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ABSTRACT Aiming at the task of automatic brain tumor segmentation, this paper proposes a new
DenseTrans network. In order to alleviate the problem that convolutional neural networks(CNN) cannot
establish long-distance dependence and obtain global context information, swin transformer is introduced
into UNet++ network, and local feature information is extracted by convolutional layer in UNet++. then,
in the high resolution layer, shift window operation of swin transformer is utilized and self-attention learning
windows are stacked to obtain global feature information and the capability of long-distance dependency
modeling. meanwhile, in order to alleviate the secondary increase of computational complexity caused by full
self-attention learning in transformer, deep separable convolution and control of swin transformer layers are
adopted to achieve a balance between the increase of accuracy of brain tumor segmentation and the increase
of computational complexity. on BraTs2021 data validation set, model performance is as follows: the dice
dimilarity score was 93.2%,86.2%,88.3% in the whole tumor,tumor core and enhancing tumor, hausdorff
distance(95%) values of 4.58mm,14.8mm and 12.2mm, and a lightweight model with 21.3M parameters and
212G flops was obtained by depth-separable convolution and other operations. in conclusion, the proposed
model effectively improves the segmentation accuracy of brain tumors and has high clinical value.

INDEX TERMS Brain tumor segmentation, convolutional neural networks, swin transformer, UNet++.

I. INTRODUCTION
As one of the tumors with high fatality rate, brain tumor
has become an important factor endangering human life and
health. from the perspective of tracing, brain tumors are
usually divided into primary tumors and secondary tumors.
primary tumors refer to the tumors initially appearing in
the intracranial, which originate from the central nervous
system and originate from intracranial neuroepithelial tis-
sue, meningeal tissue cells and pineal cells. secondary brain
tumors are relative to primary brain tumors. secondary brain
tumors originate from the lungs, digestive tract, mammary
gland, uterus and other organs of the body, and metastasize
from other organs to the brain, usually with a relatively high
degree of malignancy. gliomas are the most common form
of brain tumor, caused by cancerous glial cells in the brain
and spinal cord. gliomas are classified into low grade (LGG)
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and high grade (HGG) subtypes [1]. high grade gliomas
are aggressive, grow rapidly, have poor survival prognosis,
and usually require surgery and radiotherapy. as a reliable
diagnostic tool, magnetic resonance imaging (MRI) can real-
ize human examination by radiating energy signals from
internal substances to the surrounding environment through
high-frequencymagnetic field in vitro, which plays an impor-
tant role in the analysis and detection of brain tumors.
there are usually four common 3D modes T1-weighted(T1),
T1-weighted with gadolinium contrast enhancement(T1-Gd
or T1c), T2-weighted(T2), and Fluid Attenuated Inversion
Recovery (FLAIR). different MRI modes can effectively
complement each other and fully subdivide the tumor in
related areas, thus effectively improving the accuracy of seg-
mentation. as can be seen from Figure 1, MRI data of differ-
ent morphologies captured different pathological features of
tumors.

MRI is the primary method of clinical detection of
brain tumors. segmentation of brain tumor regions from
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FIGURE 1. An example of multimodal MRI volumes for brain tumor segmentation. The green, blue, and yellow regions in the ground truth indicate
edema (ED), non-enhancing tumor and necrosis (NCR/NET), and enhancing tumor (ET), respectively.

multimodalMRI images is helpful for treatment examination,
post-diagnosis monitoring and effect evaluation of patients
[2]. However, the segmentation of brain tumors in MRI was
performed manually by experienced radiographers in the
past, which is time-consuming and may lead to inconsistent
segmentation results, because artificial segmentation mainly
depends on experience. the samemedical image is segmented
by different technicianswith different results. therefore, many
researchers try to solve this problem by using the method
of computer aided diagnosis to achieve semi-automatic seg-
mentation. with the rapid development of machine learn-
ing technology, various automatic segmentation methods for
brain tumors emerge in an endless stream, while traditional
segmentation methods based on threshold, edge detection,
clustering, region and registration have gradually faded out of
people’s attention due to their high complexity and low seg-
mentation accuracy [3]. machine learning algorithms based
on feature selection and classification, such as random for-
est, adaboost, kmeans clustering, support vector machines,
etc., still have limited segmentation performance. moreover,
automatic brain tumor segmentation remains a challenge due
to extreme intrinsic heterogeneity in appearance, shape, and
histology.

In order to solve the above problems, and with the vig-
orous development of deep learning technology, researchers
began to use computer deep learning technology to segment
brain tumors, and has achieved obvious advantages in seg-
mentation accuracy. Since the birth of Fully Convolutional
Networks(FCN) architecture [4] and UNet architecture [5]
in 2015. Due to their excellent encoder-decoder architecture,
FCN and UNet have become increasingly popular in the field
of brain tumor segmentation [6], [7], [8]. Myronenko et al. [9]
proposed a multi-modal semantic segmentation method for
3D brain tumors, which followed the UNet encoder decoder
architecture, and added variable autoencoder (VAE) branches
to the network to reconstruct input images together with the
segmentation, so as to regularise the shared encoder [40].
Jiang et al. [10] designed a new two-level cascade UNet
to segment brain tumors. the substructure of brain tumors
was trained end-to-end from coarse to fine. after that, the
crude segmentation map and the original image are input

into the second stage UNet, through which a more accu-
rate segmentation map with more network parameters can
be provided. In recent years, Isensee et al. [11] applied
nnU-Net network to brain tumor segmentation, and made
specific modifications by integrating brain tumor segmenta-
tion, including post-processing, region-based training, etc.,
effectively improving the accuracy of brain tumor segmen-
tation. Luu et al. [12] applied the extended nnU-Net network
to brain tumor segmentation, improved on the basis of nnU-
Net, replaced batch normalization with group normaliza-
tion, and improved nnU-Net by using axial attention in the
decoder, which further improved the accuracy of brain tumor
segmentation.

However, because the current segmentation methods based
on brain tumorsmostly rely onCNN and its variants, although
CNN has achieved excellent performance, it cannot learn
global and remote semantic information interaction well due
to the locality of convolutional operation [13], [14], [15],
lacks the ability to model long-term dependencies explicitly.
later, although some researchers have introduced the brilliant
transformer architecture in the field of Natural Language
Processing(NLP) into the field of image segmentation, trans-
former and its variants, such as vision transformer, require
a large number of data sets for pre-training. However, the
lack of current medical image data sets prevents Trans-
former from further deepening in the field of medical image
segmentation.Under the scarcity restriction, many models
may under-perform in capturing meaningful patterns in the
data [44].

In view of this, this paper proposes a network architecture
based on DenseTrans, which can effectively solve the above
problems by combining the improvement of UNet++ and
swin transformer. the main contributions of this paper are as
follows:

(1) Combine swin transformer with the improved UNet++
network innovatively. firstly, extract features through CNN
encoder, and then transfer extracted features into swin trans-
former through patch embedding in the high-resolution
layer of UNet++. use the swin transformer layer to learn
long-range dependencies and global context information.
moreover, due to the introduction of swin transformer,
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long-term dependency modeling using transformer no longer
requires a large number of medical image data sets for pre-
training, which solves the problem that global dependency
modeling cannot be carried out when medical image data sets
are scarce.

(2) In order to make full use of the information of each
mode in MRI, T1-weighted(T1), T1-weighted with gadolin-
ium contrast enhancement(T1-Gd or T1c), T2-weighted(T2),
and Fluid Attenuated Inversion Recovery (FLAIR) modes
were used for pixel level fusion. the predictive ability of each
mode to Enhancing Tumor(ET), Tumor Core(TC) andWhole
Tumor is explored to better perform pixel-level classification.

(3) In order to alleviate the increasing complexity of net-
work structure and the increasing number of parameters
and computational complexity, deep separable convolution
was introduced into DenseTrans network architecture, which
effectively improved the efficiency of image segmentation
and reduced the number of model parameters and computa-
tional complexity.

(4) Further optimize the training model through deep
supervision, assist the model to conduct pixel-level classifi-
cation of brain tumors, and improve the segmentation accu-
racy of brain tumors. More importantly, this paper uses deep
supervision to carry out hierarchical pruning of the model,
so that the computational complexity of the deep network
with a large number of parameters can be greatly reduced
within the acceptable accuracy range. Experimental results
on the BraTS 2021 and BraTS 2020 data sets demonstrate
the effectiveness of the method.

The specific sections of the article are arranged as follows:
the second section introduces the relevant work of the article,
and the third section elaborates it in detail The improvement
method and the concrete implementation process proposed
in this paper, the fourth section through the experiment to
verify the proposed method, the fifth section of this paper is
summarized.

II. RELATED WORK
A. UNet AND ITS VARIANTS
Since the UNet network was proposed in 2015, it has effec-
tively improved the accuracy of brain tumor segmentation.
In addition, the original purpose of UNet network is to solve
the problem of medical image segmentation. This network is
mainly composed of Encoder layer, decoder layer and skip
connection layer. Encoder layer consists of 3×3 convolution
layer, Rectified Linear Unit(RELU) layer and maxPooling
layer. feature extraction was carried out by subsampling. The
decoder layer consists of the transposed convolution layer
and Rectified Linear Unit(RELU) to form the upper sam-
pling layer. skip connection concat the features of encoder
and decoder, providing multi-scale and multi-level informa-
tion for the later image segmentation, effectively alleviating
the problem of space loss caused by downsampling in the
structure of single encoder, thus improving the accuracy of
image segmentation. traditional UNet designed a four-layer
structure, but the researchers speculated that a three-layer or

five-layer structure for different data sets could also improve
the segmentation accuracy. Zhou et al. [16] proposed the
UNet++ network, designed a dense jump connection layer
on the basis of UNet, introduced a built-in UNet set of differ-
ent depths, thus improving the segmentation performance of
objects of different sizes, which is equivalent to integrating
several UNet networks to train image segmentation at the
same time. by pruning the model of UNet ++ through deep
supervision, the pruned UNet ++ model achieved signif-
icant acceleration, but the performance was only slightly
decreased. Milletari et al. [17] proposed a kind of UNet
network VNet, which introduced residual connections in the
contraction layer and the expansion layer, optimized the
convolutional neural network through residual connections,
and used the convolution layer to replace the pooling layer
during downsampling. VNet replaced the pooling layer with
the convolution layer to further optimize the weights. Finally,
the network proposed the dice loss function of dynamic
adjustment. when the sample categories were unbalanced, the
formula was used to adjust the weights dynamically, and there
was no need to reweight the samples during training [43]. the
sample imbalance is improved. Huang et al. [18] believed that
the skip connection layer of UNet++ fused the low-level fea-
tures of the encoder and the high-level features of the decoder,
which would lead to feature loss. therefore, the UNet3+
network with full-scale feature fusion was proposed. the
features of the decoder are fused with the lower and sibling
features of the encoder and the higher features of the decoder.
Qin et al. [19] proposed an improved UNet3+ network. In the
encoder stage, phase residual network was adopted to replace
the original convolution layer, which improved the perfor-
mance of network feature extraction to a certain extent and
avoided the phenomenon of gradient disappearance. In addi-
tion, the batch normalization layer is replaced by the Filter
Response Normalization(FRN) layer [44], and the impact of
batch size on the network is avoided.

B. TRANSFORMER AND ITS VARIANTS IN MEDICAL
IMAGE SEGMENTATION
Although CNNhas achieved great success in the field ofmed-
ical image segmentation, due to the limitation of receptive
field in convolution operation, these methods are unable to
establish long-range dependence and global context connec-
tion. In view of this, some researchers have introduced the
transformer architecture in the field of Natural Language Pro-
cessing(NLP) to medical image segmentation. Vaswani et al.
[20] believe that Recurrent Neural Networks(RNN) and other
models are difficult to realize parallelization, and Recurrent
Neural Networks(RNN) is difficult to remember long dis-
tance features. In view of this, Transformer model is pro-
posed, which uses weighted attention to make the model
can see all inputs. The multi-head attention mechanism is
introduced in order to project onto multiple Spaces to obtain
multi-scale features similar to the channels of convolutional
neural networks. In the training process, a group of query
functions with multiple attention headers are calculated at the
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same time, and then they are encapsulated in the matrix Q,
the functions matched by Q are encapsulated in the matrix K,
the corresponding key value is in V, dk represents the matrix
dimension, and the output calculation matrix is:

Attention(Qi,Ki,Vi) = softmax(
QiKT

i
√
dk

)Vi (1)

Long distance dependencies and global context informa-
tion can be effectively captured through the Transformer
model, but the Transformer is primarily used in the NLP
domain. Dosovitskiy et al. [21] applies transformer to the
field of computer vision and puts forward a Vision trans-
former model, which divides the input image into patch
blocks and uses patch blocks to classify Transformer. patch
blocks are taken as 1D input sequence and corresponding
position information is added. medical images are classi-
fied at pixel level by transformer encoder and MLP layer.
however, this model requires a large number of data sets
for pre-training, but medical image data sets are scarce.
Liu et al. [22] proposed a new architecture based on
transformer, swin transformer. the model is a layered trans-
former, and its representation is shifted by the shifted win-
dow. the shifted window scheme improves efficiency by
limiting self-focused calculations to non-overlapping local
windows while also allowing cross-window connections.
Cao et al. [23] proposed a pure swin transformer model
of UNet. the model draws on UNet and includes encoder,
decoder, jump connection, connection layer, etc. the
multi-scale features are extracted by swin transformer from
the encoder. the patch expanding module is creatively pro-
posed to increase the image resolution and reduce the feature
channel at the decoder layer, thus improving the image
segmentation accuracy. Wu et al. [24] proposes a transformer
model based on 3DUNet architecture, which proposes a
new local attention (LSM) and global attention mechanism
(GSM). GS-MSA mimics the vacuous convolution model,
and selects a patch every fixed distance to form a global atten-
tion unit, and the rest to form a unit, so as to extract global
feature information. Hatamizadeh et al. [25] introduced swin
transformers into the UNet network, used swin transformers
as the encoder to extract features, and then input the extracted
features into the convolutional network to restore images
through upsampling. The encoder features are passed to the
decoder through jump connections during upsampling, and
residual blocks are utilized at each layer of the decoder.

III. METHOD
A. OVERALL ARCHITECTURE OF DenseTrans
Although some researchers combine UNet with Transformer
in an attempt to solve the problem that CNN cannot establish
long-distance dependency and extract global context infor-
mation, directly combining CNN with Transformer cannot
achieve the expected effect. the transformer model and its
variants have a weak ability to extract local information and
shallow features, and transformer requires a large number of
data sets for pre-training.

As shown in Figure 2, DenseTrans is an improved dense
hybrid model of UNet++ and swin transformer. DenseTrans
contains encoder,decoder dense jump connection layer. first
of all, the MRI section X ∈ RH×W×D×C , which H×W
represents spatial resolution, D represents dimension, and C
represents the number of channels. firstly, 3D CNN is used
to extract local shallow features and context information.
since transformer cannot directly flatline pixels into 1D for
attention calculation, it needs to calculate the attention weight
after Patch of the input image, and partial local features will
be ignored when patch is used as a unit for calculation.
therefore, for shallow features, 3D CNN is still used for
feature extraction. after two downsampling with 3DCNN, the
obtained features are then introduced into swin transformer
for long-distance dependency modeling and global context
information acquisition. the features processed by swin trans-
former encoder are converted into 3D dimensions through
the feature mapping layer. finally, the spatial resolution of
the features is restored through the decoder layer, and the
pixel-level classification is performed by the SoftMax layer to
generate segmentation results. at the same time, the improved
UNet++ model is adopted in the model, which is differ-
ent from the traditional UNet, which generally adopts four
times of downsampling for spatial resolution restoration. after
downsampling twice with 3D CNN, swin transformer blocks
are added to each layer. 3D CNN and swin transformer are
used to capture features of different layers, connect them by
superposition, and integrate more shallow UNet. The scale
difference of the feature map during fusion is smaller, and
deep supervision is added to each shallow UNet output,
so that the complex depth network can greatly reduce the
number of parameters within the acceptable accuracy range.
More importantly, in order to reduce the computational com-
plexity and the number of parameters, we use depth-separable
convolution when using CNN downsampling.

B. NETWORK ENCODER
Different from pure swin transformer [23] to extract features
by layered transformer construction of encoder, we took
an MRI section of the input, the use of 3D CNN for two
down sampling to extract the local characteristics of shal-
low, alleviate the problem of weak extraction of local fea-
ture information in transformer. we adopted depth-separable
convolution to carry out the convolution operation. first, the
depth information was separated by 3 × 3×1 convolution,
and then the channel fusion was carried out by 1 × 1×1
convolution. such operation can reduce the number of model
training parameters and reduce the computational complex-
ity. after convolution, the maximum pooling is used for sam-
pling reduction, and the input image is gradually encoded
into low-resolution/high-order feature representation G ∈
RK×

H
16×

W
16×

D
16 (the last layer of Encoder K=256). In this

case, G is integrated with rich local context information. the
integrated information is then passed into swin transformer
to learn the long distance dependencies and global context
information.
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FIGURE 2. Overall architecture of the proposed DenseTrans.

Swin Transformer Block: The model uses swin transformer
instead of transformer or vision transformer because the latter
requires a large data set for pre-training. some improvements
based on traditional techches transformer, first using the patch
layer partition the input image into a patch block, to convert
the characteristics of the channel, through the linear embed-
ding layer after converted into X ∈ RH×W×D×K , unlike
traditional swin transformer, patch merging of image resolu-
tion and adding feature channels is not used in the following
months. because the model in this paper has already layered

the input image, subsampling and layered feature extraction
do not need to be done again. after swin transformer core
W-MSA, its essence is to carry out transformer in a fixed
window, and its computational complexity is as follows:

�(W−MSA) = 4hwD2
+ 2hwM2D (2)

W-MSA makes transformer for the local information
within the small window, but it still needs to obtain the global
information. SW-MSA is used to obtain the information
between the windows, and then the windows are moved in
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SW-MSA. cyclic shift andmask are used to make transformer
for the pixels within themovingwindow. In this way, the pixel
information between the surrounding windows is obtained,
and the global context information is obtained along with the
movement of the window, and the long-distance dependence
relationship is established. as the window moves, swin trans-
former is calculated as:

∧
Z l =W−MSA(LN(zl−1))+ zl−1 (3)

zl = MLP(LN (∧Z l))+
∧
Z l (4)

∧

Z l + 1 = SW−MSA(LN(zl))+ zl (5)

zl+1 = MLP(LN(∧Z l + 1))+ ∧Z l + 1 (6)

LN represents the layer normalization, and zl represents
the swin transformer output of Layer L. the algorithm flow is
shown in Figure 3.

FIGURE 3. Swin transformer block.

Relative Position Bias: swin transformer differs from
vision transformer in the use of non-overlapping patches,
which reduces the computational load and complexity. how-
ever, whenW-MSAfixes the local window, it cannot learn the
global features. The information between SW-MSA learning
windows was introduced, which led to difficulties in position
learning. then, relative position coding was used to learn
relative position information, and the following was followed
when calculating similarity and self-attention:

Attention(Q,K,V) = SoftMax(QKT
√
d + T )V (7)

where, Q, K and V respectively represent query coefficients,
corresponding key and value pairs queried, Q, K, V ∈

RM
2
×M2

and M2 represent the number of patches in the input
image, and represent relative position offset, T ∈ RM

2
×M2

,
which is used to represent the relative position information
between patches.

C. NETWORK DECODER
Corresponding to the encoder is the symmetric decoder of
the DenseTrans block, in order to get the segmentation result
of the original input image (H×W×D). We use 3D CNN
transpose convolution in the decoder for upsampling and
pixel-level segmentation of the extracted depth features. Sec-
ondly, the model class in this paper integrates multiple UNet,
so depth supervision is added to each layer of UNet, so that
the depth network with a huge number of parameters can
reduce the number of parameters significantly within the
acceptable accuracy range.

Feature Mapping. encoder extracts features, CNN is used
for subsampling, and then swin transformer is used for global
feature learning. before learning the features extracted by
CNN, swin transformer will first input the feature graph
PatchEmbedding, so the features processed by swin trans-
former cannot be directly used for upsampling of 3D CNN.
a feature mapping module is designed in this paper. ZL ∈
Rd×N of swin transformer is mapped to Xint ∈ Rd×

H
16×

W
16×

D
16 ,

and then the features processed by feature mapping are used
for up-sampling.

1) COMBINED FEATURE UPSAMPLING
Each level of UNet in the model performs up-sampling after
feature mapping is completed. during the up-sampling pro-
cess, concatenate the features after transposed convolution
and the features transmitted by jump connections, so as to
further improve the segmentation accuracy and obtain more
abundant semantic information of global context. finally,
pixel-level segmentation is performed by SoftMax.

2) DEEP SUPERVISION
Deep Supervision is added into the model, aiming to make
the complex and redundant deep network significantly reduce
the number of parameters within the acceptable accuracy
range.1×1 convolution kernel is added to each level of super-
vision after L1,L2,L3,L4, which is equivalent to supervising
the output of each level or eachUNet and analyzing the output
results, so as to reduce the number of model parameters and
computational complexity within an acceptable range.

IV. EXPERIMENTAL RESULTS AND DISCUSSION
A. DATASET AND PRE-PROCESSING
The model uses BraTS 2021 as the benchmark data set to
demonstrate the proposed method. the BraTS 2021 dataset,
provided by the Brain Tumor Segmentation (BraTS) chal-
leng, contained MRI scans from a total of 2000 patients.
among them, there were 1251 cases of training set, 219 cases
of verification set and 530 cases of test set. The train-
ing set contained the original image and the correspond-
ing annotations. the verification set was used to adjust the
model but did not provide corresponding annotations. users
need to upload data segment to https://ipp.cbica.upenn.edu/
for assessment. each training sample contains data of four
modes: they are native T1-weighted(T1), T1-weighted with
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gadolinium contrast enhancement(T1-Gd or T1c), T2-
weighted(T2), and Fluid Attenuated Inversion Recovery
(FLAIR). All data sets were manually segmented by one to
four raters following the same protocol, and their markings
were approved by experienced board-certified neuroradiol-
ogists. Annotations included four categories: GD enhances
tumor (ET-label 4), peritumoral edema/infiltrating tissue
(ED-label 2), and necrotic tumor core (NCR-label 1), back-
ground (label 0). since the annotations of verification set and
test set are not published, the training set (1251) of BraTS
2021 data set is divided into training set and test set in
the training stage. the dimension of each sample is 240 ×
240×155, in which there are most background voxels. we cut
the sample into 128×128×128, and use contrast processing,
noise reduction processing and other pretreatment methods.
the second 3D data set for experimental verification is the
BraTS 2020 data set, which is similar to the BraTS 2021 data
set, both of which are data sets of MICCAI brain tumor
segmentation competition. the training set of this data set
contains 369 cases, and the validation set contains 125 cases.
the validation set and the test set are used for online evaluation
without publishing corresponding annotations.

B. IMPLEMENTATION AND EVALUATION METRICS
The method adopted in our experiment is consistent with
most previous experiments in the field. In the training stage,
the training set is divided according to 8:2 to conduct model
training and adjustment, and the verification set is used to
evaluate the model performance in the Inference stage.the
proposed model is run in PyTorch framework with 8 NVIDIA
RTX A5000 graphics cards (each with 24G of memory) for
7000 epochs using a batch size of 12. For the optimizer,
we set the adam optimizer with an initial learning rate of
0.0004. during optimization, the initial rate decays by a power
of 0.8 in each iteration. in the processing process, images
of the four modes of MRI were combined into a 4D image
(C×H×W×D), where C=4. In addition, the following data
enhancement techniques are applied in the processing pro-
cess: (1) the original image (240 × 240×155) is randomly
cropped to (128× 128×128); (2) the image is simply rotated
at the Angle {90,180,270}; (3) Contrast processing andGaus-
sian denoising.

1) IMPLEMENTATION DETAILS
Our model is trained from scratch in PyTorch, using Dense-
Trans Net as a split network and adding a swin transform to
the encoder’s skip connections at a high level stage. In Dense-
Trans Net, the contraction path has five layers, including bot-
tleneck, each Layer is composed of 3×3×1 deep convolution
and 1×1×1 channel convolution as well as Layer Normaliza-
tion and reLu activation. the number of feature channels set in
the the first encoder is 16. then, the maximum pooling layer
of 2× 2×2 is used for downsampling, and the stride is 2.the
number of channels is set to 32 in the second encoder, and the
number of channels at the third and fourth layers as well as
bottleneck layers is doubled in turn. in the skip connections,

features are flattened through the patch embedding layer, and
then swin transform is used to learn long-term dependency
and global context information. at the decoder stage, feature
mapping layer is used to convert the features processed by
swin transform into Xint ∈ Rd×

H
16×

W
16×

D
16 . after that, trilineal

interpolation followed by 3 × 3×1 deep convolution and
1 × 1×1 channel convolution are used for up-sampling. the
last layer is composed of 1 × 1×1 convolution, and the
number of output channels is 3. The segmentation result is
then generated.

2) EVALUATION METRICS
Previously, the commonly used evaluation metrics for brain
tumor segmentation include (1) the Dice similarity coeffi-
cient (DSC): DSC is used to measure the overlap between
the segmentation contour obtained by the proposed tumor
segmentation method and the manual contour described by
experienced doctors.

DSC =
2× |X ∩ Y |
|X | + |Y |

(8)

(2) the Hausdorff distance (HD): The surface area difference
between the segmented profile and the manual profile was
measured. HD is more sensitive to boundary segmentation
and is used to assess the maximum difference between the
surface area of the segmented contour S and the correspond-
ing manual contour M.

Hausdorff 95distance

= P95
{
Supx∈X d(x,Y ), Supy∈Y d(X , y)

}
(9)

In this paper, Dice and Hausdorff distance are used to eval-
uate the segmentation results of the proposed model. to some
extent, Hausdorff distance is the complement of Dice coef-
ficient, which can measure the maximum distance between
two contour edges. raise the weight of outliers and punishes
outliers.therefore, the combination of Dice coefficient and
Hausdorff distance is noisier and has stronger generalization
and robustness than pure Dice metrics.

3) OPTIMIZER
In order to obtain the global minimum in the model training
stage, we conducted various experiments in the optimization
of the back propagation loss function, including optimization
algorithms such as stochastic gradient descent (SGD), Adam
and Momentum. Initially, we tried the SGD optimizer, but
because it was sensitive to the learning rate of hyperpa-
rameters, If the learning rate is too small, the convergence
speed will be too slow, and if the learning rate is too large,
the extreme point will be crossed, and the algorithm will
be easily stuck at the saddle point in the iterative process.
therefore, in the end, we choose Adam optimizer, which is an
optimizer algorithm with momentum term, and uses gradient
first-order matrix estimation and second-order matrix estima-
tion to dynamically adjust the learning rate of parameters.
since the learning rate of each iteration of Adam has a certain
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TABLE 1. Comparison of the proposed model with the classical brain tumor segmentation method on the BraTS 2021 data validation set.

range, the parameters are relatively stable, and the step size
annealing process can be naturally realized, so it is more
suitable for large-scale data scenarios.

gt ← ∇wft (wt−1) (10)

we first calculate the gradient, and the formula is shown
in (10), where g represents the gradient and f represents the
noisy objective function. our goal is to calculate the expected
value of the function f(w). after that, we update biased first
moment estimate.

mt ← β1 · mt−1 + (1− β1) · gt (11)

β1 coefficient is exponential decay rate and controls weight
distribution.After that, we update biased second raw moment
estimate, and calculate the first order moment estimate and
second order matrix estimate of deviation correction respec-
tively, and finally update the parameters.

wt ← wt−1 − α ·

∧
m t(
√

∧
v t + ε) (12)

where,
∧
m t represents the first moment estimate after calculat-

ing the deviation, and
∧
v t represents the second moment esti-

mate after calculating the deviation.we set the initial learning
rate to 0.0004, and the initial rate decays 0.8 powers in each
iteration.

C. RESULT AND COMPARISONS
1) BraTS 2021
The model proposed by us is different from the ordinary
UNet model and also fundamentally different from the pure
transform model. In Table 1, the DenseTrans model proposed
by us is compared with excellent models in recent years.
the segmentation accuracy of our model is 93.23%(DSC)
and 4.58(HD) on WT, 86.2%(DSC) and 14.8(HD) on TC,
and 88.3%(DSC) and 12.2(HD) on ET. comparing our pro-
posedmethodwith the Brats2021 Challenge championmodel
method (Extending nn-UNet), our segmentation accuracy on
WT is improved by 0.4%, that on TC is reduced by 1.8%
and that on ET is improved by 3.8%. on another evalua-
tion metrics, Hausdorff distance metric, our model is better
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TABLE 2. Comparison of the proposed model with the classical brain tumor segmentation method on the BraTS 2020 data validation set.

than Extending nn-UNet model. Extending nn-UNet model
integrates automatic segmentation of a variety of models,
and axial attention mechanism is added to the Decoder pro-
cess, which makes the model have an obvious effect on the
accuracy of TC segmentation. our model obviously outper-
forms the Extending nn-UNet model on both WT and ET,
demonstrating the benefits of applying the swin transform
of the attention mechanism to establish global dependencies.
compared with the classical Swin Unter model, this model
used Swin Transform to construct the Unet-like model for
brain tumor segmentation, which played a leading role in the
combination of UNet and swin transform. we improved the
segmentation accuracy by 0.4% on WT, 2.3% on TC, and
2.5% on ET. on The whole, the DenseTrans model proposed
by us has achieved good results in terms of the Dice scores,
and improved the accuracy on both WT and ET. compared
with the Extending nn-UNet model and Swin Unter model,
On TC, our segmentation accuracy decreased slightly, mainly
because the model set a lower weight for T1GD mode when
the initial input original image was used for multi-mode
fusion, and T1GD mode was more suitable for detecting TC
region. In terms of Hausdorff distance metric, the Dense-
Trans also demonstrated better performance. the experimen-
tal results show that combining swin transformwith improved
UNet++ is helpful for long-term dependency modeling and
global context information acquisition.

2) QUANTITATIVE ANALYSIS
The segmentation results of our model are compared with the
latest segmentation results, and the quantitative comparison
results are shown in table 5. since our model combines CNN
and Transformer for brain tumor segmentation, we will com-
pare them with models using CNN and Transformer alone.
using the same data set and the same input modes, all methods
were compared and performance was quantitatively assessed.
compared with the classical 3DUNet in convolutional neural
networks, our original model has a great improvement in
performance, but also a significant increase in computational
complexity. however, when the number of layers was reduced
from L4 to L3 by combining deep separable convolution
and pruning assisted by deep supervision, our computational
complexity was significantly reduced. the pruning strategy
we adopted is shown in Figure 2. in the training stage of our
model, because there are both forward and back propagation,
each layer from L1 to L4 is used for weight updating. while
in the Inference phase, the input image will only propagate
forward, reducing the level of the model will not hinder the
output of the model. due to the use of deep supervision, each
layer from L1 to L4 produces corresponding segmentation
results. The experimental results show that the number of
parameters in L3 layer is reduced more than that in L4 layer,
and the performance is only slightly decreased. Compared
with TransBTS, a classical model using transformer, our
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TABLE 3. Fold cross validation results on Brats2021 validation set.

TABLE 4. Fold cross validation results on Brats2020 validation set.

model not only improves segmentation accuracy but also
reduces computational complexity.

3) QUALITATIVE ANALYSIS
In FIG 4, we visualized the segmentation results of the pro-
posedmodel on the Brats2021 data set, and conducted a 5 fold
cross validation evaluation of the proposed method on the
validation set. by comparing other experimental methods in
table 1 and table 2, our model has achieved great advantages
in the Brats2021 data set, especially in WT and ET, and
Dice and Hausdorff metrics are significantly better than other
similar methods. moreover, it can be seen from Figure 4 that
our model more accurately describes brain tumors, and has
obvious advantages for edge segmentation. by modeling the
long-term dependence between each volume through Swin
Transform, a better segmentation mask can be generated.
table 3 and table 4 respectively show the cross-validation
results from the first to the fifth fold of our model on the
Brats2021 and Brats2020 data sets and the average results of

the integration of five models. It can be seen from table 3
that on the Brats2021 data set, the 5-fold cross-validation
model integrated by us has the best performance. the segmen-
tation accuracy of the fourth-fold and fifth-fold is close to
that of the integrated model, but fluctuates greatly, while the
performance of Hausdorff95 is poor. similarly, the stability
of the third and fifth fold in Table 4 is poor, and there are
peaks. however, the segmentation accuracy of the model in
our average integration 5 is higher, and the Hausdorff95 index
also has the best performance.

4) BraTS 2020
We also conducted experimental verification on the
BraTS 2020 data set. Since the modes and corresponding
annotations of the BraTS 2020 data set are consistent with
those of BraTS 2021, we directly applied the hyperparameters
of the BraTS 2021 data set to the BraTS 2020 data set
for verification. as the number of instances is about 1/5
of the BraTS 2021 data set, the segmentation accuracy is
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FIGURE 4. Visualized predicted images of different models. The green, red, and blue regions indicate edema (ED), non-enhancing tumor and
necrosis (NCR/NET), and enhancing tumor (ET), respectively.

slightly reduced compared with the BraTS 2021 data set. the
segmentation accuracy was 91.4%(DSC) and 6.32(HD) on
WT, 85.3%(DSC) and 16.9(HD) on TC, 82.3%(DSC) and
15.2(HD) on ET. compared with classical networks such as
TransBTS Net, 3DU-net, Dual-Path UNet and Scale Atten-
tion Unet, our model has achieved significant advantages
in two evaluation metrics, and the segmentation accuracy
has been significantly improved. This indicates that the deep
fusion method of CNN and swin transfrom adopted by us has
a remarkable effect. compared with the traditional 3DU-net,

it can be obviously seen that the segmentation accuracy of
our model is increased by 2.8%(DSC) on WT, 1.0%(DSC)
on TC and 3.8%(DSC) on ET. meanwhile, the Hausdorff
distance is also lower than that of 3DU-net. this demonstrates
the importance of our improved swin transfrom learning
long-term dependencies and global context information.

D. MODEL COMPLEXITY ANALYSIS
Since the model proposed in this paper combines Swin
Transform with the improved UNet ++, both the number of
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TABLE 5. Performance comparison with other state-of-art models.

training parameters and computational complexity are
improved, with 51.82M parameters and 384GFlops, which is
a medium-scale model. later, we used deep separable convo-
lution and deep supervision to reduce the number of layers
in swin transformer during the model downsampling process
to alleviate this problem. by reducing swin transformer from
L4 to L3, we get a relatively lightweight DenseTrans model
with 21.3M parameters and 212GFlops, with only a slight
performance drop, due to the depth separable convolution and
the reduction in the number of swin transformer layers. com-
pared with TransBTS net model, the number of parameters is
reduced by 21%, and the performance is greatly improved.
compared with 16.21M parameter and 1670GFlops of the
3D UNet model, the number of parameters is not much
different, while the performance improvement is more obvi-
ous. our lightweight DenseTrans model has significant
advantages in terms of complexity and segmentation accu-
racy compared to brain tumor segmentation models using
Transformer.

In general, the DenseTrans model proposed in this paper,
after the introduction of swin transformer layer reduction
and depth-separable convolution, obtains a lightweight net-
work. the number of network parameters and computa-
tional complexity are shown in table5. compared with 3D
UNet, TransBTS and Swin UNETR models, this lightweight
model has fewer parameters and computational complex-
ity.the Dice Similarity Score was 92.8%, 85.8%, 87.2% in
the whole tumor,tumor core and enhancing tumor, Hausdorff
Distance(95%) values of 5.32mm,15.8mm and 13.6mm. the
performance is obviously better than previous similar excel-
lent models.

E. DISCUSSION
The experimental results from Brats2021 and Brats2020 data
sets show that the segmentation accuracy of the proposed
model is significantly improved on both WT and ET by

comparing with the traditional excellent models Extend-
ing nn-UNet, Swin Unter, TransBTS Net and 3DU-net. the
results show the effectiveness and feasibility of the model,
and further prove that the combination of swin transform
and improved UNet++ is helpful for long-term dependency
modeling and global context information acquisition. as for
the slight decline in the segmentation accuracy on TC, this
is due to the low weight setting of the T1GD mode in
the initial input multi-mode fusion, and the T1GD mode is
more suitable for the detection of TC region. according to
the experimental verification, if the weight of T1GD mode
is adjusted during the multi-mode fusion, the segmentation
accuracy of WT and ET regions will be affected. therefore,
the model is set according to the current superparameter to
ensure the optimization of segmentation accuracy. In terms of
details, compared with Swin Unter and Extending nn-UNet,
although the performance of ourmodel is obviously improved
in WT and extending nn-unet, the Dice coefficient in TC
is reduced by 2.3% and 1.8% respectively. the more direct
reason is that we combine the features extracted by CNNwith
the feature layer of swin transformer in the high-resolution
filter layer of input features, and swin transformer adopts
(4 × 4)patch as the self-attention weight of Token in a unit
learning window. then, the information between local win-
dows is exchanged by shift window and stack operation to
obtain global feature information, but this operation limits
the ability to obtain local semantic feature information. there-
fore, compared with Swin Unter and Extending nn-UNet, the
necrotic and non-enhancing tumor parts in the TC region are
limited in the ability of our model to obtain local informa-
tion, thus reducing the segmentation accuracy in this region.
In general, through comparative experimental analysis, our
model has the following advantages over the best brain tumor
segmentation models: (a) It greatly improves the segmenta-
tion accuracy of the whole tumor (WT) and the enhancing
tumor (ET) regions. (b) compared with other brain tumor
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transformer segmentation models, our lightweight model has
fewer parameters.

F. LIMITATIONS AND FUTURE WORK
The advantages of our proposedmodel are that it improves the
segmentation accuracy of multimodal brain tumors and effec-
tively alleviates the problem of secondary increase of compu-
tational complexity caused by the introduction of transformer
in the field of medical images.

1) LIMITATIONS
(a) Problems of generality and uncertainty. our model is
designed based on a specific brain tumor model, so it does not
have a good universality for other tumors. Secondly, multi-
modal fusion was carried out in model setting and experi-
mental configuration, but it was only carried out for different
sequences in MRI, without attempting to fuse CT, MRI and
image text.finally, because our experiment was conducted in
MRI of brain tumors, there is uncertainty in our model for
other tumors or other medical imaging methods such as CT.

(b) Computational complexity. we use deep separable con-
volution and other operations to reduce the complexity of
the model. compared with similar brain tumor segmentation
models in transformer, the complexity of our model is much
lower. however, due to the introduction of full self-attention
mechanism in transformer, the complexity of our model is
still higher than that of pure CNN.

2) FUTURE WORK
(a) Universality.we have collected CT, MRI images and
image reports of 45 cancer patients, and plan to establish a
general model to accurately segment tumors in different sites
in the future.

(b) Computational complexity.we will try to take mea-
sures including concurrent multi-head self-attention learning
mechanism to balance the increase of receptive field and
the secondary increase of computational complexity in trans-
former self-attention learning window.

(c) Clinical practicability. Inspired by the work of [39],
[41], and [42] and in order to improve the generality and
robustness of the model, we applied the feature extraction
framework of the proposed model to the detection and classi-
fication of brain tumors to build an excellent computer-aided
diagnosis system and provide accurate and reliable reference
basis for clinical practice.

V. CONCLUSION
In this paper, we introduce the DenseTrans model, which
is a new multimodal brain tumor segmentation model com-
bined with improved UNet++ and Swin Transformer. the
model uses the improved Encoder of UNet++ to extract
local features, and then each layer in nested UNet transfers
the extracted features to swin transformer for learning the
long-distance dependency and obtaining the global context
information. combining advantages of CNN and transformer,
the experimental results on the Brats2021 and Brats2020

dataset show that the model can effectively improve the accu-
racy of brain tumor segmentation. In future work, we will
continue to study the lightweight aspect of DenseTrans model
to achieve an efficient semantic segmentation model.
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