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ABSTRACT Dihydrofolate reductase (DHFR) enzyme is a crucial component of cell growth and prolif-
eration in the human body, making it an important target for treating cancer diseases. This study aims to
predict the inhibitory activity (pXC50) of dihydrofolate reductase inhibitors in terms of the quantitative
structure-activity relationship (QSAR) model. Interpretation of the QSAR model is vital for understanding
the physicochemical processes and to assist structural optimisation. Multivariate adaptive regression splines
(MARS), a non-parametric technique, is proposed to model the non-linear relationship between the predictor
variables and the response variable of a high-dimensional dataset. The dataset used in this research consists
of pXC50 activity of 778 DHFR inhibitors. For our study, the data is divided into 80% training set for
model building and 20% testing set for model validation. In comparison, the baseline methods deep neural
network (DNN) and partial least squares (PLS) are also applied to QSARmodeling. The testing results show
that MARS has the best prediction accuracy according to different measures, where RMSE, MAE, MAPE,
and RMSPE are 0.96, 0.69, 0.11, and 0.15 respectively. The efficiency of MARS is apparent in its robust
interaction of variables, prediction accuracy, and ability to overcome the neural network’s black box system.
Thus, MARS technique can be considered an excellent tool for modeling QSAR high-dimensional datasets
while exploring the non-linear patterns of data.

INDEX TERMS Regression, multivariate adaptive regression splines, neural network, quantitative structure-
activity (QSAR), dihydrofolate reductase inhibitors.

I. INTRODUCTION
Dihydrofolate reductase (DHFR) is suggested as a major
enzyme involved in the cell replication process, and therefore,
it is an interesting target for the treatment of cancer disease.
The enzyme DHFR catalyzes the synthesis of dihydrofolate
to tetrahydrofolate (THF). DHFR inhibitors weaken THF,
ultimately slowing down the DNA synthesis and cell prolifer-
ation. Therefore, the chemical compounds that can be used as
DHFR inhibitors can be synthesized using this reaction [1].

The quantitative structure-activity relationship model
(QSAR) explains the relationships between the biolog-
ical activities and the structural properties of chemical
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compounds [2]. The structural properties of chemical
compounds are calculated as molecular descriptors using
advanced software [3]. QSAR models are built using
wide-ranging statistical and machine learning models.
In recent years, scientists are showing more interest in
using QSAR technology to evaluate the inhibitory activ-
ity of new compounds [4].The traditional trial and error
approach of testing the biological activity of newly designed
compounds through in vivo or in vitro experimental tech-
niques is a time-consuming and expensive process. There-
fore, QSAR applications can reduce the costs and failure
rate of experiments. QSAR performs as an in-silico tool
to prioritize chemicals concerning their biological activities,
resulting in reducing the number of candidate chemicals
required for testing with in vivo and in vitro experiments [5].
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The application of this approach has become of signifi-
cant importance in the fields of biochemistry, computational
chemistry, and medicinal chemistry [6].

QSAR’s first mathematical equation φ (C) formulated by
Crum-Brown and Fraser in 1868 [7]. In his work, he carried
out his experiments on alkaloids and their methyl derivatives
and suggested that there is a strong connection between the
physiological activity of molecules and their chemical struc-
tures. However, it is believed that Hansch et al. in 1962 laid
the foundation of modern QSAR [8]. Based on Veldstra
study, he proposed the relationship between lipophilicity and
biological potency [9]. Since then, many linear methods and
non-linear methods are employed in research practice by
computational chemists to calculate QSAR models. Linear
methods like multiple linear regression (MLR) and partial
least squares (PLS) are commonly used for QSAR model-
ing in literature. For instance, 1D and 2D QSAR models
to predict the toxicity of new nitroaromatic compounds and
to investigate the relationship between their substituents and
toxicity properties can be developed using the PLS regression
technique [10]. Multiple linear regression is used to model
a collection of HEPT derivatives to predict their inhibitory
activity against HIV-1 reverse transcriptase [11]. However,
these models are limited in theirability to interpret non-linear
relationships between predictor variables and response vari-
ables. In the field of computational chemistry, researchers
face the challenge of dealingwith hundreds of candidate com-
pounds, each with thousands of calculated molecular descrip-
tors due to the availability of advanced molecular generation
tools like Dragon 6 which can calculate up to 4885 molecular
descriptors. This problem is known as high dimensionality.
To tackle this challenge, advanced non-linear methods like
artificial neural networks (ANN) are used, which can model
non-linear relationships and also serve as a powerful compu-
tational tool to deal with high dimensionality. In the literature,
ANN has been used in comparison to partial least squares
regression (PLS-R) to develop QSAR models for predicting
the inhibitory activity of isonicotinamide derivatives that act
as inhibitors of Glycogen synthase kinase-3 beta (GSK-3β)
[12]. ANN model proved to be the best predictive model
as compared to PLS-R. The high-dimensional dataset can
increase the computational cost and reduce the accuracy of
non-linear methods. Therefore, dimension reduction tech-
nique like principal component analysis (PCA) can play a
key role. For example, to predict the biological activity of
CCR1 antagonists a method comprising of two stages was
employed [13].

MARS is a non-parametric regression technique that pro-
duces simple and easily interpret able models, making it
a useful approach for QSAR modeling. It can map com-
plex non-linear relationships, provides information on sta-
tistical significance of independent variables, and performs
feature selection. Some of the previous applications ofMARS
in the field of computational chemistry include building
QSAR models to predict the crystallinity property of bent-
core compounds [14], to predict the inhibitory activity of

pyridine N-oxide derivatives which act as an inhibitor for
SARS [15], [16], to predict the inhibitory activity of 1-(3,3-
diphenylpropyl)- piperidinyl derivatives [17], to predict the
antitumor activity of acridinone derivatives [18], to predict
the antiplasmodial activity of artemisinin compounds [19],
to predict the retention effect of alkanes in gas chromatog-
raphy [20], to predict the bioconcentration factor of poly-
chlorinated biphenyls [21], for modeling blood-brain barrier
passage [22].

The primary goal of QSAR modeling using different sta-
tistical techniques is to produce a QSAR model with good
predictive performance that can further be used to predict the
inhibitory activity of novel, untested chemical compounds.
A good predictive QSAR model not only does prediction
but also does feature selection to determine which structural
features of a chemical compound are contributing most to its
inhibitory effect.

In the current study, three methods are used in compar-
ison to develop a useful QSAR model which can predict
the inhibitory activity of dihydrofolate reductase (DHFR)
inhibitors. Multivariate adaptive regression splines (MARS)
[23], deep neural network (DNN) [24] and partial least
squares (PLS) [25], [26] are considered for this purpose. The
paper is structured into four sections. Section II includes a
short description of the dataset, approach for data splitting
and the methodology of MARS and DNN. Section III details
the discussion of modeling results. Section IV mentions the
conclusion.

II. MATERIALS AND METHODS
A. DATA DESCRIPTION
The dataset is taken from mendeley database [2], [27]. IC50
values of 778 chemical compounds were measured against
the dihydrofolate reductase (DHFR) enzyme of homosapiens.
Standard fingerprint representation FCFP4 is used to describe
the chemical structure of DHFR inhibitors. The chemical
structures of these compounds are calculated using RDKit.
Total of 1024 bits FCFP4 fingerprint representation are cal-
culated [28]. The dataset includes a Boolean variable that
indicates the presence or absence of a molecular substructure.
The IC50 value is a measure of the concentration of a drug
required to inhibit 50% of the proteins. In this dataset, the
IC50 values are represented as floating-point response vari-
ables that are normalized by taking the negative logarithm
(pXC50). The FCFP4 fingerprint representation used in this
study consists of 1024 bits, where each bit is considered as
one predictor variable.

B. DATA SPLITTING
The dataset is split randomly into two parts: an 80% training
set, which contains 622 samples, and a 20% test set, which
contains 156 samples.

C. PERFORMANCE MEASURE CRITERIA
Table 1 outlines the four performance measure criteria
and their respective definitions used for this study. These
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TABLE 1. Performance measures and their definitions.

criteria are used to compare the prediction ability of MARS
and DNN. Root mean squared error (RMSE), mean abso-
lute error(MAE), mean absolute percentage error (MAPE),
root mean squared percentage error (RMSPE) evaluate the
accuracy of the models. Smaller values of these measures
represent greater model accuracy.

D. PREDICTING INHIBITORY ACTIVITY
In our current study, we have utilized MARS [23], DNN [24]
and PLS [25], [26] for the purpose of modeling and prediction
of bio-activities of DHFR inhibitors. The details of these
methods are given below.

1) MULTIVARIATE ADAPTIVE REGRESSION SPLINES (MARS)
In 1991, Friedman proposed a multivariate, non-parametric
regression method known as multivariate adaptive regression
splines (MARS) [23]. This technique models the relationship
between an input space consisting of predictor variables,
X (n× p) and an output space consisting of target variable,
y (n× 1). Mathematical equation of MARS model is written
as follows:

y = f (X) + e (1)

In the above equation e (n× 1) is representing the resid-
ual vector. MARS is an improved version of Classification
and Regression Trees (CART ) [29]. As MARS is a non-
parametric method, it does not make any assumptions regard-
ing the functional relationship between the input variables
and the target variable. Using the predictor variables of the
given dataset, MARS model drives a collection of coeffi-
cients and piece-wise polynomials of power q. MARS model
is built by joining piece-wise polynomials smoothly. These
piece-wise polynomials are called splines. These splines are
fitted in such a way that they separate the independent vari-
ables data into different regions. The knot locations are rep-
resented by t . The power q of the splines determines their
linearity or non-linearity. For a variable x, MARS calculates
splines represented by the following equations:

[− (x − t)]q+ =

{
(t − x)q , if x < t,
0, otherwise

(2)

[+ (x − t)]q+ =

{
(t − x)q , if x ≥ t,
0, otherwise

(3)

In the above equations, q ≥ 0 and it essentially influences the
smoothness of the final estimatedMARSmodel. In our study,

FIGURE 1. Graph representing a pair of splines for variable x; dashed
lines showing the left spline

(
x < t, −

(
x − t

))
and solid black line

showing the right spline
(
x > t, +

(
x − t

))
.

q = 1 which means linear splines are measured. Figure 1
shows a pair of splines for a single variable x with q = 1 and a
knot t . The left spline results in positive values while the right
spline remains zero for the values of x variable present on the
left side of knot t . For the values of x variable present on the
right side of knot t , right spline results in positive values while
the left spline remains zero. These splines are also known as
basis functions of the variable x. The MARS model of target
variable y consisting a set of M basis functions is written as
follows:

ŷ = f̂M (x) = ao +

M∑
m=1

amBm (x) (4)

In the above equation, ŷ is the target variable estimated by
MARS model, ao is the intercept term; a constant, Bm (x)
represents themth basis function either a single basis function
or a product of two or more basis functions whereas am is
the coefficient of the corresponding mth basis function. The
coefficients are estimated by using least squares method.

MARS model in equation 4 is built using a two-step pro-
cedure: forward pass and backward pass. The forward pass is
completed by adding the predictor variables to the model and
optimising the knot positions for each of them. This leads to
create two-sided basis functions for each predictor. For the X
matrix consisting of n samples and p predictors, there are n×p
pairs of basis functions, represented in equation 2 and equa-
tion 3, with knots xij (i = 1, 2, . . . , n; j = 1, 2, . . . , p). Each
data point of a predictor variable is considered as a potential
knot for the pair of basis functions of that variable. The
forward pass produces a complicated and overfitted model
which has a poor predictive ability. During the backward pass,
the redundant basis functions with the lowest contributions
are gradually deleted until the best sub-model with the lowest
Generalized Cross Validation (GCV) is produced, improving
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the prediction power of MARS model. The GCV formula is
written as:

GCV (M) =

1
n

∑n
i=1

(
yi − ˆfM (xi)

)2
(
1 −

M+d×(M−1)/2
n

)2 (5)

where M is the number of basis functions, d is the penalty
representing the highest power of the sub-model, n is the
number of samples used to build MARS model, and ˆfM (xi)
represents the target variable estimated by MARS model.
The numerator denotes the mean square of residuals of
the trained model, and denominator denotes that with an
increase in model complexity there is an increase in variance.
(M-1)/2 is the number of basis functions knots. The gener-
alized cross-validation technique optimizes number of basis
functions and number of knots.

In our study, default value of d parameter is used which
is further explained in this article [23]. The MARS model is
tuned with two hyperparameters; the maximum interaction
level (degree) and the maximum number of terms retained
in the final model (nprune). The degree is restricted from
1 : 4 and nprune is set equal to 50. The ideal combination
of these hyperparameters that produces the lowest RMSE
for the MARS model is chosen. 10-fold cross Validation is
performed on the training data to realize an unbiased RMSE.

The final model comprises of the single variable basis
functions and the interaction terms involving multiple basis
functions. The relative importance of independent variables,
on a scale of 0 to 100, to the fitted MARS model can be esti-
mated using analysis of variance (ANOVA) decomposition
procedure [23]. To calculate the score, all the terms involving
the variable in consideration is deleted from the model, the
reduction in fit is measured. For the most important variable
receiving high score, the fitted model has highest reduction
in fit.

2) DEEP NEURAL NETWORK (DNN)
Neural network architecture and its processing is inspired by
the biological system of the cerebral cortex [30]. A multi-
layer neural network adopted in this study is shown in
Figure II-D2. This neural network consists of an input layer,
hidden layer/s and an output layer [24]. The input layer is
made up of 1024 neurons whereas the output layer is build
from one neuron that demonstrates the prediction of pXC50.
The number of hidden layers and the number of nodes within
each layer determine the architecture of neural network,
which in turn affects how well the network performs. The
optimal network architecture is decided by using trial and
error method [31], [32].

A neural network tuned by high number of parameters
is known as deep neural network (DNN). It models highly
non-linear function by connecting multiple layers of mean-
ingful representations that are related by non-linear transfor-
mations [33]. A list of parameters used to tune the DNN is as
follows:

An example of deep neural network.

• Activation Function: Like the nervous system, in the
DNN, each neuron has connection with every neuron
in the adjacent layer [34]. All the connections attached
with a neuron receive a weight. The activation function
determines whether a node has sufficient information to
send a signal to the next layer. In the present study, the
activation function named rectified linear unit function
is used [35] as:

f (x) =

{
0, for x < 0,
x, for x ≥ 0

(6)

The present study uses linear activation function for its
output layer which is defined as follows:

f (x) = x (7)

The DNN chooses a batch of samples for the forward
pass, modify the connection weights between neurons,
and predict the output. Loss function and the selected
performance metric is used to evaluate the DNN’s per-
formance. In the backward pass, DNN scans the layers,
computing the gradient of the loss function relative to
the weights. The weights are modified in the opposite
direction of the gradient, and another batch of samples
is selected until the loss function (MSE) and metric
(MAE) are minimised. This method is called back-
propagation. Two parameters are required to perform
back-propagation: objective function and optimization
algorithm.

• Objective Function: The objective function estimates
the error of the predicted output relative to actual output.
In the present study, mean-square error (MSE) is used
as the loss function. The mathematical formula for the
MSE loss function is:

MSE =
1
n

N∑
i=1

(yi − fi)2 (8)

where yi and fi represent the actual response value and
the predicted response value for the ith sample respec-
tively. N is the sample size used by DNN.

• Optimization Algorithm: The present DNN is trained
with root mean square propagation learning algorithm
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(RMSprop). The RMSprop technique operates on the
principle of maintaining a moving average of the recent
mean square gradients of a particular weight [36].

MeanSquare (w, t) = γ ×MeanSquare (w, t − 1)

+ (1 − γ ) (▽E (w))2

RMSprop : wnew = wold −
α

√
MeanSquare (w, t)

× triangledownE (wold ) (9)

where γ has a default value of 0.9,wnew is the updated weight,
wold is the previous weight, E is the output loss calculated
by objective function, α is the learning rate and t is the time
step. In the present study, learning rates for different DNN
architecures are set at 0.001, 0.002, 0.005 and 0.05.

Epochs and Batch size: The term epoch refers to the
number of full forward and backward iterations (forward
and backward passes) that the entire training data set
makes through the model. The batch size is the number
of observations processed by the model prior to weight
adjustments. In the present study, the epochs are set as
100, whereas the batch size as set as 32.
One of the problems faced by neural network is that
when the model is trained with training data, the loss
error is small but when same network is fed with testing
data, the loss error is large. This is called overfitting.
The problem of overfitting can be adjusted by using
two techniques; applying validation split and dropout
regularization.
Validation Split: To reduce overfitting, we have tuned
our model with validation split parameter. In the present
study the validation split is set as 20%. The validation
split divides the 80% training dataset into 60% training
set and 20% validation set. DNN model is trained for
the 60% training set and during the training process, for
every epoch, the track of both training and validation
loss is kept. This is called internal validation procedure.
Ideally, we want the training and validation loss of the
DNN model to converge. When the total number of
epochs are completed, the training stops and the mini-
mumvalidation set error weights and biases are reported.
Dropout Regularization: Dropout is another technique
to reduce overfitting and improve generalization [37].
It basically sets outputs of a number of neurons in
a layer to zero during training, resulting in removing
their contributions to the activation of neurons in the
following layers during forward pass and the weights
of these neurons are not updated during backward pass.
This is done to prevent complex co-adaptions amongst
neurons [38]. In the present study, dropout rate is set at
40% for third hidden layer, 30% for second hidden layer,
20% for third hidden layer.
Metric: The mathematical formula for MAE is men-
tioned in Table 1. Similar to loss function track record,
MAE of the training set and validation set is also
monitored.

TABLE 2. The hyperparameters tuned for the MARS model and the
performance measures of the training datasets are listed.

E. PARTIAL LEAST SQUARES (PLS)
Partial Least Squares (PLS) [25], [26] is a multivariate
regression technique that is widely used in chemometrics
and related fields. It is particularly useful when dealing with
datasets that have a large number of predictors and a rela-
tively small number of samples. The PLS algorithm can be
summarized as follows: Given a dataset with n samples and
p predictors, and a response variable Y :

1) Standardize the data to have zero mean and unit vari-
ance.

2) Choose the number of latent variables (LVs) to include
in the model.

3) Initialize the model by selecting the LV.
4) For each subsequent LV, compute the scores and load-

ings that maximize the covariance between the predic-
tors and the residuals of the response variable, subject
to orthonormality constraints.

5) Compute the weights for each predictor by multiplying
the corresponding loadings by the standard deviation of
the predictor.

6) Compute the predicted values of Y by taking the dot
product of the predictor matrix and the weights matrix.

7) Repeat steps 4-6 until the desired number of LVs has
been included in the model.

III. RESULTS AND DISCUSSIONS
To compare results derived from two models, this section
first discusses the QSAR model constructed using MARS
for predicting the pXC50 inhibitory activity of a new DHFR
inhibitor. MARS has two parameters; degree and nprune to
tune. These parameters are optimised for each pXC50 value
of the training data. In order to improve generalization ability
of the model and reduce its overfitting on the training dataset,
K-fold cross validation (cv) is performed. In our study, K is
selected to be 10 and RMSE as the performance metric. The
model is tested on the tenth fold of the data after being
trained on the first nine folds, and the process is then repeated
ten times while switching the test fold. Figure 2 shows the
model performance defined by RMSEwith different levels of
degrees and maximum number of terms. It can be seen that
with increasing model complexity, RMSE keeps decreasing.
Table 2 summarizes the optimal tuned level of hyperparame-
ters of MARS model and the performance measures obtained
for the training samples.

VOLUME 11, 2023 50599



Z. Qayyum et al.: Prediction of Inhibition Activity of DHFR Inhibitors With MARS

FIGURE 2. MARS model performance defined by RMSECV on y-axis with
different number of terms nprune on the x-axis. The red color plot
represents MARS model is additive, green color plot represents the
highest interaction level allowed is 2, blue color plot represents the
highest interaction level allowed is 3 and the purple color plot represents
the highest interaction level allowed is 4.

Table 3 summarizes the 50 basis functions along with their
respective coefficients. In the model, apart from intercept
term and 11 basis functions of degree 1, 30 basis functions
are of degree 2, 6 basis functions are of degree 3, and 2 basis
functions are of degree 4. Interaction among input features
reveal that the constructed MARS model is not merely addi-
tive, and they play a key role in building an accurate model for
capturing the complex and non-linear relationships between
the pXC50 activity and a large number of fingerprints of
DHFR inhibitors. The coefficient of basis function indicates
the magnitude of affect of basis function (input feature) on
the output pXC50 activity. A positive sign of an estimated
coefficient causes an increase in the pXC50 activity whereas
a negative sign results in an opposite effect.

From Table 3, it can be noted that a total of 51 predic-
tors are used in MARS model. The relative importance of
predictor variables of the MARS model is assessed through
ANOVA decomposition. It is evaluated by deleting the terms
relevant to the considered variable from the MARS model,
followed by themeasurement of the GCV score. High relative
importance values represent that the predictor variable has an
important contribution to the MARS model and improves the
GCV score by a good margin. Table 4 list the 20 most impor-
tant variables and their corresponding relative importance in
terms of percentage. It can be observed that variable b0382
and variable b0988 are contributing as the most important
predictors in the MARS model of pXC50, followed by vari-
able b0085, variable b0927 and variable b0840 having the

TABLE 3. A list of basis functions and their coefficients of the MARS
model.

same and high relative importance. These predictor variables
play a significant role in determining the pXC50 activity.

The residual for every fitted response value obtained for
training samples is shown in the residual vs fitted graph in
Figure 3. As the fitted values increase, the residuals continue
to be uniformly distributed demonstrating constant variance
that means the model is fulfilling homoscedasticity test.
However contrary to linear models, constant variance is less
significant for the MARS model. The red curve in the graph
is called lowess (locally weighted scatter plot smoothing)
fit. Lowess fit represents the mean of the residuals at the
fitted values. From the graph it can be seen that mean of the
residuals is almost zero and exhibit no deviation at low or high
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TABLE 4. A list of 20 most important predictor variables of the MARS
model and their relative importance in terms of percentage based on
generalized cross-validation (GCV) score.

FIGURE 3. A residual versus fitted plot of the MARS model for training
data.

fitted values. The graph also shows some instances of outliers
marked as 31,225 and 232.

The cumulative distribution of the absolute values of resid-
uals is displayed in Figure 4. The ideal graph starts at 0 and
quickly rise to 1. The distribution of absolute residual values
is represented by the grey coloured curve. The grey distri-
bution curve translates into a black cumulative distribution
curve which is nearly S-shaped. The median of absolute
values of residuals is 0.335. This means that for the train-
ing model, 95% of the times the predicted value is within
1.17 units of the observed value.

The distribution of residuals is compared to normal distri-
bution using Q-Q plot in Figure 5. From the plot it can be

FIGURE 4. A plot representing the cumulative distribution of absolute
values of residuals of MARS model.

FIGURE 5. Quantile-Quantile (Q-Q) plot of the MARS model.

seen that residuals are plotted on the black dotted line indi-
cating the residuals follow normal distribution. The normal
distribution curve marked as normal meets the distribution of
residuals curve marked as actual. The property of normality
is not important for MARS model, but it is helpful to detect
outliers. The plot does not show any divergence of residuals.

In the next section, QSAR model developed using deep
neural network (DNN) and partial least squares (PLS) is
discussed. Table 5 summarizes some of the best trial and
error experimental results. Results from three neural net-
work architectures optimised with chosen hyperparameters
are obtained. As networks with lower learning rates provide
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TABLE 5. The hyperparameters optimized for the DNN model and the
performance measures of the training and validation datasets are listed.

superior results [39], learning rates of 0.001, 0.002, 0.005,
and 0.05 are tested during the training process of DNN. All
the network architectures are trained for 100 epochs using
MSE and MAE as performance measures for the evalua-
tion of training and internal validation. The optimal net-
work architecture has the lowest validated MSE and MAE.
The results demonstrate that for single hidden layer neu-
ral network {1024 − 5 − 1}, the change of learning rate
causes a change in model validation performance. The low-
est validation MSE and MAE for {1024 − 5 − 1} network
is achieved at learning rate of 0.001. However, it can be
seen there is relatively huge difference between training
and validation performance measures due to overfitting of
the {1024 − 5 − 1} network on the training datasets. A new
hidden layer with 10 neurons is added to the neural net-
work corresponding to {1024 − 10 − 5 − 1} in the Table 5.
Results show that the training and validation performances
of {1024 − 10 − 5 − 1} network have not much improved,
and the DNN model still displays overfitting. In the third
experiment, a new hidden layer is added to the network
and number of neurons are also increased corresponding to
{1024 − 100 − 50 − 20 − 1} network in Table 5. The learn-
ing rate is increased to 0.05. Furthermore, the network is
tested with the application of dropout regularization. In the
network, first hidden layer is regularized with a dropout
of 40%, second hidden layer with 30%, and third hidden
layer with 20%. As a result, the training and validation
performances have improved significantly and overfitting
has reduced to be negligible. Hence, it can be observed the
network architecture {1024 − 100 − 50 − 20 − 1} optimised
with a learning rate of 0.05 and a dropout regularization, has
the lowest validated MSE and MAE and is considered to be
the best network setup for the DNN model for the prediction
of pXC50 activity. The experimentation process also shows
the importance of dropout regularisation on the performance
of DNN. To analyse the convergence properties, training and
validated MSE and MAE throughout the training process of
the {1024 − 100 − 50 − 20 − 1} network with the learning
rate of 0.05 is shown in Figure 6. It is simple to see the good
convergence properties of the {1024 − 100 − 50 − 20 − 1}
neural network model.

In this section, prediction ability of MARS and DNN
models is evaluated using testing data. Table 6 compares
the prediction results derived from MARS model and opti-
mal DNN model. Comparison of RMSE, MAE, MAPE and

FIGURE 6. Plots showing MSE and MAE performances of{
1024 − 100 − 50 − 20 − 1

}
network for training and validation sets;

model parameters: activation function (ReLU), optimization algorithm
(RMSprop), learning rate (0.001), dropout rate (40% for first hidden layer,
30% for second hidden layer, 20% for third hidden layer), batch size (32),
epoch (100).

RMSPE values shows that DNN shows less accuracy than
MARS however both models indicate excellent prediction
results. Figure 7 plots the residuals for predicted values of
pXC50 using MARS model. One can also conclude that
MARS provides a remarkably accurate estimate of the pre-
dicted pXC50 activity. Figure 8 plots the residuals for pre-
dicted values of pXC50 obtained using optimal DNN model.
Comparison of Figure 7 and 8 shows that residuals obtained
for DNN model are large than those of the MARS model.
Peaks are found for the DNN model at lowest and middle
range of the predicted pXC50 activity. This indicates that
DNN model is less robust and predictions based on DNN
model are less reliable as compared to MARS model. Based
on the information given, we can deduce that Partial Least
Squares (PLS) has been optimized with 6 components, which
means it has potentially improved interpretability due to a
reduced feature space. PLS performs better than Deep Neural
Networks (DNN) in prediction, possibly because it handles
multicollinearity and small sample sizes better than DNN.
However, PLS performs worse than Multivariate Adaptive
Regression Splines (MARS), which implies that MARS may
be better suited for capturing complex nonlinear relation-
ships in the data. It’s important to keep in mind that the
performance of these algorithms may vary depending on the
specific dataset and problem, so it’s always recommended to
try multiple algorithms and compare their performances.

A. COMPUTATIONS
For computations, modeling and figures ofMARSR software
and for DNNRStudio is used. For MARS R packages ‘earth,’
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TABLE 6. Prediction comparison of MARS, DNN and PLS models on
testing data.

FIGURE 7. A residual plot of predicted values of pXC50 using MARS
model.

FIGURE 8. A residual plot of predicted values of pXC50 using optimal
DNN model.

‘caret,’ ‘vip,’ ‘tidyverse,’ for DNN R packages ‘keras,’ ‘ten-
sorflow,’ ‘dplyr,’ ‘magrittr’ ’ggplot2,’ for PLS ‘plsr’ and for
performance measures R packages ‘Metrics’ and ‘MLmet-
rics’ are used.

IV. CONCLUSION
The research has detailed the steps of constructing theMARS,
DNN and PLS models for QSAR study of DHFR inhibitors.
Optimal MARS model is identified with 50 BFs compris-
ing of degree 2, 3 and 4. A five layer DNN architecture
{1024 − 100 − 50 − 20 − 1} is identified as the optimal neu-
ral network. Similarly, PLS is optimized with 6 compo-
nents. According to the prediction measures of RMSE,MAE,
MAPE, and RMSPE, MARS proved to be the best modeling
technique.

MARS technique is exceptional in the way that it is com-
putationally efficient as compared to neural network. Neural
network is criticized for the long training process required to
configure the best network. In addition, MARS algorithm is
able to compute importance of each variable throughANOVA
decomposition procedure. The interpretative property of the
MARS model make this technique useful for chemists to
optimise structures of chemical compounds.
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