the input associated with that transition is the
cluster of vectors of performance counter data that is observed
the moment the processor starts running block of code in
cluster B.

To build the outer automaton, we record the frequency of
each state transition as the real process is running. We use our
n-grammodel to estimate a probability of occurrence for each
transition in the inner automaton. As in the case of the inner
automaton, we are interested in the time conditions needed to
transition from one state to another in the outer automaton.
We run the real process and record the times at which state
transitions in the outer automaton occur. Based on those time
observations, we define conditions on the points in time at
which a transition is allowed to occur.

FIGURE 8. A performance heatmap for neural network consumption [3].

TABLE 1. List of performance counters visually assembled in heatmaps.

D. HEATMAP MODEL
We use heatmaps to visualize the machine’s resource utiliza-
tion. Therefore, color coding is used to represent performance
parameters. Figure 8 shows an example of the performance
counter heatmap display. The x-axis corresponds to the real
processes whereas the y-axis corresponds to the performance
parameters. The coloring scale coding indicates high to low
counter values. The higher a performance parameter, the
stronger its color in the heatmap.

Depending on the selected hardware counters, each
heatmap cell visually represents the value of the performance
counter for a specific real process. Table 1 lists some of the
performance parameters that we used in this work. We select
some parameters of the whole resource utilization spectrum
for training proposes in the hope that our approach can learn
the performance fingerprint of a process.

In our neural network training, many heatmaps are given.
The neural network reads the heatmap and produces output of
a class label. Each heatmap is labeled as a class label where
each label is an array of color strengths for each performance
parameter of the decoy process. Based on the class label, our
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TABLE 2. List of operations of an OPC client used for generating
heatmaps.

approach can specify values to the performance counters of
the decoy process.

Values that the decoy process reveals to the malicious users
depends directly on the resource utilization of real processes
on the machine. When malware probe our machine, we take
a screenshot of the performance counters of all processes in
the machine, including real processes and processes created
by malware, and turn them into a heatmap for recognition by
the neural network. Figure 8 shows a performance heatmap
of all processes running on the machine.

We refer to foreign_processn for any resource utilization of
processes created by malware in heatmap, regardless of what
they are named by the threat actor. That way, we distinguish
them from standard internal names to prevent the neural
network from getting confused. Furthermore, our approach is
aware of the current resource utilization load on the machine.
When a user opens several chrome tabs, each tab creates
a separate process. We include the performance of all such
processes in the heatmaps.

E. DEEP LEARNING METHODOLOGY
1) LABELING PERFORMANCE COUNTERS
We first need a data set to train the neural network. For that
purpose, we collect performance counters of all processes
running on the machine, including an OPCExplorer process.
We only collect performance counters of the OPCExplore
process for the operations of Table 2 one at a time.
The next task is labeling.We use the collected performance

counters from the OPC process and all other machine pro-
cesses to build heatmaps and establish a class label. We save
these labels for later use.

2) MODEL TRAINING
Wealso need the labels generated during the heatmap creation
to train the neural network. Therefore, we repeat the same
steps and use the labels for training the neural network.

The training of the convolutional neural network is given in
Algorithm 1.

A convolutional neural network has multiple layers of
neurons which include at least one input layer and one output
layer and some number of hidden layers, including rectified
liner units (ReLU), pooling layers, a fully connected layer,
and a softmax function. The hidden layers are used to adjust
and scale the activation of given features from the heatmap
images. Thus, the number of layers is critical. We use a
standard softmax function:

Y : RC → RC (1)

which is defined by the following formula for k = 1. . . ,C
and φ = φ1, . . . , φc:

(y)k =
exp(φk )∑c
j exp(φj)

We start with a common input layer to load and initialize
the heatmap from the training set for further processing. Then
we add several ReLU layers to achieve accuracy. ReLU layers
allow faster and more effective training of the performance
learning. The layers zero out negative values and maintain
positive values in a heatmap undergoing processing. We also
add pooling layers to simplify the output by reducing the
number of heatmap image parameters that the network needs
to learn about.

We then add a fully connected layer to produce a vector
with size equal to the number of class labels. This layer
looks at the output of the previous layer and determines
which features most correlate to a particular class. Each
element of this vector is the probability for a class label of
the heatmap image that the neural network just processed.
Some of these probabilities may be negative. Also, adding
the probabilities may not be 1.0. Softmax corrects this idea
and assigns decimal probabilities to each class in a multi-
class problem and the sum of those decimal probabilities
must be 1.0. Thus, it normalizes the vector in question into
a probability distribution. The classification layer allocates
the accurate class label to a heatmap image that the neural
network just processed, based on that probability distribution.
We implemented the softmax layer is implemented just before
the output layer.

After training, we calculate the accuracy of the heatmap
model by running the neural network to classify heatmaps
from the data set. Then we compare the results with the
known class labels from heatmaps. Our goal is to have high
accuracy. So, if the level of accuracy is low, we adjust the
accuracy of the network by adding more layers and retrain
from scratch. We try altering the neural network design until
we get a much better accuracy result.

3) ACTION OF DECOY DRIVER
In Algorithm 2, we show how the performance counters
generated by neural network are reported to malware in
response to their probes. At this point, we have a fully trained
neural network with high accuracy. When malware sends
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Algorithm 1 Heatmap Labelling and Neural Network
Learning Mode

Function Learn-Performance-Fingerprint (G,V );
Input : Set of Performance Counters G, set of

transactions over CFG V .
Output: Convolutional neural network 5, heatmap

recognition accuracy δ.
Build a Cluster graph β;
δ← 0;
for ∀ task η executing over nodes in CFG do

t = executiont ime (η);
while t != 0 do

build inner and outer automaton;
label the heatmap ν with location τ ;
Read ν into array α in memory;
Add Label(ν) to α;

while δ < 90 do
Empty 5 if any layers present;
Define the input layer of 5;
Add count1 ReLU layers to 5;
Add count2 pooling layers to 5;
Add count3 batch normalization layers to 5;
Add a fully connected layer to 5;
Add a softmax layer to 5;
Add a classification layer to 5;
Select 5’s training options;
trainNetwork(5);
for ∀ heatmap ϵ ∈ V do

δ← 5(ϵ)
Increase count1, count2, and count3;

a consumer query, the request is sent to the decoy driver.
Then we take a screenshot of the performance counter of
a real process and build a heatmap for recognition by the
neural network to produce class labels. Based on the labels,
the synthetic performance counters are produced. The syn-
thetic performance data are buffered in the repository until
the counting period is done. The decoy data instrumentation
driver accesses the repository to insert performance data into
the data structure. We query the data structure instrumen-
tation code which contains a heatmap that is representative
of the resource utilization of all processes on the machine,
excluding the decoy OPCExplorer process. The response by
the neural network contains a class label, which the data
structure instrumentation code can easily convert into perfor-
mance data for the decoy OPCExplorer process. This data is
reported to the malware in the form of performance counters
in response to their probes.

VII. SYNTHETIC I/O CHANNEL
In this section, we outline the I/O data that can be captured
by a threat actor to detect inconsistency in decoy process.
To solve the issue, we define some sets of input data and

Algorithm 2 Algorithm to Describe the Action of Decoy
Driver
Function Display-Synthetic-Performance (Q,P);
Input : Consumer query Q, Performance Counter P.
Output: Performance counters generated based on

labels ω, decoy driver β.
ω← 0, β ← 0
CNN neural network
ι1, ι2, .., ιi labels of heatmap
for ∀ Consumer query α ∈ Q do

Read α into array in memory;
If P =! empty then build heatmap γ ;
Call CNN and give the heatmap γ to it;
Read labels ιi generated from neural network;
Adjust performance counter ρ ∈ P based on
classification label produced by the neural network;
while buffering of performance counters is not done
do

ω+← synthetic performance data generated
based on labels;

β ← ω;
Insert β into Data Structure

create synthetic I/O channel. This channel will provide the
same functionality as a real I/O channel.

A. IMPACT OF I/O DATA ON DECOY
PROCESS CONSISTENCY
A real process has I/O read and write activities where it
can read data and produce output. These I/O operations
come from files, keyboards, monitors, hard disks, and net-
work interface cards. Therefore, even though the performance
counters give details about I/O activities, threat actors can
monitor the process interaction with I/O devices. They can
observe all I/O traffic and notice the total inactivity of I/O traf-
fic to and from a target process. Therefore, the consistency of
resource utilization of decoy processes should also align with
I/O traffic to and from I/O devices to support the effectiveness
of decoy process in redirecting malware.

We applied the automaton model that is comprised of a
cluster graph, outer and inner automaton being probabilistic
and timed to improve the resource utilization consistency of
our decoy process. Therefore, we model the execution of
real process which is tied to specific input in a way that any
changes to the input data will require different model with
different probability of transition. However, the model may
not change for very small input changes. For example, with
given history, for specific input the probability of transition
from cluster C to cluster B is 0.5. However, if the input
changes drastically, the processor may not even visit nodes
in cluster C because of the instruction branches the input will
take while the process is executing over the CFG. Therefore,
changing the input data requires modifying the model with
different probability of transitions.

VOLUME 11, 2023 43229



S. M. Sutton, J. L. Rrushi: Decoy Processes With Optimal Performance Fingerprints

Some input data are characterized by similar probabilities
and times of transition whereas others are not. For example,
we have the task of adding a tag in Table 1 for OPCEx-
plorer client where we are required to name the tag. Let us
say for adding a tag to OPCExplorer objects A and B, the
change of the length of tag name for OPCExplorer objects
A and B may not necessarily require a different model in
terms of transitions. However, our model may no longer
hold true for naming the tag with the same character size
for an OPCExplorer object C. The moment we identify an
input data that is no longer advised by the current parameters
of our model, then the probability of transitions should be
recalculated using the same technique.

We may not have a model per set of input data, but we
could have the same model for possibly different probabili-
ties, and times of automaton state transition per set of input
data. We perform an input analysis that ties the input data
to our model. If our model no longer holds true, then we
build a new model in the sense that the CFG and the cluster
graph are the same but the probability of transitions changes.
However, the probability and time changes in our model do
not affect the neural network and heatmap model. When
we build a heatmap with location labeled to it and feed it
to the neural network, based on the heatmap, it reports an
accurate classification with the range of possible values for
each performance counter of the decoy process to malware.

There are two main parameters that are affected by the
revised model: Firstly, probability of transitions from one
state to another are different in the outer automaton as well
as the inner automaton. Secondly, the time to transition from
one state to another is also different. Therefore, these two
parameters must be adjusted per input. An attacker can detect
inconsistency in how the process transitions over the model
and generates input over the synthetic I/O channels. There-
fore, that input will never cause the program to be in the given
cluster by the model.

B. DEFINING INPUT DATA SET
We now describe how we define sets of input data {X ,Y}
such that they are adjustable to the main parameters of prob-
ability of transitions and time from one state to another state.
We can get different model based on the definition of input
data sets which are samemodel, but their time and probability
of transitions are different.

We decomposed the functionality of OPCExplorer process
into tasks. As a result, the decomposition of the process
functionality into tasks defines the input data {X ,Y} where
X is comprised of input data values that are characterized
by the same model with the same parameters of time and
probability of transitions. Y contains data values that do not
comply with the current parameters and need to adjust the
time and probability. To clarify, the task of viewing OPC
server properties from Table 1 will have different code path
and hence, different probabilities and times of transitions in
outer and inner automaton compared to the task of removing
a tag from a group or reading a tag.

However, the variation between each task in terms of times
and probabilities of transitions are tolerated by our model.
Some state transitions at specific times can happen more
frequent than other state transitions. We capture every state
transition with their probability of transitions and times so
our approach will not be intimated by variation.

C. SYNTHETIC I/O CHANNEL INTEGRATION
We use the idea of emulation and mimicry of I/O devices
from [1] to create synthetic I/O channels. We use decoy I/O
devices to feed synthetic data into decoy process. These I/O
channels need to be emulated under a decoy process so the
data can communicate between the decoy process and decoy
I/O devices. Furthermore, the decoy process needs to be con-
sistent with the resource utilization of a process. The timing
factor is a main factor in the support of the consistency of I/O
activities. As a real process performs I/O operations, there is
a timing factor associated at which time the operation was
performed in connection with the I/O device. The overhead
of the creation of synthetic I/O channels is a small fraction
compared to the creation of real I/O devices and processes.

Decoy I/O devices for OPCExplorer process consist of
decoy keyboard, monitor, mouse, and power system which
are the source of the synthetic input data. For I/O device
and network interfaces to communicate, windows supplies
a stack of device drivers for each. The stack is responsible
for handling I/O data that exists in a class driver. These
drivers perform generic functions that are necessary to pro-
cess the input data request, irrespective of the specific device
hardware manufacturer. The drivers that reside close to the
hardware perform processes that are specific to the
device hardware. Each write or read operation is handled by a
Controller Driver which interfaces with the lowest level driver
in the stack as depicted in Figure 9.

Each of these drivers has some degree of information
regarding the I/O device. Similarly, the Network interface
card (NIC) has its own stack of drivers that process the
input/output data through the network interface. In short, data
that is generated by a process traverses the stack of network
interface drivers and is sent over the network. The reverse
is also true. The NIC receives incoming packets and sends
them to be processed by the stack before being delivered to
the associated process. The process reads this data in the same
fashion as if it were reading from a file stream. The I/O device
appears as a text file to the process.

The I/O director has a section called the plug-and-play
manager, which is responsible for keeping track of what
different I/O devices are on the computer. The plug-and-
play manager provide updates on I/O devices installed and
removed from bus drivers. A real keyboard or mouse is
usually connected to a USB hub, it is the bus driver that
controls the USB hub to report the installation or removal
of a keyboard or mouse to the plug-and-play operator [37].
A driver from the stack known as the Filter driver receives
traffic from the keyboard ormouse and processes it as normal.
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FIGURE 9. Synthetic I/O channel and its integration with decoy processes in the OS
kernel.

During times at which there is no activity coming from the
I/O devices for the process, the filter driver assumes that the
process is not in use and is programmed to send a signal to
the decoy I/O devices that it is to begin its processes.

The decoy channel produces prerecorded synthetic I/O
traffic. This traffic is always identical to authentic process
data but has no meaningful content. The decoy process as
shown in the figure is comprised of a minimal amount of code
that reads traffic from the decoy I/O devices. The decoy I/O
device exposes synthetic traffic through the user space (where
malware operates) and delivers this decoy data to the decoy
process. The decoy process will then appear to send the data
over the network but, the synthetic data will traverse the user
space the same way the real I/O traffic does. It is eventually
caught at the bottom of the stack where the network emulator
exists.

In the stack of drivers that receive the data exists a shad-
owed driver. This driver shadows the network interface and
is connected to the network interface system filter. The filter
driver is programmed to sense when there is a lull in network
traffic. When this occurs, it redirects any incoming traffic
away from the network interface card and toward the decoy
driver [7].

VIII. TESTING AND VALIDATION
A. EXPERIMENTAL OBJECTIVE
Can simple performance parameters be used to redirect mal-
ware? To answer this question, we make twofold experi-
mentation. The experiments were performed many times.
First, we collect live performance counter data and pro-
duce heatmap labels to use for training the neural network.
Secondly, as a red team, we develop attacks that can detect
inconsistencies in the resource utilization of a decoy process

as provided by the neural network with a heatmap training
mechanism. Those attacks show that the neural network in
charge of protecting the resource utilization consistency of a
decoy process is insufficiently trained. As a result, we develop
machine learning over control flow graphs to improve the
heatmap training mechanism of the neural network.

B. IMPLEMENTATION OF EVASION STRATEGY
A typical malware delivers exploits to the victim system. The
exploit can be sent to a victim from any model described in
the threat model section. To maintain information about the
system, they download the payload in memory. The payload
is the piece of code that the adversary executes on the target
to collect data from a compromised machine to build a replica
and perform a malicious task.

As mentioned in the evasion strategy, attackers can create
their own process and evaluate the results to see if the system
is a decoy. For that purpose, they need to get a list of all
running processes with details on the machine before their
evaluation, including the system configuration.

We now describe how attackers build a replica on Win-
dows. In this work, we performed our experiment on a
Windows machine in production. To collect the necessary
information for building a replica, we wrote a PowerShell
script on the compromised machine with a function to list all
the running processes on Intel i7 multi-core processor model.
The process monitoring can be set by the operator to take any
specified number of data samples at an interval also set by the
operator. The result of the process monitoring function was a
table of process names, identifiers, CPU, secondary storage,
and memory usage of each process running on the system at
the time function is called.
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We define running processes as any programs executed
before the function was called and that are running or waiting
at the instant the function is called. Any process terminated
before or begun after the function is called within the script
will not be captured by the monitor as these processes do
not exist and are not consuming any resources. For example,
during data collection, there was a chrome application run-
ning with multiple tabs and the script was able to collect the
identifier, CPU, and secondary storage usage for each open
tab of the chrome.

The script also examined process details so we can filter
the measurements based on specific processes running on the
machine. The script gave the details of any operator specified
process running on the machine. For instance, we analyzed
the process created by the Chrome web browser, the output
contained the details for each tab including the identifier, total
processor time consumed, working set, and user processor
time.

Furthermore, we need the details of the system’s operating
system and hardware. The script provided us the system
information including OS name and type, OS total memory
size, paging files, etc. We saved each output list in files.
All the directories to save the files are created by the script
at runtime.

C. HEATMAP AND NEURAL NETWORK IMPLEMENTATION
We wrote two MATLAB scripts for the heatmap generation
and deep learning approach. We extended the PowerShell
script that we used in the honeypot experiment to collect
live performance counters from all processes running on the
machine and store them in files.

We wrote a script to automatically collect the performance
counter values of all processes and create a heatmap of the
counter values for all processes excluding OPCExplorer. This
is accomplished by directing the log file output of our Power-
Shell script into a MATLAB script we have designed which
generates heatmaps from our data and saves them as image
files to be utilized later for training the neural network. The
sample interval and number of samples collected are specified
by the operator. Increasing the number of samples collected
per interval creates a heatmap with greater density of data
points.

For the neural network training purposes, we need to assign
a label to each performance parameter of OPCExplorer oper-
ation. Although, the Intel processor we use for our measure-
ments permits hundreds of parameters to be monitored using
performance counters, not all of them are equally useful for
the labeling. We examine performance parameters mentioned
in Table 1.

To create heatmaps for each OPCExplorer operation,
we ran our PowerShell script to collect performance counter
samples of all processes during each operation on OPCEx-
plorer at the time the script is running and saved them in a file.
The script continued collecting samples until the designated
number of samples were reached. We then used an additional
script to go through the files and find the maximum and

minimum range for each parameter to create intervals for our
labels. The second script allowed the operator to input a log
file of the OPCExplorer performance counters for a specific
OPC client function and return only the values for a specific
counter like the counter values for percentage of privileged
time used by the process. After collecting samples for an
operation and saving them in a file, we ran the filtering script
to read the file and find the range of percentage of privileged
time used for the operation. We then used this range to define
labels.

To create labels for our heatmaps, the original data col-
lection script parses the data files where we have saved
the raw output from the performance counter sampling for
values related to the OPCExplorer process. It then filters
these results to only include the performance parameters
that have been selected as significant in the context of this
paper. Null values are then stripped from this data set and
averages are calculated from the remaining data points. These
averages are then compared against our previously defined
ranges and assigned a corresponding label component. These
components are combined into one label string which is used
to name the sub-directory where all heatmaps that fall within
the defined ranges will be stored.

During the testing experience we noticed the I/O perfor-
mance parameters, including I/O write and read operations
from secondary storage, are always 0 value because these
processes did not consume any I/O resources during our
testing experiment. These counters are included in the label
construction; however, they are always of value zero and
therefore do not effect classification. The collected label
measurements are used for training our neural network.

D. EXPERIMENTAL ATTACKS AGAINST DECOY
PROCESS CONSISTENCY
The use of performance counters to detect decoy processes
is a newly emerging technique. Since no known malware
utilizes it, it’s not possible to test the technique in a real-world
scenario. We had to return to the honeypot experiment [5],
which was successful in detecting honeypots and decoy I/O
processes. We performed the experiment many times. Since
we do not have access to malware that utilize our technique,
we developed a red team that takes advantage of the findings
of our work. This means that the red team may be aware that
the processes it is interacting with may in fact be decoys.
Further, they know that the decoy performance parameters
may be based on heatmap-fed neural networks.

When our red team compared the performance counter of
a real process with a decoy process, the real process shows
a stronger sequential pattern. If our decoy process returns an
incomplete set of values outside of what is expected of a real
process, we again are at risk of exposing the decoy nature of
the decoy process to threat actors. The outstanding problem
was that performance counters for our decoy did not adapt to
changes in the runtime environment. This can be exploited by
threat actors to expose the decoy and avoid detection by the
defenders. We illustrated this by acting as the attacker.
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FIGURE 10. Experimental attacks against decoy process consistency [4].

We researched attack techniques that consider the execu-
tion process over the control flow graph. Different paths they
take depend on different factors, including input. To this end,
given our red team position, we wrote PowerShell scripts to
collect performance counter data and analyzed those perfor-
mance counter data reported via our naive machine learning
code that we wrote in MATLAB. The PowerShell scripts
collected performance counters for both decoy processes and
their real counterparts. We detected three types of attacks,
namely, exploiting local focus, frequency, and rate of change
attack.

Local focus attack happens when the neural network learns
the performance counter values of real process from paths
on the control flow graph that flow more frequently than
other paths. The neural network might not observe infrequent
paths during training. With reference to Figure 10, the local
focus attack happens under similar heatmapswhere the neural
network favors the resource utilization that it has learned from

the frequent paths. As a result, the neural network produces
the most frequently occurring performance counter values
for a given heatmap, and therefore fails to produce the rare
performance counter values for the same or similar heatmap.
In an overall lookup view, the produced performance counter
values are correct, but only if the process is executing within
a local situation within execution of process which appear
to happen more frequently. Black swan performance counter
values are not captured by our neural network.

The frequency attack happens when the neural network
returns the correct performance counter data at a frequency
that diverges from the real process. In this case, the decoy’s
frequency is too high or slow compared to the real pro-
cess, and this may reveal the decoy process as a synthetic
process. This is demonstrated in Figure 10b for the perfor-
mance counter values of the I/O write operations per second.
As shown in the figure, performance counter data from the
real process span from t = 0 to t = 30. However, the decoy
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process begins at t = 0 and slightly pasts t = 15, and
then zeroes out. It is important for our approach to report
performance counter values of decoy processes within an
exact time window and frequency that their real counterparts
report. If the flowing path of the decoy process does notmatch
the execution path of the real process, the decoy process will
be at risk of being discovered by threat actors.

The rate of change attack is a new form of attack when
performance counter data from the decoy process and the
real process are assessed as a sequence. Therefore, the per-
formance counter data provided by the neural network for
a decoy process appear to be accurate when compared to
those of its real counterpart. However, those data diverge from
each other. More specifically, two heatmap classifications of
the performance counter data are consistent when considered
individually, but there could be inconsistencies when viewing
them as adjacent performance counter readings. With refer-
ence to Figure 10c, the performance counter of decoy and its
real counterpart align in the beginning from t = 0 to t = 5,
a shift in the rate of change occurs the rest of the time. In our
frequency attack, if the real process had a sequence of values
{α, β, β, γ }, these would be returned either too fast or too
slow. However, for the rate of change attack, the returned
values could possibly only be α and γ for that same period.
To improve the effectiveness of our heatmap trainingmech-

anism, we decomposed the overall functionality of OPC soft-
ware into tasks. Each task is denoted by an operation code.
We detected those tasks share many vertices in the control
flow graph, but also have their own separate vertices. As we
performed each task of the OPC client process, independently
and one at a time, we collected its performance counters via
PowerShell scripts and ran our approach to build the inner
and outer automata.We used the interactive disassembler tool
(IDA Pro) with Python code to extract the control flow graph,
trace the execution paths of each task over the control flow
graph, and record the time of transitions from one state to
another in both the inner automata and the outer automaton.
We ran each task several times to generate a large set of
performance counter data and state transition timestamps.

E. EFFECT OF THE AUTOMATON MODEL
We now describe how automaton approach improves the
heatmap training mechanism. The heatmaps are learned by
explicitly indicating the location of the vertex of the cluster
graph in the outer automaton. The heatmap will include the
location of the state of the outer automaton at the time the
request for performance counter data arrives. This location
property is attached to a heatmap before feeding it to the
neural network. Therefore, since the neural network reads
heatmaps with this labeling, it no longer gets confused when
similar heatmaps arrive. The locationwill clearly differentiate
the heatmaps and the neural networkwill record each instance
accurately based on the performance counter data.

To prevent the frequency attack, we rely on our implemen-
tation of an inner automaton and timing conditions. The inner
automaton corrects the frequency attack via its representation

of clusters of vectors of performance counter data as states/
vertices. The transitions between these states of the inner
automaton cannot occur at any time. Therefore, the transition
from one state to another cannot happen unless the timing
conditions are met. Since the inner automaton is considered
before the data is reported to a request for performance
counter data of a decoy process, data for the process cannot
be reported too slowly nor too quickly to a threat actor.

That is, the neural network will not report performance
counter data until the inner automaton has finished process-
ing the time conditions for each transition. In the rate of
change attack, we observed that the neural network origi-
nally had trouble producing performance counter data that
was in sequence with a real process in our decoy process.
To defeat this attack, we used both our inner automaton and
n-grammodel to enforce a sequence from one state to another.
Since performance counter data inside the cluster of our inner
automaton cannot occur irrationally, it must occur via the
order enforced by the n-gram model which achieves this
behavior probabilistically.

F. EXPERIMENTAL RESULTS
We wrote a dummy PowerShell program as a red team to do
I/O, CPU and memory intense tasks and collected the per-
formance counters of all the processes, including the intense
usage processes during execution of each process on the com-
promised machine. We ran the same dummy program on the
replica to collect the performance counters of all processes
running on the system. We then compared the values to see
how close or far the performance values are from each other
and checked for consistency between the results generated
on both machines. Figure 11 compares the expected perfor-
mance of the OPCExplorer process with the performance
collected on the compromised machine. If the two diverged
by a non-negligible amount, the conclusion would be that we
had landed on a decoy.

As the attacker, we created processes that created a large
amount of CPUdemand, generated heavy I/O traffic, and high
rates of memory consumption. The neural network tolerated
these changes and generated class labels with no noticeable
changes. We ran local focus attacks, frequency attacks, and
rate of change attacks that examined a data set holding solely
performance counter samples extracted from numerous dif-
ferent runs of the real OPC client process. We called this
dataset clean. The purpose of these tests was to identify false
positives in how those attacks work prior to using them to
estimate the effectiveness of our decoy process.

We ran the same attack, but this time on a dataset extracted
from the performance counter of a decoy process, which
relied on the naively trained neural network and real process.
We called this dataset dirty to identify false negatives in those
attacks.We also ran these attacks on a dataset which consisted
ofmixed performance counter samples from a real OPC client
process and samples from imaginary executions of the decoy
OPC client process. This time it had its execution dynamics
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FIGURE 11. Empirical measurements of performance data versus deep learning class labels.

FIGURE 12. The resource utilization gain of our decoy process relative to
the resource utilization of a decoy and existent OPC client process.

regulated by the neural network as trained by our automaton
model approach.

The three attack techniques, namely local focus, frequency,
and rate of change attacks did not find resource utilization
inconsistencies in the clean dataset. However, we detected
resource utilization inconsistencies in approximately 38% of
the performance counter samples in the dirty data set and no
resource utilization inconsistencies in the mixed data set.

The data plots in Figure 12 show the resource utilization
of our decoy process and OPC client process. We noticed the
highest rate that our approach could encounter for the incom-
ing requests to read and display at a time were every second.
This is the case that tasks consume the highest amount of
resources.

FIGURE 13. Illustration of a heatmap used in the improved neural
network training.

An illustration of a heatmap generated by our approach is
given in Figure 13. Based on the time of arrival of requests
for performance counters for a decoy process, our models
determine the states of the outer and inner automata that
match with that specific time.

IX. FUNCTION COMPARISON OF THE PROPOSED MODEL
The comparison of different deception models with each
other is often challenging due to how a particulate model
process and train data may be different from the other model
being compared to it. Additionally, there aren’t any proposed
models based on the consistency of resource utilization of
decoy process. Therefore, there is no numerical metric of a
benchmark to compare our model with others. Thus, we used
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TABLE 3. Functional comparison of related works with the proposed
model.

functional comparison to compare the performance of the
existing models with the proposed model.

This method is used to identify whether the performance of
proposed method is the best or not. Table 3 clearly shows the
performance comparison of various models with respect to
proposed model respectively. As shown in the table, we used
features such as 0-knowledge detection, consistency, auto-
mated model and path analysis, and low-level performance
counters to compare our proposedwork to other existing tech-
niques. Our results show that our proposed work apples all of
these features to optimize the decoy process, distinguishing
it from others.

X. CONCLUSION
Our red team approach leveraged live real-time performance
counters to see deep into the run-time dynamics of a process.
Such deep insight enabled performance analyses that led to
detection of several activity-related inconsistencies in high
interaction honeypots and decoy real processes. We devel-
oped a countermeasure to protect decoy I/O from these threats
on machines in production. The countermeasure consists
of mechanisms in the OS kernel that project the existence
of decoy processes. The work is done without spending
resources on creating actual processes. We devised a con-
volutional neural network that can learn the performance
fingerprint of a process in support of its decoy counterpart.
Thus, a decoy process is given a performance profile that
makes it indistinguishable from its real counterpart. Decoy
processes affect malware’s target selection to redirect them
towards decoy I/O. In conclusion, we validated and quantified
the ability of such decoy processes to sustain a realistic resem-
blancewith a valid target of attack, and hence thwart detection
probes directed at decoy I/O on machines in production.

In addition, we would like to clarify that the primary objec-
tive of our paper was not focused solely on the performance of
our machine learning models, but rather on the development
and validation of decoy processes as an effective means of
redirecting malware. However, we recognize the importance
of thoroughly validating our models and will make every
effort to include more detailed information on this aspect in
our future work.
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